

Computer Communications and Networks

For other titles published in this series, go to
www.springer.com/series/4198

The Computer Communications and Networks series is a range of textbooks,
monographs and handbooks. It sets out to provide students, researchers and non-
specialists alike with a sure grounding in current knowledge, together with compre-
hensible access to the latest developments in computer communications and
networking.

Emphasis is placed on clear and explanatory styles that support a tutorial approach,
so that even the most complex of topics is presented in a lucid and intelligible
manner.

Nick Antonopoulos  •  Lee Gillam
Editors

Cloud Computing

Principles, Systems and Applications

ISBN 978-1-84996-240-7 e-ISBN 978-1-84996-241-4
DOI 10.1007/978-1-84996-241-4
Springer London Dordrecht New York Heidelberg

Library of Congress Control Number: 2010930920

© Springer-Verlag London Limited 2010
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case
of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing
Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: SPi, Puducherry, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editors
Nick Antonopoulos
University of Derby
School of Computing and Mathematics
Kedleston Road, DE22 1GB
Derby
UK
N.Antonopoulos@derby.ac.uk

Lee Gillam
University of Surrey
Department of Computing
Guildford, Surrey, GU2 7XH
UK
L.Gillam@surrey.ac.uk

Series Editor
Professor A.J. Sammes, BSc, MPhil, PhD, FBCS, CEng
Centre for Forensic Computing
Cranfield University
DCMT, Shrivenham
Swindon SN6 8LA
UK

v

Foreword

Cloud computing is increasingly being used for what was known as ‘on-demand’
and ‘utility computing’. The services provided, the APIs and the applications that
can be hosted by these Cloud providers have superseded the use of the Grid, and
are increasingly becoming popular with users. There are obviously two sides to the
services that are provided by Cloud providers: those that are supplied by commer-
cial entities, such as Amazon and Google, and those that are open-source systems,
such as Open Cirrus1 and Eucalyptus.2

There are currently three cloud-based delivery models. Software as a Service
(SaaS), where the consumer uses an application, but does not control the operating
system, hardware or network infrastructure. In this situation, the user steers applica-
tions over the network. Next is Platform as a Service (PaaS), where the users host an
environment for their applications. The users control the applications, but do not
control the operating system, hardware or network infrastructure, which they are
using. Finally, there is Infrastructure as a Service (IaaS), where the user accesses
‘fundamental computing resources’ such as CPU, memory, middleware and storage.
The consumer controls the resources, but not the cloud infrastructure beneath them.

Service providers try to provide simplified software installation, maintenance
and a centralised control over the software used. The end-users can access the
cloud-based services ‘anytime’ and from ‘anywhere’. Naturally, this type of access
is based on the bandwidth that a user has over the Internet and therefore poor inter-
connections mean that the use of cloud-based resources is not viable. Unfortunately,
most current cloud-based systems use different APIs and protocols, which means
that collaboration and sharing of data is difficult at this point in time. It is interest-
ing that the Open Grid Forum is looking at Cloud-based API and protocols, so that
systems can share and work together in the future.

Many users and organisations are uncomfortable with the idea of storing their
data and applications on system infrastructure and services they do not control. In
addition, migrating workloads to a shared infrastructure increases the potential for
unauthorised access and exposure of sensitive data. Cloud-based systems need to

1 Open Cirrus, http://opencirrus.org/
2 Eucalyptus, http://open.eucalyptus.com/

vi Foreword

be consistent around authentication, identity management, compliance and
access-related technologies, which are becoming increasingly important. Within
the cloud-security model, the user needs to trust the vendor’s security model, con-
sider a customer’s inability to respond to audit findings, potentially obtain support
for investigations, deem indirect administrator accountability, ensure that proprie-
tary implementations cannot be examined, and cope with the loss of physical con-
trol on the remote clouds being used. In addition, it may be a case that a user wants
to use sensitive data on a cloud-based system, in which case it would be useful to
be able to encrypt the data so that it is safe and cannot be stolen by other users.

There is also a need on cloud-based systems for Quality of Service (QoS) and
Service-Level Agreements (SLAs). The contract between customers and service
providers needs to be negotiated and agreed. Various performance metrics (e.g.,
uptime, throughput, and response time) need to be guaranteed to the users. Also,
certain management details need to be exposed to the users of the system. This
aspect of the service will require logging and efficient monitoring of the resources
used by the users, so that they can see that they are potentially accessing the
resources that were originally negotiated. There also needs to be well-documented
security capabilities provided to the users, and the providers must recompense users
where there are penalties for non-performance.

Cloud computing relies on separating user applications from the underlying
infrastructure using virtualisation. The host operating system provides an abstrac-
tion layer for executing a virtual guest operating system. A key aspect of virtualisa-
tion is the ‘hypervisor’ and potentially the ‘virtual machine monitor’. Cloud-based
systems use para-virtualisation, which includes a binary bus between the various
virtual machines that are being executed. Para-virtualisation provides a much faster
and more efficient virtualisation system than other virtual systems. Virtualisation
enables the guest operating systems to execute in isolation of the other operating
systems, and it also enables a range of legacy applications to be run. In addition, on
a Cloud-based system, it is possible to run multiple types of operating systems
across the system, which potentially also helps to increase the utilisation of physi-
cal servers. Virtualisation also allows the portability of virtual servers between
physical servers and it can increase the overall security of the physical host server.
It is well known for example that many HPC applications are only 15–20% effi-
cient, and it is possible when executing these applications on Cloud-based services
that overall there is better program efficiency. In addition, for HPC applications, the
system will also need to be able to schedule the virtual machines (VMs) efficiently,
as it will be important that the constituting parts of the application are placed
closely together to reduce communication latencies and give high inter-VM band-
width as well. Another aspect is that the Cloud-based systems have the possibility
to optimise the use of resources, reduce the amount of electrical power used as well
as the capability to provide efficient Green IT computing.

An unfortunate aspect of current Cloud-based systems is the hyperbolae and
publicity broadcast about them, without detailed information about the services,
protocols and applications that can be executed on these systems. Just like previous
distributed systems (e.g. CORBA, Jini and the Grid), it is very important for the

viiForeword

potential end-user to know about the architecture, services, protocols, inter-opera-
bility, security, scalability and performance, reliability, user interfaces and poten-
tially payment for services in the context of Cloud computing.

This book provides a thorough and timely examination and exploration of the
services, interfaces and the types of applications that can be executed on Cloud-
based systems. In addition, the book discusses the interfaces used to access the
underlying services, the pros/cons of using virtualisation, the range and scope of
applications that can be executed, the security used by these services, the user inter-
faces and aspects such as service-level agreements and the quality of service pro-
vided. The applications that execute on a Cloud-based system need a computational
model, storage capabilities and potentially inter-process/thread communication. In
addition, it is important to understand the scalability and performance capability of
the systems being used. This book covers a wide range of topics related to Clouds
and it includes chapters about tools and technologies for building Clouds, taxono-
mies of cloud-based systems and analysis of security and data confidentiality
issues. There are discussions about the interoperability challenges related to the
numerous protocols and APIs, methods for mixing Grids and Clouds together,
resource management tools, potential Peer-to-Peer cloud-based provisioning, the
policies, economics and costs-based benefits of Clouds, as well as Service-Level
Agreements in Grids and Cloud-based systems. Therefore, it will be a useful tool
for researchers and professionals aiming to understand and use Cloud systems for
scientific and commercial purposes.

University of Reading, UK	 M. Baker
Winter 2010

r

ix

Preface

Introduction

Cloud computing appears to have emerged very recently as a subject of substantial
industrial and academic interest, though its meaning, scope and fit with respect to
other paradigms is hotly debated. For some researchers, Clouds are a natural evolu-
tion towards full commercialisation of Grid systems, while for others they may be
dismissed as a mere rebranding of the existing pay-per-use or pay-as-you-go tech-
nologies. From either perspective, it appears that ‘Cloud’ has become the label of
choice for accountable pay-per-use access to a wide variety of third-party applica-
tions and computational resources on a massive scale. Clouds are now supporting
patterns of less-predictable resource use for applications and services across the IT
spectrum, from online office applications to high-throughput transactional services
and high-performance computations involving substantial quantities of processing
cycles and storage. The current notion of Clouds seems to blur the distinctions
between Grid Services, Web Services, and data centres, amongst others, and brings
considerations of lowering the cost for relatively bursty applications to the fore.

Currently, there appears to be an increasing demand for Cloud computing in
general. Major IT and e-commerce vendors such as Amazon, Google, IBM,
Microsoft, and Sun have joined a variety of technology and service providers in
offering Clouds. In turn, this generates significant demand for reference materials
that provide coverage for this topic, ranging from standard developer guides to
advanced expositions of research into Cloud design, optimisation and management.
Interest in Cloud computing, as a concept or system design abstraction, is com-
pounded and further strengthened by an inherent relationship to service-oriented
computing. Clouds may be considered by some as a reincarnation and an extension
of service-oriented computing that covers computational hardware-based resources
as well as software, with concomitant business benefits in cost reduction where
such services scale efficiently.

For the scientific community, Cloud computing offers interesting characteristics
and challenges. Some of these exist at the intersection between computing and
economics, where the key question is how to develop a Cloud infrastructure that
provides the required quality of service; from a network economics perspective,

x Preface

this relates to the design and deployment of an adaptive pricing mechanism that
provides both for a competitive edge and a profitable venture. At the same time,
end-users (both potential consumers and providers) need to be able to understand
the similarities, differences, benefits and disadvantages of Clouds over numerous
existing paradigms including Grids, High-Performance Computing, Peer-to-Peer
(P2P) systems and so on. P2P, Grid, High-Performance Computing and Web
Services are very pertinent fields that have received significant and sustained
research interest in the design and deployment of large-scale and high-performance
computational resource-sharing systems. Collectively, these form the de facto basis
for methods and techniques that will be re-appraised, re-used or re-designed to
construct performance-driven Cloud platforms capable of satisfying the four cor-
nerstones of quality of service:

1.	 Efficiency: The execution and coordination of the services is optimised in terms
of data traffic and latency. Data traffic is typically one of the main cost factors in
any distributed computing framework and thus its reduction is a standard long-
term goal of such systems. Latency is arguably one of the most important factors
affecting customer satisfaction and therefore it should also be within specified
acceptable limits.

2.	 Scalability: These platforms should scale well to massive customer bases. They
must also withstand demand of multiple bursty applications during peak times
and endure the ‘flash crowds’ phenomenon familiar in overly successful market-
ing strategies and provisioning for popular websites at key times.

3.	 Robustness: The services need continuously high availability by design, with
effective use of redundancy and graceful failover. Where users are charged for
the expected successful use of computational facilities, it is imperative to under-
stand the risk of failure, either to remove the probability of failure, or to use this
information to offer appropriate compensation schemes.

4.	 Security: Appropriate security provisions must exist for both data and applications to
protect both the providers and consumers from malicious or fraudulent activities.
Without adequate security provisioning, it is highly unlikely that any commoditised
platform would become a serious consideration for business computing.

To ensure commercial success, effective Clouds will be expected to provide
guaranteed quality of service to customers by satisfying these four cornerstones.

This book is targeted at providing a thorough and advanced treatment of the
state-of-the-art in Cloud computing that addresses the above topics and highlights
and clarifies the conceptual and systemic links with other distributed computing
approaches.

The book has four key objectives:

	(i)	 To explore the relationship of Cloud computing to other distributed computing
paradigms, namely Peer-to-Peer, Grids, High-Performance Computing and
Web Services

	(ii)	 To present the principles, techniques, protocols and algorithms that can be
adapted from other distributed computing paradigms to the development of
successful Clouds

xiPreface

	(iii)	to present current Cloud applications and highlight early deployment
experiences

	(iv)	to elaborate the economic schemes needed for Clouds to become viable
business models.

The first two objectives are firmly rooted in extant discourse of distributed com-
puting and a desire to understand the potential of all these technologies in con-
structing purpose-specific hybrid solutions. The remaining objectives are closely
linked to commercial demand for understanding how such technologies can shape
successful and profitable businesses.

Expected Audience

This book should be of particular interest for the following audiences:

•	 Researchers and doctoral students working specifically in Cloud computing
research, implementation and deployment, primarily as a reference publication.
Similarly, this book should be useful to researchers in related, or more general
fields, such as distributed computing, software engineering, Web Services, mod-
elling of business processes, and so on.

•	 Academics and students engaging in research-informed teaching in the above
fields. This book can serve as a good collection of articles to facilitate a broad
understanding of this subject and as such may be useful as a key reference text
in such teaching.

•	 Professional system architects and developers who could decide to adapt and
apply in practice a number of the techniques and processes presented in the book.

•	 Technical managers and IT consultants as a book that demonstrates the poten-
tial applicability of certain methods for delivering efficient and secure commer-
cial electronic services to customers globally.

These audiences will find this publication appealing as it combines three distinct
scholarly contributions: first, it identifies and highlights state-of-the-art techniques
and methods for designing Cloud systems; second, it presents mechanisms and
schemes for linking Clouds to economic activities; third, it achieves balanced cov-
erage of all related technologies that collectively contribute towards the realisation
of Cloud computing.

Book Overview

The book contains 21 chapters that were carefully selected based on peer review by
at least two expert and independent reviewers. The chapters are split into four Parts:

xii Preface

Part 1: Cloud Base

This section aims to cover the essential definitions, characteristics and concepts
behind Cloud computing. The chapters included in this section collectively intro-
duce the reader to Cloud computing and its essential architectural principles. As a
result, chapters in this section are either tutorial in nature or provide critical litera-
ture surveys in the field.

Chapter 1 presents a number of mainstream technologies for building and man-
aging Cloud architectures. The authors provide a detailed description of virtual
machine frameworks and present the MapReduce programming model, which is
suitable for large-scale data processing.

Chapter 2 describes a detailed taxonomy of Cloud computing architectures that
may promote clarity and reusability of key concepts in Cloud design. The authors
use this taxonomy to identify key similarities and differences between various
approaches to Cloud computing and underline areas for further development.

Chapter 3 analyses the applicability of Cloud computing in e-Science. It focuses
on classifying different Cloud architectures in terms of their ability to provide the
services required for large-scale scientific experiments and calculations.

Chapter 4 examines the differences between Cloud and Grid computing. The
authors explain how the user- and task-centric design philosophy of Clouds makes
this technology more appealing to typical end-users.

Chapter 5 provides a high-level overview of various standards for, and related
to, Cloud computing. It explores the key features of each standard in terms of
interoperability, security and portability and assesses the potential for market adop-
tion of the standards presented.

Part 2: Cloud Seeding

This section builds on the introductory material of Part 1 and provides in-depth
coverage of how Clouds can be designed and how emerging technologies such as
P2P fit with Cloud computing in general. It includes chapters that propose novel
techniques and systems for making Clouds scalable, efficient and fault-tolerant
computing platforms.

Chapter 6 presents an innovative computational paradigm called Cloud@Home
that merges Peer-to-Peer computing with Clouds. The Cloud@Home aggregates
the computational resources of many low-power systems, and the authors demon-
strate how this pool of resources can subsequently be managed and used by differ-
ent communities of users.

Chapter 7 exploits a novel peer-to-peer model for replicating and managing job
states in an efficient and decentralised way. The authors use this model to enhance
the fault tolerance of the MapReduce programming paradigm in highly dynamic
environments that exhibit significant failure rates.

xiiiPreface

Chapter 8 introduces a novel network-centric Cloud architecture that provides
enhanced end-to-end connectivity services. The framework facilitates vertical and
horizontal communication integration of Cloud applications and the authors dem-
onstrate its usefulness in decoupling connectivity from the underlying network
implementations.

Chapter 9 presents a new workflow-based framework called YPL-PC that sup-
ports the development of (private) scientific Clouds. The authors base their work on
the YML workflow programming paradigm and show how their framework can
effectively integrate dedicated and volunteer computing resources to support large-
scale scientific applications.

Chapter 10 discusses the benefits of mixing Clouds with more traditional com-
puting platforms. It focuses on the design of a new high-level framework that sup-
ports the smooth transition of an application from a cluster or Grid to a Cloud.

Chapter 11 describes a novel mechanism for extending a Grid computing envi-
ronment to use on-demand Cloud resources in order to achieve better performance.
The authors achieve this by modifying the Grid resource management architecture,
and through experimentation demonstrate the performance gains of their frame-
work in workflows with large data sets.

Chapter 12 presents a new peer-to-peer Cloud architecture called Cloud Peer. The
system creates and manages an overlay network of virtual machines and the authors
demonstrate how it supports load balancing and scalable resource discovery.

Chapter 13 discusses the applicability of Cloud computing for high-throughput
scientific applications. It shows that the Nimrod/G toolkit can handle both volun-
teer resources and commercial services. Through a case study, the authors conclude
that an appropriate mixture of Grid and Cloud computing provides an ideal plat-
form for high-performance scientific computations.

Part 3: Cloud Breaks

This section covers a range of challenging issues associated to Cloud computing
that, if not addressed properly, may limit adoption. It includes chapters that discuss
legal issues, security and limitations. Specifically, the questions here relate to how
data is protected in such environments to account for privacy, confidentiality, and
so on, and what legislative and regulatory challenges are faced.

Chapter 14 provides an overview of a wide spectrum of legislation and regula-
tions applicable to Cloud computing. The authors present a detailed analysis of the
considerations that potential Cloud users should make in order to protect their pro-
cesses and data.

Chapter 15 discusses interoperability issues and open development frameworks
for Cloud computing. It presents current standardisation efforts and identifies future
key challenges in data confidentiality in particular.

Chapter 16 discusses security and risk issues related to Cloud computing,
including privacy, trust and data control. The authors use this analysis to propose a

xiv Preface

new information asset classification model to assist Cloud users when choosing
amongst Cloud delivery and deployment models.

Chapter 17 focuses on the security controls that need to be deployed in order to
increase the adoption of Cloud computing. This discussion leads to a set of recom-
mendations on how various security layers can be incorporated in typical private or
public Cloud provisions.

Part 4: Cloud Feedback

This section aims to argue a business case for Cloud computing by debating the
impact of Clouds. Can Clouds be the basis for deploying successful digital econo-
mies? Are there any lessons learned from specific case studies involving the use of
Clouds for business applications?

Chapter 18 assesses frameworks for the distribution and enforcement of policies
in Cloud architectures. The authors explore the use of the Service-Oriented
Architecture (SOA) Policy Enforcement Point (PEP) as a policy portal and show
that this can be an effective security model for Cloud-based services.

Chapter 19 describes in detail the PeRvasive Infrastructure of Services for Media
(PRISM) project that provides a Cloud-based media infrastructure to support network
access to BBC content. The deployment of this system is discussed, and it is shown
that the system is capable of handling petabytes of data for on-demand viewing.

Chapter 20 discusses the economic forces and business drivers affecting the
adoption of Cloud computing. It provides a detailed analysis of the costs and ben-
efits of using Clouds as well as the overall quality of experience of Cloud end-users
and its link to Service-Level Agreements (SLAs).

Chapter 21 discusses the challenges that would be entailed in constructing a
price comparison service for Cloud resources. Service-Level Agreements (SLAs)
would be a key component in such a service and experiments are presented for
costing applications on a local Grid and a public (Amazon EC2) and private
(Eucalyptus) Cloud.

Acknowledgements  The editors are grateful to the peer-review panel for supporting this book
including, in no particular order, Anand Govindarajan, Bhaskar Prasad Rimal, Bin Li, Blair
Bethwaite, Brian Amedro, Cyril Onwubiko, David Abramson, Hai Jin, James P. Durbano, Fabrice
Huet, Francesco Palmieri, Ian Lumb, Jinlei Jiang, Kevin Mcdonald, Lakshmanan G, Rajiv Ranjan,
Scott Morrison, and Terence Harmer. The editors are deeply apologetic to anyone whom they have
forgotten.
  The editors also wish to thank the Springer’s editorial team for their strong and continuous sup-
port throughout the development of this book.

University of Derby, UK 	 Professor Nick Antonopoulos
University of Surrey, UK 	 Dr Lee Gillam
Winter 2010

xv

Contents

Part I  Cloud Base

1	 Tools and Technologies for Building Clouds..	 3
Hai Jin, Shadi Ibrahim, Tim Bell, Li Qi, Haijun Cao,
Song Wu, and Xuanhua Shi

2	 A Taxonomy, Survey, and Issues of Cloud Computing
Ecosystems..	 21
Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb

3	 Towards a Taxonomy for Cloud Computing
from an e-Science Perspective...	 47
Daniel de Oliveira, Fernanda Araujo Baião, and Marta Mattoso

4	 Examining Cloud Computing from the Perspective
of Grid and Computer-Supported Cooperative Work...........................	 63
Jinlei Jiang and Guangwen Yang

5	 Overview of Cloud Standards...	 77
Anand Govindarajan and Lakshmanan

Part II  Cloud Seeding

6	 Open and Interoperable Clouds: The Cloud@Home Way....................	 93
Vincenzo D. Cunsolo, Salvatore Distefano, Antonio Puliafito,
and Marco Scarpa

7	 A Peer-to-Peer Framework for Supporting MapReduce
Applications in Dynamic Cloud Environments.......................................	 113
Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio

8	 Enhanced Network Support for Scalable Computing Clouds...............	 127
Francesco Pamieri and Silvio Pardi

xvi Contents

  9	 YML-PC: A Reference Architecture Based on Workflow
for Building Scientific Private Clouds..	 145
Ling Shang, Serge Petiton, Nahid Emad, and Xiaolin Yang

10	 An Efficient Framework for Running Applications
on Clusters, Grids, and Clouds...	 163
Brian Amedro, Françoise Baude, Denis Caromel,
Christian Delbé, Imen Filali, Fabrice Huet, Elton Mathias,
and Oleg Smirnov

11	 Resource Management for Hybrid Grid
and Cloud Computing...	 179
Simon Ostermann, Radu Prodan, and Thomas Fahringer

12	 Peer-to-Peer Cloud Provisioning: Service Discovery
and Load-Balancing...	 195
Rajiv Ranjan, Liang Zhao, Xiaomin Wu, Anna Liu,
Andres Quiroz, and Manish Parashar

13	 Mixing Grids and Clouds: High-Throughput Science
Using the Nimrod Tool Family..	 219
Blair Bethwaite, David Abramson, Fabian Bohnert,
Slavisa Garic, Colin Enticott, and Tom Peachey

Part III  Cloud Breaks

14	 Cloud Compliance: A Framework for Using Cloud
Computing in a Regulated World...	 241
Shawn R. Chaput and Katarina Ringwood

15	 Cloud Computing – Data Confidentiality
and Interoperability Challenges...	 257
Fabrizio Gagliardi and Silvana Muscella

16	 Security Issues to Cloud Computing..	 271
Cyril Onwubiko

17	 Securing the Cloud...	 289
James P. Durbano, Derek Rustvold, George Saylor,
and John Studarus

xviiContents

Part IV  Cloud Feedback

18	 Technologies for Enforcement and Distribution of Policy
in Cloud Architectures...	 305
K.W. Scott Morrison

19	 The PRISM On-demand Digital Media Cloud......................................	 327
Terry Harmer, Ron Perrott, and Rhys Lewis

20	 Cloud Economics: Principles, Costs, and Benefits................................	 343
Asoke K. Talukder, Lawrence Zimmerman, and Prahalad H.A

21	 Towards Application-Specific Service Level Agreements:
Experiments in Clouds and Grids..	 361
Bin Li, Lee Gillam, and John O’Loughlin

Index..	 373

r

Part I
Cloud Base

3N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_1, © Springer-Verlag London Limited 2010

Abstract  With cloud computing growing in popularity, tools and technologies are
emerging to build, access, manage, and maintain the clouds. These tools need to
manage the huge number of operations within a cloud transparently and without
service interruptions. Cloud computing promises lower costs, faster implementa-
tion, and more flexibility using mixtures of technologies, and the associated tools
are critical for achieving this.

In this chapter, we survey several state-of-the-art techniques for building clouds, start-
ing with virtualization technology. We briefly introduce virtual machines (VMs) and
their main features. Then, we introduce the main tools to manage VMs (hypervisors and
virtual infrastructure managers) as well as the major technologies used to manage VMs
in a public cloud. We then present MapReduce, a powerful model that makes it easier to
write programs that take advantage of the power of cloud computing. We conclude by
examining four web services tools and technologies that are built for cloud computing.

1.1 � Introduction

Computing is being transformed by a new model, cloud computing. In this model,
data and computation are operated somewhere in a “cloud,” which is some collection
of data centers owned and maintained by a third party.

Cloud computing refers to the hardware, systems software, and applications
delivered as services over the Internet. When a cloud is made available in a pay-
as-you-go manner to the general public, we call it a Public Cloud. The term Private
Cloud is used when the cloud infrastructure is operated solely for a business or an
organization. A composition of the two types (private and public) is called a Hybrid

H. Jin (*)
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, 430074, Wuhan, China
e-mail: hjin@hust.edu.cn

Chapter 1
Tools and Technologies for Building Clouds

Hai Jin, Shadi Ibrahim, Tim Bell, Li Qi, Haijun Cao, Song Wu,
and Xuanhua Shi

4 H. Jin et al.

Cloud, where a private cloud is able to maintain high service availability by scaling
up their system with externally provisioned resources from a public cloud when
there are rapid workload fluctuations or hardware failures.

In general, cloud providers fall into three categories (shown in Fig. 1.1):

Infrastructure as a Service (IaaS): offering web-based access to storage and •	
computing power. The consumer does not need to manage or control the under-
lying cloud infrastructure but has control over the operating systems, storage,
and deployed applications.
Platform as a Service (PaaS): giving developers the tools to build and host web •	
applications (e.g., APPRIO [1], a software as a service provider, is built using
the Force.com [2] platform while the infrastructure is provided by the Amazon
Web Service [3]).

EC2 S3Elastic
MapReduce

SaaS

PaaS

Iaas

Web Services

Web Services

Hardware Technologies

Cloud Infrastructure
Mangers

E
n

ab
lin

g
 T

ech
n

o
lo

g
ies

DFSMapReduceVMs

VMM

VIM

·

·

·

Google Clouds:
-Google App
Engine is a
Platform as a
Service for
building web
applications.
-Google Apps are
Software as a
Service such as
Gmail, Google
talk, Calendar
and so on.

Google’s main enabling technologies to build
Google Clouds are: MapReduce, GFS, BigTable,
and web services

GFS MapReduce BigTable

S
aaS

P
aaS

S
aaS

P
aaS

IaaS

Amazon Elastic cloud service (VM-based
computation as a service) uses Xen as
hypervisor and web service technology to
expose the VMs. RightScale (third party), built on
top of EC2, can be used to reduce the
administration burden on the customer.
Amazon Simple Storage (S3). Web service
technology to expose storage resources to the
user.
Amazon Elastic MapReduce. Using Hadoop
over EC2 and S3 to process and analyze huge
amounts of data.

Amazon’s main IaaS services are:

Fig. 1.1  Cloud services and enabling technologies, using Amazon and Google systems as examples

51  Tools and Technologies for Building Clouds

Software as a Service (SaaS): applications that are accessible from various client •	
devices through a thin client interface such as a web browser.

The shift toward cloud computing is driven by many factors including ubiquity of
access (all you need is a browser), ease of management (no need for user experi-
ence improvements as no configuration or backup is needed), and less investment
(affordable enterprise solution deployed on a pay-per-use basis for the hardware,
with systems software provided by the cloud providers) [4]. Furthermore, cloud
computing offers many advantages to vendors, such as easily managed infrastruc-
ture because the data center has homogeneous hardware and system software.
Moreover, they are under the control of a single, knowledgeable entity.

1.1.1 � Cloud Services and Enabling Technologies

For the purposes of this chapter, we define cloud computing as data centers plus a
layer of system software services designed to support the creation and scalable
deployment of application services. Our goal here is to examine the tools and tech-
nologies used to build these clouds.

The data center hardware consists of thousands of individual computing nodes
with their corresponding networking and storage subsystems, power distribution
and conditioning equipment, and extensive cooling systems. Such data centers
currently power the services offered by companies such as Google, Amazon,
Yahoo, and Microsoft’s online services division.

Cloud services (remote data and computation) are exposed as simple and user-
friendly web services. For example, Microsoft’s ADO.NET (originally called
Astoria) [5] provides the tools to expose any data object from a collection, stored
in a database or other form, as a URI to an encoded form using a standard such as
JSON or ATOM representation, and Google’s AppEngine [6] provides a way to
deploy a remote Python script that becomes a web service that can access data in
their BigTable database system.

To deliver highly available and flexible services (i.e., computation as a service),
and owing to the maturity of virtualization technology, Virtual Machines (VMs)
are used as a standard for object deployment in the cloud. VMs decouple the com-
puting infrastructure from the physical infrastructure. In addition, VMs allow the
customization of the platform to suit the needs of the end-user. For example, in the
Amazon Elastic Compute Cloud (EC2) [7], the customer selects his/her preferred
VM image (virtual appliance) from a list of various versions of Linux and Windows
servers configured with different web servers and databases. Alternatively, they can
customize a system to best meet their needs and deploy the new application in
the VM. Amazon provides a basic set of web services that can be used to deploy
the VM, create an instance, and secure it. Multiple instances can be created to
support demand as needed, although this requires more system administration and
management. Thus, some organizations have developed virtual infrastructure
tools to manage and monitor VMs in a pool of distributed resources (e.g., Enomaly

6 H. Jin et al.

[8] and OpenNebula [9]). In addition, third-party application hosting framework
service companies, like RightScale [10] and Elastra [11], have emerged to provide
higher-level application deployment tools on top of EC2, thereby reducing the
administration burden on the customer.

Because of the huge amount of data stored by a cloud, efficient processing and
analysis of data has become a challenging issue. The Google MapReduce [12]
model has proven to be an efficient approach for data-intensive cloud computing
(e.g., Google uses its MapReduce framework to process 20 petabytes of data per
day). MapReduce has been advocated as a good basis for data center computers in
general [13].

1.2 � Virtualization Technology

Virtualization is the idea of partitioning or dividing the resources of a single server
into multiple segregated VMs. Virtualization technology has been proposed and
developed over a relatively long period. The earliest use of VMs was by IBM in
1960, intended to leverage investments in expensive mainframe computers [14].
The idea was to enable multitasking – running multiple applications and processes
for different users simultaneously. Robert P. Goldberg described the need for vir-
tual machines in 1974: “Virtual machine systems were originally developed to
correct some of the shortcomings of the typical third generation architectures and
multiprogramming operating systems – e.g., OS/360” [15]. During the 1980s and
1990s, the prevailing approach to computing was distributed systems, client-
server applications, and the inexpensive x86 server [14]. Recently, owing to the
rapid growth in IT infrastructure, we have seen the emergence of multicore proces-
sors and a wide variety of hardware, operating systems, and software. In this
environment, virtualization has had a resurgence of popularity. Virtualization can
provide dramatic benefits for a computing system, including increased utilization,
energy saving, rapid deployment, improved maintenance capability, isolation, and
encapsulation. Moreover, virtualization enables applications to migrate from one
server to another while they are still running, without downtime, providing flexible
workload management, and high availability during planned maintenance or
unplanned events [16–22].

There are numerous reasons that virtualization is effective in practical scenarios,
for example [23,24]:

Server and application consolidation: under virtualization, we can run multiple •	
applications at the same time on the same server, resulting in more efficient
utilization of resources.
Configurability: virtualization allows dynamic configuration and bundling of •	
resources for a wider variety of applications than could be achieved at the hard-
ware level – different applications require different resources (some requiring
more storage, others requiring more computing).

71  Tools and Technologies for Building Clouds

Increased application availability: VM checkpointing and migration allow quick •	
failure recovery from unplanned outages with no interruption in service.
Improved responsiveness: resource provisioning, monitoring, and maintenance •	
can be automated, and common resources can be cached and reused.

1.2.1 � Virtual Machines

A VM is a software implementation of a machine (i.e., a computer) that executes
programs like a physical machine [25]. This differs from a process VM, which is
designed to run a single program, such as the Java Runtime Environment (JRE).
A system VM provides a complete system platform that supports the execution of
a complete operating system (OS).

The VM lifecycle has six phases: create, suspend, resume, save, migrate, and
destroy. Multiple VMs can run simultaneously in the same physical node. Each VM
can have a different OS, and a Virtual Machine Monitor (VMM) is used to control
and manage the VMs on a single physical node. A VMM is often referred to as a
hypervisor. Above this level, Virtual Infrastructure Managers (VIMs) are used to
manage, deploy, and monitor VMs on a distributed pool of resources (cluster or
data center). In addition, Cloud Infrastructure Managers (CIMs) are web-based
management solutions on the top of IaaS providers (see Fig. 1.2).

1.2.2 � Virtualization Platforms

Virtualization technology has been developed to best utilize computing capacity. Server
virtualization has been described as follows: “In most cases, server virtualization

• Web based VM management on top of IaaS providers

Cloud Infrastructure Manager (CIM)

• Deploying, control and monitoring of VMs on a distributed pool of resources

Virtual Infrastructure Manager (VIM)

• Manage the lifecycle of VMs on a single node

Virtual Machine Manager (VMM)

• Have two main layers, the operating system and a software package that is partially or
 fully configured to perform a specific task

Virtual Machines (VMs)

Fig. 1.2  Different layers of VM management tools and technologies

8 H. Jin et al.

is accomplished by the use of a hypervisor (VMM) to logically assign and separate
physical resources. The hypervisor allows a guest operating system, running on the virtual
machine, to function as if it were solely in control of the hardware, unaware that other
guests are sharing it. Each guest operating system is protected from the others and is
thus unaffected by any instability or configuration issues of the others” [26].

Virtualization methods can be classified into two categories according to
whether or not the guest OS kernel needs to be modified, as shown in Fig. 1.3: (1)
full virtualization (supported by VMware [27], Xen [28], KVM [29], and Microsoft
Hyper-V [30], etc.), and (2) paravirtualization (currently supported only by Xen).
Full virtualization emulates the entire hardware environment by utilizing hardware
virtualization support, binary code translation, or binary code rewriting, and thus
the guest OS does not need to modify its kernel. Having full virtualization is impor-
tant for running non-open-source operating system such as Windows, because it is
too difficult to modify the Windows kernel without source code. Paravirtualization
requires the guest OS kernel to be modified to become aware of the hypervisor.
Because it need not emulate the entire hardware environment, paravirtualization
can attain better performance than full virtualization.

In paravirtualized architecture, OS-level information about the VM can be
passed explicitly from the OS to the VMM, and this is done in practice to some
extent [31,32]. Any explicit information supplied by a paravirtualized OS is guar-
anteed to match what is available inside the OS. However, in some important envi-
ronments, the explicit approach is less valuable, and because paravirtualization
requires OS-level modification, that functionality cannot be deployed in VMMs
running beneath legacy or closed-source operating systems anyway.

Table 1.1 compares some of the most relevant commercial and open-source
software (OSS) technologies for server virtualization, showing the main trade-off
between the product’s performances.

Fig. 1.3  A comparison between full virtualization and paravirtualization VM hypervisors [33]

91  Tools and Technologies for Building Clouds

1.2.3 � Virtual Infrastructure Management

A Virtual Infrastructure Manager (VIM) is responsible for the efficient management
of a virtual infrastructure as a whole, by providing basic functionality for deploying,
controlling, and monitoring VMs on a distributed pool of resources. This is done
by communicating with their VMMs. The major issues being addressed by the
cloud community are:

Improving the distributed and efficient management of the virtual infrastructure •	
as a whole (i.e., deployment, control, and monitoring)
Providing self-provisioning of the virtual infrastructure•	
Improving the integrity and interoperability of the different virtualization tech-•	
nologies (different hypervisors such as Xen, VMware) as well as the different
cloud providers
Providing administrators with a uniform user-friendly environment that enables •	
access to a wider range of physically distributed facilities improving productivity

Accordingly, many organizations have introduced virtual infrastructure manage-
ment tools as shown in Table 1.2.

In addition to specific systems such as those listed in the table, open standard
organizations such as OGF and DMTF contribute many standards for remote
management of cloud computing infrastructures. The scope of the specifications
covers all high-level functionality required for the life-cycle management of
VMs. Some of these standards have been widely adopted to construct grid and
cloud systems, such as the Open Grid Forum Open Cloud Computing Interface
(OCCI) [40], The Open Virtualization Format (OVF) [41], and the virtualization
API (libvirt) [42].

Table 1.1  Comparison of some of the most relevant commercial and open-source software (OSS)
tools for server virtualization [34]

VMM Type Highlights
Guest
performance License

KVM [29] Full virtualization Assigns every VM
as a regular
Linux process

Close to native Open source

Xen [28] Paravirtualization Supports VM
migration on fly

Native Open source

VMware [27] Full virtualization Provides a mature
product family to
manage virtual
infrastructure

Close to native Commercial

Microsoft
hyper-V [30]

Full virtualization Able to trap guest
calls

Close to native Commercial

10 H. Jin et al.

Table 1.2  Comparison of some of the most relevant commercial and open-source software (OSS)
tools for virtual infrastructure management

System
name Brief description

VM
hypervisor Cloud type

Enomaly
[8]

A programmable virtual cloud infrastructure
for small, medium, and large businesses.
Their Elastic Computing Platform (ECP)
helps users to design, deploy, and manage
virtual applications in the cloud, and
also significantly reduces administrative
and systems workload. A browser-based
dashboard enables IT personnel to simply
and efficiently plan deployments, automate
VM scaling and load-balancing, and
analyze, configure, and optimize cloud
capacity.

Xen, KVM Private and
public

Eucalyptus
[35]

“Elastic Utility Computing Architecture Linking
Your Programs To Useful Systems” – is
an open-source software infrastructure for
implementing cloud computing on clusters.
The current interface to Eucalyptus is
compatible with Amazon’s EC2, S3, and EBS
interfaces, but the infrastructure is designed to
support multiple client-side interfaces.

Xen, KVM,
VMware

Private and
public

Nimbus
[36]

Nimbus has been developed in part within the
Globus Toolkit 4 framework and provides
interfaces to VM management functions
based on the WSRF set of protocols.
There is also an alternative implementation
implementing Amazon EC2 WSDL.

Xen Private and
public

Open
Nebula
[9]

Orchestrates storage, network, and virtualization
technologies to enable the dynamic
placement of multitier services (groups
of interconnected VMs) on distributed
infrastructures, combining both data center
resources and remote cloud resources,
according to allocation policies.

Xen, KVM,
VMWare

Private, hybrid,
and public
cloud (EC2,
Elastic
Hosts[37])

Usher [38] The design philosophy of Usher is to provide an
interface whereby users and administrators
can request VM operations (e.g., start, stop,
migrate, etc.) while delegating administrative
tasks for these operations out to smart plug-
ins. Usher’s implementation allows for
arbitrary action to be taken for nearly any
event in the system.

Xen Virtual cluster

VNIX [39] With VNIX, administrators can deploy various
VMs rapidly and easily on computing nodes,
and manage them with related configuration
from a single easy-to-use management
console. In addition, VNIX implements
several specialized features, involving
easy monitoring, fast deploying, and
autoconfiguring.

Xen Cluster

111  Tools and Technologies for Building Clouds

1.2.4 � Cloud Infrastructure Manager

A Cloud Infrastructure Manager (CIM) is a web-based solution focused on deploy-
ing and managing services (deploying, monitoring, and maintaining the VMs) on
top of Infrastructure as a Service (IaaS) clouds. Third-party application-hosting
framework service companies provide higher-level application deployment tools on
top of IaaS. Some of these solutions are listed in Table 1.3.

Table 1.3  Cloud infrastructure management solutions

System name Brief description Pricing Cloud provider Users

Rightscale
[11]

Rightscale is a cloud
management
environment,
cloud-ready server
template and best-
practice deployment
library, adaptable
automation engine,
and multi-cloud
engine.

Starting at
US$500,
monthly
fee

Amazon web
services,
GoGrid,
FlexiScale

G.ho.st,
Animoto,
and
MeDeploy
[43]

Elastra [12] Elastra’s main features
are: application
infrastructure
modeling, federated
hybrid cloud
management, lifecycle
orchestration,
and deployment
management.

Pricing not
published

AWS

Kaavo [44] IMOD is for Application-
Centric Management
of virtual resources
in the clouds. It
provides easy-to-use
web interface for
deploying, running,
and managing
complex multiserver
n-tier applications in
the cloud.

Pricing not
published

EC2 The 451 Group
and Infoworld
[45]

CohesiveFT
[46]

PN-Cubed is a
commercial solution
that enables customer
control in a cloud,
across multiple
clouds, and between
private infrastructure
and the clouds.

Starting with
US$5,000
per year

EC2, Elastic
hosts

12 H. Jin et al.

1.3 � The MapReduce System

Google’s MapReduce [12] is a programming model that demonstrates a simpler
way to develop data-intensive applications for large distributed systems. It can be
leveraged to utilize the resources available through a cloud.

The MapReduce [12] system runs on top of the Google File System (GFS) [47],
within which data is loaded, partitioned into chunks, and each chunk replicated.
Data processing is co-located with data storage: when a file needs to be processed,
the job scheduler consults a storage metadata service to get the host node for each
chunk, and then schedules a map process on that node, so that data locality is
exploited efficiently. At the time of writing, because of its remarkable features
including simplicity, fault tolerance, and scalability, MapReduce is by far the most
powerful realization of data-intensive cloud computing programming. It is often
advocated as an easier-to-use, efficient, and reliable replacement for the traditional
programming model of moving the data to the computation.

The MapReduce abstraction is inspired by the Map and Reduce functions, which
are commonly used in the functional languages such as Lisp [12]. Users express the
computation using two functions, map and reduce, which can be carried out on
subsets of the data in a highly parallel manner. The runtime system is responsible
for parallelizing and fault handling. The steps of the process are as follows. They
are illustrated by the widely used “wordcount” example in Fig. 1.4:

The input is read (typically from a distributed file system) and broken up into •	
key/value pairs. The key identifies the subset of data, and the value will have
computation performed on it. (In the example, the keys are each input word read
from files A, B, and C, and the values are all a count of one.) The map function
maps this data into sets of key/value pairs that can be distributed to different
processors.

Fig. 1.4  Illustrate the Map and Reduce functions using the Wordcount Example

131  Tools and Technologies for Building Clouds

The pairs are partitioned into groups for processing, and are sorted according to •	
their key as they arrive for reduction. (In the example, the pairs are now grouped
according to the key.)
The key/value pairs are reduced, once for each unique key in the sorted list, to •	
produce a combined result. (In this example, this will be the count of each word).

MapReduce has been applied widely in various fields including data- and compute-
intensive applications, machine learning, and multicore programming. Moreover,
many implementations have been developed in different programming languages
for various purposes.

The popular open source implementation of MapReduce, Hadoop [48], was
developed primarily by Yahoo, where it processes hundreds of terabytes of data on
at least 10,000 cores [49], and is now used by other companies, including Facebook,
Amazon, Last.fm, and the New York Times [50]. Research groups from enterprises
and academia are starting to study the MapReduce model as a better fit for cloud
computing, and explore the possibilities of adapting it for more applications.

1.3.1 � Hadoop MapReduce Overview

The Hadoop common [48], formerly called the Hadoop core, includes filesystem,
RPC (remote procedure call), and serialization libraries, and provides the basic
services for building a cloud computing environment with commodity hardware.
The two main subprojects are the MapReduce framework and the Hadoop
Distributed File System (HDFS).

The HDFS is a distributed file system designed to run on commodity hardware.
HDFS is highly fault-tolerant and so can be deployed on low-cost hardware. HDFS
provides high throughput access to application data and is suitable for applications
that have large data sets. The Hadoop MapReduce framework is highly reliant on
its shared file system, and it comes with plug-ins for HDFS, CloudStore [51], and
the Amazon Simple Storage Service (S3).

The MapReduce framework consists of a single master JobTracker and one slave
TaskTracker per cluster-node. The master is responsible for scheduling the jobs’
component tasks on the slaves (i.e., it queries the HDFS master Namenode about
data block locations and assigns each task to the TaskTracker that is closest to
where the data to be processed is physically stored), monitoring them, and re-
executing any failed tasks. The slaves execute the tasks as directed by the master.

1.4 � Web Services

To support cloud computing infrastructure efficiently, and to express business
models easily, designers and developers need a group of web services technologies
to construct a real, user-friendly, and content-rich set of applications on the top of

14 H. Jin et al.

their clouds. This section introduces four fundamental tools and technologies,
which can be employed to construct cloud applications viewed at the infrastructure,
architecture, and presentational level. These technologies are: Remote Procedure
Call (RPC), Service-Oriented Architecture (SOA), Representational State Transfer
(REST), and Mashup.

1.4.1 � RPC (Remote Procedure Call)

Reliable and stable communications among cloud resources are fundamental to the
infrastructure, and thus are an important consideration. Remote Procedure Call
(RPC) has proven to be an efficient mechanism for implementing the client-server
model in a distributed computing environment. It was proposed initially by Sun
Microsystems as a great advancement in comparison with sockets (e.g., the pro-
grammer is not concerned with the underlying communications, since they are
embedded inside the RPC). In RPC, the client must know what features the server
provides, which are indicated by a service definition, written in IDL (Interface
Description Language). An RPC call is a synchronous operation that suspends the
calling program until the results of the call are returned. When an RPC is compiled,
a stub is included in the compiled code that represents the remote service. When
the program runs, it calls the stub, which knows where the operation is and how to
reach the service. The stub will send the message through the network to the server.
The result of the procedure is returned to the client in the same way.

Many commercial products built over the RPC mechanism have been practically
proven as efficient and convenient to construct enterprise applications.

In 2002, Microsoft released the .NET Remoting [52], which was incrementally
evolved from DCOM and Active X, to support. NET applications intercommunicat-
ing in a loosely coupled environment. Similar to RPC stubs, .NET Remoting initial-
izes the “Channel” objects to proxy the remote calls. To improve the transparency
and convenience, the procedure of serialization and marshalling will be completed
automatically by .NET runtime. Each .NET Remoting object is identified as a
unique URL and safely accessed by clients remotely.

Extending from Java Remote Method Invocation (RMI) [53], Java community
presents a complete specification J2EE [54] to standardize the communications
among loosely coupled Java components. The enhancements include Enterprise
Java Beans (EJB), connectors, servlets, and portlets. The complete J2EE structure
of specifications helps designers to easily construct business logic and assists
developers in clearly implementing them. Although .Net Remoting and J2EE
have been widely adopted by the industry, RPC mechanism is not feasible to
construct Cloud applications. One of the problems with RPC is that RPC imple-
mentations, as shown in Table 1.4, can be incompatible with each other. To use
one of the possible implementations of RPC will result in a high dependence on
the particular RPC.

151  Tools and Technologies for Building Clouds

1.4.2 � SOA (Service-Oriented Architecture)

The goal of a Service-Oriented Architecture (SOA) [55,56] is to composite together
fairly large chunks of functionality to form service-oriented applications, which are
almost entirely built from the existing software services. SOA hired a bunch of
open standards (1) to wrap the components in different localized runtime environ-
ment (e.g., in Java or .NET); (2) to enable different clients including pervasive
devices free access; (3) to reuse the existing components to compose more services.
This significantly reduces development costs and helps designers and developers to
concentrate more on business models and their internal logic.

SOAs use several communication standards based on XML to enhance the
interoperability among application systems. As the atomic access point inside an
SOA, the web services are formally defined by three kernel standards: Web Service
Description Language (WSDL), Simple Object Access Protocol (SOAP), and
Universal Description Discovery and Integration (UDDI). Normally, the functional
interfaces and parameters of specific services are described using the WSDL. Web
services exchange messages are encoded in the SOAP messaging framework and
transported over HTTP or other internet protocols (SMTP, FTP, and so forth).
A typical web service lifecycle envisions the following scenario: A service provider
publishes the WSDL description of their service in a UDDI, a registry that permits
Universal Description Discovery and Integration of web services. Subsequently,
service requesters can inspect the UDDI and locate/discover web services that are
of interest. Using the information provided by the WSDL description, they can
directly invoke the corresponding web service. Further, several web services can be

Table 1.4  Web service toolkits comparisons

Age Dep. Transport Key Tech. Categories Implementations

RPC 1974 – TCP/IP Stubs, IDL Infrastructure,
IaaS

Java RMI
[52], XML
RPC, .Net
Remoting
[53], RPyC,
CORBA

SOA 1998 WS-RPC HTTP,FTP,
SMTP

WSDL Architecture
level, PaaS

IBM Websphere,
Microsoft .Net
IIS, Weblogic

UDDI
SOAP

REST 2000 HTTP HTTP,FTP,
SMTP

Web-oriented Architecture
level, DaaS

RIP, Rails,
Restlet, Jboss
RESTEasy,
Apache CXF,
Symfony

MASHUP 2000
later

REST HTTP Web-oriented
(Web 2.0)

Application
level, SaaS

Google Mashup
editor, JackBe,
Mozilla
Ubiquity

SOA
RSS

16 H. Jin et al.

composed to achieve more complex functionality. All the invocation procedures are
similar to RPC except that the communications and deployments are described in
open standards.

Moreover, the open standards organizations such as W3C, OASIS, and DMTF
contribute many higher-level standards to help different users construct their reus-
able, interoperable, and discoverable services and applications. Some of these
standards were widely adopted to construct grid and cloud systems, such as Web
Services Resources Framework (WSRF) [57], Web Services Security (WS-Security)
[58], Web Services Policy (WS-Policy) [59], and so on.

1.4.3 � REST (Representative State Transfer)

REST [60] is an architectural style that Roy T. Fielding, now chief scientist at Day
Software, first defined in his doctoral thesis. REST stipulates mechanisms for
defining and accessing resources in specific distributed systems such as the web. In
a REST implementation, resources are addressed via uniform resource identifiers
(URIs). That is, a given URI is used to access the representational state of a
resource, and also to modify that resource. For example, web URLs can be used to
give descriptive information about resources, and consumers then need to know
only the URL to read the information. Furthermore, an authorized user can also
modify the information if needed.

REST defines three architectural entities as follows [60–62]:

Data elements: resource identifiers such as URIs and URLs, and resource repre-•	
sentations, such as HTML documents, images, and XML documents
Components: Origin servers, gateways, proxies, and user agents•	
Connectors: Clients, servers, and caches•	

The representational state for resources in an HTTP-based REST system should be
accessed using the standard HTTP methods.

A simple breakdown of these methods is as follows: GET is used to transfer the
current representational state of a resource from a server to a client; PUT is used to
transfer the modified representational state of a resource from the client to the
server; POST is used to transfer the new representational state of a resource from
the client to the server; and DELETE is used to transfer information needed to
change a resource to a deleted representational state.

1.4.4 � Mashup

A mashup has been defined in Wikipedia [63] as “a web page or application that
combines data or functionality from two or more external sources to create a new
service. To be more precise, Mashup technology concentrates on the following tasks

171  Tools and Technologies for Building Clouds

[64]: (1) Deep access to existing enterprise services and data/content repositories;
(2) SaaS-style web-based Mashup assembly and use; (3) Assembly models that are
truly end-user friendly with very little training required; and last, but certainly not
least, (4) a credible management and maintenance plan for IT departments that must
support a flood of public end-user built and integrated apps.”

Mashup is concerned with the API (application) level. When building Mashups,
the developer is always dependent on the providers of the services. As shown in the
figure, Mashup requires that the XMLHttpRequest is made to third-party domains.
By compositing services and data from SOA, REST, RSS, ATOM, and other RPC-
like web servers, a Mashup API can conveniently bind the data with AJAX scripts
to deliver a service to end-users.

Some Mashup editors have been implemented to help developers easily con-
struct Web 2.0 and cloud-oriented applications; currently two are available, Google
Mashup Editor [65] and Mozilla Ubiquity [66].

1.4.5 � Web Services in Practice

All the aforementioned web services tools and technologies have been widely
implemented by industry and open-source organizations. Table 1.4 also lists their
main attributes in terms of when they were proposed, dependencies, transport
mechanism, key technology, categories, and implementations. Understanding these
features can help developers to quickly adopt the appropriate technologies and
develop their clouds effectively.

1.5 � Conclusions

This chapter has presented the main tools and technologies for building and operating
clouds. Virtualization technology is foundational to cloud computing because it
provides a safe and flexible platform using VMs, VM Monitors, Virtual
Infrastructure, and Cloud Infrastructure Managers. Virtualization technology is still
developing rapidly, and some of the limitations that currently exist are likely to be
addressed as virtualization technology becomes more mature. We have also pre-
sented the MapReduce programming model, which is a particularly useful approach
for processing huge amounts of data because the computation is close to the data.

Finally, we have reviewed a number of different web services technologies that
provide an easy interface for users to configure and access cloud resources.

Cloud computing is a powerful way to provide computing resources, and the
tools for creating and maintaining cloud systems and their services are becoming
increasingly flexible and easy to use, providing users with easy on-demand access
to massive computing power and storage that previously would only have been
available to extremely well-resourced organizations.

18 H. Jin et al.

Acknowledgments  This work is supported by National 973 Key Basic Research Program under
grant No.2007CB310900, NSFC under grants No.60673174 and No.60973037, Program for New
Century Excellent Talents in University under Grant NCET-07-0334, Information Technology
Foundation of MoE and Intel under grant MoE-INTEL-09-03, and National High-Tech R&D Plan
of China under grant No.2006AA01A115.

References

	 1.	 APPRIO Homepage (2009) http://www.appirio.com/
	 2.	 Force.com Homepage (2009) http://www.salesforce.com/platform/
	 3.	 Amazon Web Services (2009) http://aws.amazon.com/
	 4.	 Barroso LA, Urs Hölzle U (2009) The datacenter as a computer: an introduction to the design

of warehouse-scale machines. Morgan & Claypool, USA
	 5.	 ADO.NET Data Service (formally Astroia) (2009) http://msdn.microsoft.com/en-us/data/

bb931106.aspx
	 6.	 Google AppEngine (2009) http://code.google.com/appengine/
	 7.	 Amazon Elastic Cloud Computing (2009) http://aws.amazon.com/ec2/
	 8.	 Enomaly Elastic Computing (2009) http://www.enomaly.com/
	 9.	 Open Nubela Homepage (2009) http://www.opennebula.org/
	10.	 Rightscale Homepage (2009) http://www.rightscale.com/
	11.	 Elastra Manage ComplexITy Homepage (2009) http://www.elastra.com/
	12.	 Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters.

Commun ACM 51(1):107–113
	13.	 Patterson DA (2008) Technical perspective: the data center is the computer. Commun ACM

51(1):105
	14.	 Vmware (2009) http://www.vmware.com/virtualization/history.html
	15.	 Goldberg RP (1974) Survey of virtual machine research. IEEE Comput Mag 7(6):34–45
	16.	 Waldspurger CA (December 2002) Memory resource management in VMware ESX server.

In: Proceedings of the 5th symposium on operating systems design and implementation
(OSDI ’02), Boston, MA

	17.	 Fraser K, Hand S, Neugebauer R, Pratt I, Warfield A, Williamson M (2004) Safe hardware
access with the Xen virtual machine monitor. In: OASIS ASPLOS 2004 workshop

	18.	 Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt L, Warfield A (2005) Live
migration of virtual machines. In: Proceedings of the 2nd symposium on networked systems
design and implementation (NSDI ’05), Boston, MA

	19.	 Garfinkel T, Pfaff B, Chow J, Rosenblum M, Boneh D (2003) Terra: a virtual machine-based
platform for trusted computing. In: Proceedings of the 19th ACM symposium on operating
systems principles (SOSP ’03), Bolton Landing (Lake George), New York

	20.	 Bressoud TC, Schneider FB (1995) Hypervisor based fault tolerance. In: Proceedings of the
fifteenth ACM symposium on operating systems principles, ACM Press, pp 1–11

	21.	 Petrini F, Kerbyson DJ, Pakin S (2003) The case of the missing supercomputer performance:
achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of SC ’03,
Washington, DC, USA

	22.	 Koch K (2002) How does ASCI actually complete multi-month 1000-processor milestone
simulations? In: Proceedings of the conference on high speed computing

	23.	 Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree
compared. In: the Proceedings of the grid computing environments workshop

	24.	 Nanda S, Chiueh T (2005) A survey on virtualization technologies, RPE Report, February.
www.ecsl.cs.sunysb.edu/tr/TR179.pdf

	25.	 Virtual Machine (Wikipedia) (2009) http://en.wikipedia.org/wiki/Virtual_machine

191  Tools and Technologies for Building Clouds

	26.	 IBM white paper (2009) Seeding the Clouds: Key Infrastructure Elements for Cloud Computing.
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/oiw03022usen/OIW03022USEN.PDF

	27.	 VMware – Virtual Infrastructure Software (2009) http://www.vmware.com.
	28.	 Xen Homepage (2009) http://www.xen.org/.
	29.	 Kernel-based Virtual Machine (2009) http://kvm.qumranet.com.
	30.	 Microsoft Hyper-V (2009) http://www.microsoft.com/hyper-v-server/en/us/default.aspx
	31.	 Pratt I, Warfield A, Barham P, Neugebauer R (2003) Xen and the art of virtualization. In

Proceedings of the 19th ACM symposium on operating systems principles (SOSP ’03), Bolton
Landing (Lake George), New York

	32.	 Whitaker A, Shaw M, Gribble SD (2002) Scale and performance in the Denali isolation ker-
nel. In: Proceedings of the 5th symposium on operating systems design and implementation
(OSDI’02), Boston, MA

	33.	 MSDN Architecture Center, Mapping Applications to the Cloud (2009) http://msdn.microsoft.
com/en-us/library/dd430340.aspx

	34.	 Comparison of platform virtual machines (Wikipedia) (2009) http://en.wikipedia.org/wiki/
Comparison_of_platform_virtual_machines

	35.	 Eucalyptus system Homepage (2009) http://www.eucalyptus.com/
	36.	 Nimbus Homepage (2009) http://workspace.globus.org/
	37.	 Elastic Hosts Homepage (2009) http://www.elastichosts.com/
	38.	 McNett M, Gupta D, Vahdat A, Voelker GM (2007) Usher: an extensible framework for man-

aging clusters of virtual machines. 21st Large installation system administration conference
	39.	 Shi XH, Tan H, Wu S, Jin H (2008) VNIX: managing virtual machines on clusters, pp 155–

162. Japan-China joint workshop on frontier of computer science and technology
	40.	 OGF Open Cloud Computing Interface Working Group (2009) http://www.occi-wg.org/

doku.php
	41.	 VMan Initiative (2009) http://www.dmtf.org/initiatives/vman_initiative/
	42.	 libvirt: The virtualization API (2009) http://libvirt.org/
	43.	 RightScale – Testimonials (2009) http://www.rightscale.com/customers/
	44.	 Kaavo Homepage (2009) http://www.kaavo.com/home
	45.	 Kaavo – Testimonials (2009) http://www.kaavo.com/testimonials
	46.	 CohesiveFT Homepage (2009) http://www.cohesiveft.com/
	47.	 Ghemawat S, Gobioff H, Leung ST (2003) The google file system. In: the proceedings of the

19th ACM symposium on operating systems principles, Lake George, New York
	48.	 Hadoop (2009) http://lucene.apache.org/
	49.	 Yahoo! (2009) Yahoo! Developer Network. http://developer.yahoo.com/blogs/hadoop/2008/02/

yahoo-worlds-largest-production-hadoop.html. Accessed September 2009
	50.	 Hadoop Credits Page (2009) http://hadoop.apache.org/core/credits.html. Accessed September

2009
	51.	 CloudStore (Formely Kosmos File System) (2009) http://kosmosfs.sourceforge.net/
	52.	 .NET Remoting, http://en.wikipedia.org/wiki/.NET_Remoting
	53.	 Java RMI, http://en.wikipedia.org/wiki/Java_RMI
	54.	 J2EE, http://en.wikipedia.org/wiki/J2EE
	55.	 Service Oriented Architecture (Wikipedia) (2009) http://en.wikipedia.org/wiki/Service-

oriented_architecture
	56.	 Service-architecture – Service-oriented architecture (SOA) definition (2009) http://www.service-

architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
	57.	 WSRF (2009) http://www.oasis-open.org/committees/wsrf/
	58.	 WS-Security (2009) http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
	59.	 WS-Policy (2009) http://www.w3.org/Submission/WS-Policy/
	60.	 Goth G (2004) Critics say web services need a REST. IEEE Distribut Syst Online 5(12): 1–1
	61.	 Vinoski S (2008) RESTful web services development checklist. IEEE Internet Comput

12(6):94–96
	62.	 Vinoski S ((2007) REST eye for the SOA guy. IEEE Internet Comput 11(1):82–84

20 H. Jin et al.

	63.	 Mashup (web application hybrid), http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
	64.	 Webmashup.com blog, http://www.webmashup.com/blog/category/learn/ (accessed 1 October

2009)
	65.	 Google Mashup Editor (2009) http://en.wikipedia.org/wiki/Google_Mashup_Editor
	66.	 Mozilla Ubiquity (2009) http://ubiquity.mozilla.com/

21

Abstract  Cloud computing has emerged as a popular computing model to support
processing of volumetric data using clusters of commodity computers. Nowadays,
the computational world is opting for pay-for-use models. Hype and discussion
aside, there remains no concrete definition of cloud computing. This chapter
describes a comprehensive taxonomy for cloud computing architecture, aiming
at a better understanding of the categories of applications that could benefit from
cloudification and that will address the landscape of enterprise IT, management
services, data governance, and many more. Then, this taxonomy is used to survey
several cloud computing services such as Google, Force.com, and Amazon. The
usages of taxonomy and survey results are not only to identify similarities and
differences of the architectural approaches of cloud computing, but also to identify
the areas requiring further research.

2.1 � Introduction

Cloud computing appears to be a highly disruptive technology, which is gaining
momentum. It has inherited legacy technology as well as new ideas on large-scale
distributed systems. The concept of cloud computing addresses the next evolutionary
step of distributed computing. The goal of this computing model is to make a better
use of distributed resources, put them together in order to achieve higher throughput,
and be able to tackle large-scale computation problems. The computing power
nowadays is easily available for massive computational processing. For example,
image processing on Amazon Elastic Cloud Computing (EC2) [20] for New York
Times is a great success story for Amazon. The input of 11 million articles (4-terabytes
of TIFF data) was processed successfully using Amazon Simple Storage Service

E. Choi (*)
School of Business IT, Kookmin University, Jeongneung-Dong,
Seongbuk-Gu, Seoul, 136-702, Korea
e-mail: emchoi@kookmin.ac.kr

Chapter 2
A Taxonomy, Survey, and Issues of Cloud
Computing Ecosystems

Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_2, © Springer-Verlag London Limited 2010

22 B.P. Rimal et al.

(Amazon S3), EC2 as hardware, and Hadoop [19] with MapReduce as software
framework [29]. The output data was 1.5 terabytes of PDF format, processed within
24 h at a computation cost of just $240. Google has used MapReduce to process
20 petabytes1 of data a day [1]. Similarly, Google used MapReduce running on 1,000
servers to sort 1 terabyte of data in just 68 s [40]. Hive/Hadoop [51] cluster at
Facebook stores more than 2 Petabytes of uncompressed data and routinely loads
15 Terabytes of data daily [50]. Such scenarios prove that cloud computing is becoming
cheaper, faster, and easy for massive distributed processing and scalable storage.

Cloud computing is not a completely new concept for the development and
operation of web applications. It allows for the most cost-effective development of
scalable web portals on highly available and fail-safe infrastructures. In the cloud
computing system, we have to address different fundamentals like virtualization,
scalability, interoperability, quality of service, failover mechanism, and the cloud
delivery models (private, public, hybrid) within the context of the taxonomy. The
taxonomy of cloud includes the different participants involved in the cloud along
with the attributes and technologies that are coupled to address their needs and the
different types of services like “XaaS” offerings where X is software, hardware,
platform, infrastructure, data, and business.

The taxonomy is more than defining the fundamentals that provides a framework
for understanding the current cloud computing offerings and suggests what is to
come. It is provoking those who would seek a single, canonical definition of the term
cloud computing. The main idea behind this taxonomy is to find out the technical
strength, weakness, and challenges in the current cloud systems and we suggest
what should be done in future to strengthen the systems. The emergence of cloud
fabrics will enable new insights into challenging engineering, medical, and social prob-
lems. The cloud taxonomy should not be a gigantic construct that muddies the water
of service development. It should be consistent with a set of principles that provides
architectural and design guidance on the usage and crafting of services. It should
provide understandable and consistent guidelines that provide clarity and reusability.
For that reason, this taxonomy is intentionally small and fuzzy, i.e. the boundaries
of the service layers are not rigid with regard to an emerging service.

Taxonomic information is essential for cloud service providers, enterprise firms,
and border authorities to detect, manage, and control invasive alien components.
Taxonomy identifies and enumerates the components of cloud computing that are
providing basic knowledge underpinning management and implementation of the
cloud spectrum. Taxonomy is more than defining the fundamentals that provides a
framework for understanding the current cloud computing offerings and suggests
what is to come. The criteria for defining the taxonomy is based on the core ideas
of distributed systems for massive data processing. The criteria focus on cloud
architecture, virtualization management, services, fault tolerance, and we analyze
mechanisms like load balancing, interoperability, and scalable data storage.

1 Disk Storage: 1,000 Megabytes = 1 Gigabytes, 1,000 Gigabytes = 1 Terabytes, 1,000
Terabytes = 1 Petabytes

232  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

This chapter tries to define taxonomy and survey of “Cloud Computing” based
on recent advances from academia and industry as well as our experience. This
chapter also describes the comparative study of different cloud service providers
and their systems. The chapter is organized as follows. Section 2 introduces the
background and related work. Section 3 defines the taxonomy of cloud computing.
Section 4 describes the classification and comparative study of cloud computing
ecosystems. Findings are discussed in Section 5. Some of the issues and opportuni-
ties are explained in Section 6. Finally, Section 7 concludes the chapter.

2.2 � Background and Related Work

XaaS implies everything as a service [17] like SaaS (Software as a Service), PaaS
(Platform as a Service), HaaS (Hardware as a Service), DaaS ([Data center,
Database, Desktop] as a Service), IaaS (Infrastructure as a Service), BaaS (Business
as a Service), FaaS (Framework as a Service), OaaS (Organization as a Service), etc.
There are many cloud computing systems like Amazon EC2, Google App Engine
(GAE), Microsoft Azure, IBM Blue Cloud, Nimbus, 3 Tera, etc. There is, however,
no standard taxonomy, as everyone tries to define cloud computing and its services
in their own way. There has been prior work reflecting the taxonomy of cloud
computing. The taxonomy described by the Cloud Computing Use Case Discussion
Group [23] is categorized into three views: service developer, service provider, and
service consumers. This taxonomy does not cover the data holding governance
structure. Crandell [21] defines a taxonomy based on product offerings. He divided
the product offerings into three layers, namely Application in the cloud (Salesforce
and other SaaS vendors), Platform in the cloud (GAE, Moso, Heroku), and
Infrastructure in the cloud (Amazon Web Services, Flexiscale). This taxonomy is
attractive for any company with an application that runs in a data center or with
a hosted provider, that does not want to reinvent the wheel or pay a premium.
Laird’s [22] Cloud Vendor Taxonomy gives the classifications and vendors with
that related group. This taxonomy divides the cloud vendors into Infrastructure
(Public Cloud, Private Cloud), platform (Biz User Platforms, Dev Platform),
services (Billing, Security, Fabric Mgmt, System Integrators), and applications.
This taxonomy gives a visual map of the SaaS, PaaS, and cloud computing industries.
Forrester’s Cloud Taxonomy [24] is categorizing cloud services by IT-Infrastructure
vs. Business value and by the level of privacy. This taxonomy focuses on the
dimensions of privacy and business value. It focuses on the modes of cloud com-
puting (Public Scale-Out Clouds, Public Server Cloud, Virtual Private Scale-Out
Clouds, Virtual Private Server Clouds, Private Clouds, Virtual Private SaaS, Public
SaaS, PaaS, On-Premises, ASP Concepts, etc.) To provide an even clearer and more
explicit view over cloud computing applications, we propose several incremental
enhancements of those taxonomies. In this paper, we will adjust, refine, and
extend those taxonomies, making them even more suitable and flexible for cloud
computing.

24 B.P. Rimal et al.

2.3 � Taxonomy of Cloud Computing

Several taxonomies [21,22,24] of the cloud computing blueprint can be found, but
most were created from the perspective of vendors that are part of the landscape and
not from the perspective of enterprise IT, the consumers of cloud services, and
software. This taxonomy is split into seven major sections as shown in Fig. 2.1.

This includes architecture, virtualization management, core services, security,
data governance, and management services. The subtaxonomy core services
include replication, discovery, and load balancing. A scalable, robust, and intelligent
replication mechanism is crucial to the smooth operation of cloud computing.
Another subtaxonomy security includes encryption/decryption, privacy, federated
identification, authorization, and authentication. Ultimately, the cloud computing
taxonomy describes certain patterns in how to understand the cloud components
and how to do things. At the same time, it needs to provide some specific grounding
to address the complex issues of integration of services within cloud computing that
focus on providing computable semantic interoperability.

2.3.1 � Cloud Architecture

Cloud architecture is the design of software applications that use Internet accessible
and on-demand service. Cloud architectures are underlying an infrastructure that is

Fig. 2.1  A taxonomy of cloud computing

252  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

used only when it is needed to draw the necessary resources on-demand and perform
a specific job, then relinquish unneeded resources, and dispose of them after the job
is done. The services are accessible anywhere in the world, with the cloud appearing
as a single point of access for all the computing needs of consumers. Cloud archi-
tectures address the key difficulties surrounding large-scale data processing.

2.3.1.1 � Services and Modes of Cloud Computing

There are different categories of cloud services such as infrastructure, platform, and
applications. These services are delivered and consumed in real time over the
Internet. We discuss these services in the broader view.

Software-as-a-Service (SaaS)

Software as a Service is a multitenant platform. It uses common resources and a
single instance of both the object code of an application as well as the underlying
database to support multiple customers simultaneously. SaaS [3,4], commonly
referred to as the Application Service Provider model, is heralded by many as the
new wave in application software distribution. Examples of the key providers are
SalesForce.com (SFDC), NetSuite, Oracle, IBM, and Microsoft, etc.

Platform-as-a-Service (PaaS)

Platform-as-a-Service provides developers with a platform, including all the sys-
tems and environments, comprising the end-to-end lifecycle of developing, testing,
deploying, and hosting of sophisticated web applications as a service delivered by
a cloud base. It provides an easier way to develop business applications and various
services over the internet (e.g. a real state service provider). Creating and maintain-
ing an infrastructure is the most time-consuming work in the on-premises systems.
PaaS was invented to solve exactly this problem. Key examples are Google
AppEngine, Microsoft’s Azure, Heroku.com, etc. Compared with conventional
applications development, this strategy can slash development time, offer hundreds
of readily available tools and services, and quickly scale.

�Hardware-as-a-Service (HaaS)

In HaaS model, the vendor allows customers to license the hardware directly.
According to Nicholas Carr [18], “the idea of buying IT hardware or even an entire
data center as a pay-as-you-go subscription service that scales up or down to meet
your needs. But as a result of rapid advances in hardware virtualization, IT automation,
and usage metering and pricing, I think the concept of hardware-as-a-service – let’s call

26 B.P. Rimal et al.

it HaaS, may at last be ready for prime time.” This model is advantageous to the
enterprise users, since they do not need to invest in building and managing data
centers.

Infrastructure-as-a-Service (IaaS)

Infrastructure-as-a-Service is the delivery of computer infrastructure as a service.
Aside from higher flexibility, a key benefit of IaaS is the usage-based payment
scheme. This allows customers to pay as they grow. Another important advantage
is that of always using the latest technology. Customers can achieve a much faster
service delivery and time to market. Key examples are GoGrid, Flexiscale, Layered
Technologies, AppNexeus, Joyent, and Mosso/Rackspace, etc. Basically, cloud
mode can be defined by three types (1) Private Cloud: Data and processes are man-
aged within the organization without the restrictions of network bandwidth,
security exposures, and legal requirements that using public cloud services across
open, public networks might entail. Some examples are Amazon VPC, Eucalyptus,
Enomaly, VMWare, Redplaid, Platform computing, and Intalio. (2) Public Cloud:
Describes cloud computing in the traditional mainstream sense, whereby resources are
dynamically provisioned on a fine-grained, self-service basis over the Internet, via
web applications/web services, from an off-site third-party provider who shares
resources. Some examples are Zimory, Azure, SunCloud, Amazon EC2, SymetriQ,
GigaSpaces, Rackspace, and Flexiscale. (3) Hybrid Cloud: The environment
is consisting of multiple internal and/or external providers. Some example are
RightScale, Asigra Hybrid Cloud Backup, Carpathia, Skytap, and Elastra.

2.3.2 � Virtualization Management

Virtualization Management is the technology that abstracts the coupling between
the hardware and operating system. It refers to the abstraction of logical resources
away from their underlying physical resources in order to improve agility, flexibility,
reduce costs, and thus enhance business value. Basically, virtualizations in cloud
are of different types such as server virtualization, storage virtualization, and network
virtualization. A common interpretation of server virtualization is the mapping
of single physical resources to multiple logical representations or partitions. In a
virtualized environment, computing environments can be dynamically created,
expanded, shrunk, or moved as the demand varies. Virtualization [2] is therefore
extremely well suited to a dynamic cloud infrastructure, because it provides impor-
tant advantages in sharing, manageability, and isolation. Different solutions are
available to manage virtual machines such as XEN, VMWare, KVM, VirtualBox,
Microsoft Virtual Machine Manager and many more. Virtualization management deals
with the different types of virtualizations in the context of cloud computing such as
Desktop Virtualization (Virtual PC), Network Virtualization, Storage Virtualization,

272  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

Server Virtualization (Virtual Server), Application Virtualization (SoftGrid Application
Virtualization), and Presentation Virtualization (Terminal Server). Storage capacity
and performance are scalable because there is no central bottleneck. When expected
demand exceeds higher server utilization, the storage can be scaled (horizontal
scalability or vertically scalability) to meet them. One study from Gartner [25]
shows that fewer than five million PCs were “virtualized” in 2006; by 2011, that
figure will rise to between 480 million and 846 million. In another study, Gartner
also estimated [26] that revenue from hosted virtual desktop will more than triple from
$74.1 million to $298.6 million in 2009, while revenue from server virtualization
management software will increase 42% from $913.9 million in 2008 to $1.3 billion
in 2009. Revenue from server virtualization infrastructure will grow 22.5% from
$917 million in 2008 to $1.1 billion in 2009. These data give a direction that is the
major infrastructure for cloud computing. Therefore, it is the essential component
for the cloud taxonomy. It has several benefits such as test and development opti-
mization, resource maximization, business cost reduction, and much more.

2.3.3 � Core Services

This section focuses on the core services of cloud computing. In core services, we will
discuss discovery, replication, load balancing, and resource management in details.

2.3.3.1 � Discovery and Replication

Service discovery promotes reusability by allowing service consumers to find the
existing services. RESTful services [48] support discovery and reuse at design
time. Replication can be used to create and maintain copies of an enterprise’s data
at these sites. When events affecting an enterprise’s primary location occur, key
application services can effectively be restarted and run at the remote location
incurring no capital expenditure, only operational expenditure, until such time as
the primary site is brought back online. Replication (Eager and Lazy) [54] keeps all
replicas as a part of one atomic transaction. Replication technology is available in
storage arrays, network-based appliances, and through host-based software.

2.3.3.2 � Load Balancing

Load balancing prevents system bottlenecks due to unbalanced loads. It also con-
siders implementing failover for the continuation of a service after failure of one
or more of its components. This means that a load balancer provides a mechanism
by which instances of applications can be provisioned and deprovisioned automati-
cally without changing network configuration. This is an inherited feature from
grid-based computing for cloud-based platforms. Energy conservation and resource

28 B.P. Rimal et al.

consumption are not always a focal point when discussing cloud computing; how-
ever, with proper load balancing in place, resource consumption can be kept to a
minimum. This not only serves to keep costs low and enterprises “greener,” it also
puts less stress on the hardware infrastructure of each individual component, mak-
ing them potentially last longer. Load balancing also enables other important fea-
tures such as scalability.

2.3.3.3 � Resource Management

Cloud computing provides a way of deploying and accessing massively scalable
shared resources on demand, in real time, and at affordable cost. Cloud resource
management protocols deal with all kinds of homogeneous and heterogeneous
resource environment. Management of virtualized resources, Workload and resource
scheduling, Cloud resource provisioning with QoS, Scalable resource management
solutions are the concerning points. Dynamic resource scheduling across a virtualized
infrastructure for those environments is another issue for cloud.

2.3.4 � Data Governance

When data begins to move out of organizations, it is vulnerable to disclosure or
loss. The act of moving sensitive data outside the organizational boundary may also
violate national regulations for privacy. In Germany, passing data across national
boundaries can be a federal offence. Governance in the cloud “who and how” is the
big challenge for enterprise clouds. Governance places a layer of processes and
technology around services (location of services, service dependencies, service
monitoring, service security, and so on) so that anything occurring will be quickly
known [45]. There are some questions that need to be solved before mission critical
data and functionality can be moved outside a controllable environment.

2.3.4.1 � Interoperability

Interoperability means easy migration and integration of applications and data
between different vendors’ clouds. Owing to different hypervisors (KVM, Hyper-V,
ESX, ESXi), VM technologies, storage, configuring operating systems, various
security standards and management interfaces, many cloud systems are not
interoperable. However, many enterprises want interoperability between their in-
house infrastructure and the cloud. The issue of interoperability needs to be
addressed to allow applications to be ported between clouds, or to use multiple
cloud infrastructures, before critical business applications are delivered from the
cloud. Most clouds are completely opaque to their users. Most of the time,
users are fine with this until there is an access issue. In such situations, frustration

292  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

increases exponentially with time, partly because of the opacity. Is a mechanism
like a network weather map required? In other words, some form of monitoring
solution like autonomous agents.

2.3.4.2 � Data Migration

Data migration between data centers or cloud systems are important concerns of
taxonomy. While migrating data, some considerations should be taken into account
like no data loss, availability, scalability, cost–efficiency, and load balancing. User
should be able to move their data and applications any time from one to another
seamlessly, without any one vendor controlling it. Seamless transfer, as in mobile
communication, is required for cloud computing to work. Many enterprises do not
move their mission critical data and applications to the cloud because of vendor
lock-in, security, governance, and many more complications.

2.3.5 � Management Services

The management services contain deployment, monitoring, reporting, service-level
agreement, and metering billing. We discuss these in detail.

2.3.5.1 � Deployment and Configuration

To reduce the complexity and administrative burden across the cloud deployment,
we need the automation process life cycle. RightScale Cloud Management Platform
addresses three stages of the cloud application deployment lifecycle, namely design,
manage, and deploy. Automated configuration and maintenance of individual or
networked computers, from the policy specification, is very important in the
computing arena; it improves robustness and functionality without sacrificing the
basic freedoms and self-repairing concepts. That is why, to handle complex systems
like cloud environment and data center, we need such configuration management.
Tools such as cfengine [35], Chef from Opscode-chef [42], rPath [41], and Puppet
are available as configuration management frameworks. These tools help software
developers and engineers to manage server and application configuration by writing
code, rather than running commands by hand.

2.3.5.2 � Monitoring and Reporting

Developing, testing, debugging, and studying the performance of cloud systems is quite
complex. Management cost increases significantly as the number of sites increases.

30 B.P. Rimal et al.

To address such problems, we need monitoring and reporting mechanisms. Monitoring
basically monitors the SLA lifecycle. It also determines when an SLA completes
and reports to the billing services. There are some services that monitor the cloud
systems and produce health reports such as Hyperic HQ [32], which monitors
SimpleDB, SimpleQueue Service, and Flexible Payment Service, all offered by
Amazon. It collects the matrix and provides a rich analysis and reporting.

2.3.5.3 � Service-Level Agreements (SLAs) Management

Users always want stable and reliable system service. Cloud architecture is
considered to be highly available, up and running 24 h × 7 days. Many cloud service
providers have made huge investments to make their system reliable. However,
most cloud vendors today do not provide high availability assurances. If a service
goes down, for whatever reason, what can a user do? How can users access their
documents stored in the cloud? In such a case, the provider should pay a fine to the
consumer as compensation to meet SLAs. An SLA specifies the measurement,
evaluation, and reporting of the agreed services level standards such as [39]:

1.	 How raw quality measures will be used to evaluate agreed service component.
2.	 How the raw quality measures will be qualified as a service quality measure.
3.	 How the qualified quality measures will be used to estimate the service quality

levels.
4.	 How the results of service evaluation will be reported.
5.	 How disputes on service-level evaluation will be resolved.

Currently, Amazon offers a “99.9% Monthly Uptime Percentage” SLA for Simple
Storage Service (Amazon S3) and credit is limited to 10% [38]. Amazon credits
25% of charges if the availability drops below 99.0%, whereas 3Tera Virtual
Private Data Center (VPDC) service will include a 99.999% availability SLA that
is supposed to help assure customers about putting mission-critical apps and
services in the cloud.

2.3.5.4 � Metering and Billing

Transparent metering and billing will increase the trust level of users towards cloud
services. Pay-as-you-go subscription or pay-as-you-consume model of billing and
metering are popular for cloud. This service gets the status of the SLA, and invokes
the credit service, which debits the user credit card or account and informs the user.
There are many pricing strategies such as RAM hours, CPU Capacity, Bandwidth
(Inbound/Outbound Data Transfer), Storage Space (gigabytes of data), Software
License Fee), and Subscription-Based Pricing. There are some interesting new bill-
ing models such as GoGrid prepaid cloud hosting plan [33] and IDC cloud billing
research [34], which are great examples of moving cloud pricing models towards
telecom models.

312  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

2.3.5.5 � Provisioning

Self-service application provisioning enables application developers to set up application
infrastructure, such as Java application servers, databases, and messaging servers, with-
out any help or assistance from infrastructure teams. Self-service application provi-
sioning hides the complexity of the enterprise cloud from application developers and
empowers them to set up and configure complex application infrastructure with the
click of a button. By building a self-service portal for on-demand provisioning, we
can reduce process overheads. Provisioning can help to manage the resource manage-
ment, workload management, and autorecovery and task and process automation.

2.3.6 � Security

Security is one of the main hurdles for enterprises to move their in-house data to public
cloud. Most public cloud providers do not guarantee the security of the data while
being transported to the public cloud. Many discussions around cloud computing are
centered around this topic. In June-August 2009, several social networking sites such
as Twitter, Facebook, Livejournal, and Google blogging pages were hit by DDoS
attacks [43], [44]. DDoS are more robust and potentially simpler to implement in noisy
environments such as EC2. Corporate information is not only a competitive asset, but
it often contains information of customers, consumers, and employees that, in the
wrong hands, could create a civil liability and possibly criminal charges. The key chal-
lenges of cloud security are performance, risk management, governance, design, and
deployability. Building trust between various cloud stakeholders (users, corporations,
network, and service providers) is a major consideration [49]. Establishing best prac-
tices of security in cloud computing for an end-user could be a good idea; for example,
customers should talk with software vendors about licensing, or should know the
network scheme.

2.3.6.1 � Encryption/Decryption

Customers who worry about the privacy of their information should encrypt their
data before moving it to the cloud. The provider should provide the utilities to sim-
plify the process of encrypting the files and storing them in the cloud; similarly, for
retrieval decryption will need. Cloud provider can use an Advanced Encryption
Standard (AES) that may be AES-128, AES-192, or AES-256.

2.3.6.2 � Privacy and Federated Identity

In cloud computing, a data center holds information that would more traditionally have
been stored on the end-user’s computer. This raises concerns regarding user privacy
protection, since the users do not “own” their data. Also, the move to centralized services

32 B.P. Rimal et al.

may affect the privacy and security of users’ interactions. Federation is the act of com-
bining data or identities across multiple systems. Federation can be done by a cloud
provider or by a cloud broker. Each user can subscribe to a portal and be given an access
card, which will be used to identify the subscriber at this particular portal or other
portals in collaboration.

2.3.6.3 � Authorization and Authentication

In public clouds, safeguards must be placed on machines to ensure proper authen-
tication and authorization. Within the private cloud environment, one can track,
pinpoint, control, and manage users who try to access machines with improper
credentials. Single sign-on is the basic requirement for a customer who accesses
multiple cloud services.

2.3.7 � Fault Tolerance

In case of failure, there will be a hot backup instance of the application, which is
ready to take over without disruption. Cloud computing outages extend into the more
refined version of cloud service platforms. Some outages have been quite lengthy.
For example, Microsoft Azure had an outage that lasted 22 h on March 13–14,
2008. Cloud reliance can cause significant problems if downtime and outages are
removed from your control. Table 2.1 shows failover records from some cloud
service provider systems. These are the significant downtime incidents. Reliance on
the cloud can cause real problems when time is money.

Google has also had numerous difficulties with its Gmail and application services.
These difficulties have generated significant interest in both traditional media and
the blogosphere owing to deep-seated concerns regarding service reliability.
The incidents mentioned here are just the tip of the iceberg. Every year, thousands
of websites struggle with unexpected downtime, and hundreds of networks break

Table 2.1  Outages in different cloud services

Services and outage Duration Date

Microsoft Azure: malfunction in Windows Azure [5] 22 h Mar 13–14, 2008
Gmail and Google Apps engine [6] 2.5 h Feb 24, 2009
Google search outage: programming error [7] 40 m Jan 31, 2009
Gmail: site unavailable due to outage in contacts system [8] 1.5 h Aug 11, 2008
Google AppEngine partial outage: programming error [9] 5 h Jun 17, 2008
S3 outage: authentication service overload leading

to unavailability [10]
2 h Feb 15, 2008

S3 outage: single bit error leading to gossip protocol blowup [11] 6–8 h Jul 20, 2008
FlexiScale: core network failure [12] 18 h Oct 31, 2008

332  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

or have other issues. So, the major problem for cloud computing is how to minimize
outage/failover to provide reliable services. It is important to adopt the well-known
Recovery-Oriented Computing (ROC) paradigm [46] in large data centers.
Google uses Google File System (GFS) [47] or distributed disk storage; every
piece of data is replicated three times. If one machine dies, a master redistributes
the data to a new server.

2.4 � Classification and Comparison between Cloud
Computing Ecosystems

Even though there has been some comparative research on cloud computing from
academia and enterprise perspectives, there remains an absence of a comprehensive
technical study. We study cloud computing systems in terms of various classifications
such as infrastructure technology, and solutions, PaaS provider, and open source.
This section provides a technical comparison of several technologies and cloud
providers. Tables 2.2–2.3 compare between different infrastructure technologies
and solution providers such as Amazon Web Service (AWS), GoGrid, Flexiscale,
and Moso. Tables 2.4–2.6 compares different SaaS and PaaS service providers such
as Google AppEngine (GAE), GigaSpaces, Azure, RightScale, SunCloud, and
Salesforce.com (SFDC). Similarly, Tables 2.7–2.8 compare open source cloud-
based services like Eucalyptus, Open Nebula, Nimbus, and Enomaly.

2.5 � Findings

Based on the proposed taxonomy, comprehensive technical studies, and survey, we
notice some of the findings from different cloud computing systems that may help
in future for new development and improvement on the existing systems.

2.5.1 � Cloud Computing Infrastructure Technology
and Solution Provider

In EC2 architecture, users are able to monitor and control their applications as an
instance but not as a service. To achieve service manageability, the following capa-
bilities are required: application-defined SLAs, such as workload capacity and
concurrent computational tasks, dynamic provision of additional services to handle
additional workload, and “Focal Server” approach. AWS is becoming popular as a
de facto standard; many cloud systems are using a similar API. Eucalyptus is an
open-source implementation of the AWS APIs. The biggest concern of current cloud
computing system is auditing of the security controls and mechanism in terms of

34 B.P. Rimal et al.

Ta
bl

e
2.

2 
C

lo
ud

 c
om

pu
tin

g
in

fr
as

tr
uc

tu
re

 te
ch

no
lo

gy
 a

nd
 s

ol
ut

io
n

pr
ov

id
er

(1
\2

)

Fe
at

ur
es

A
W

S
G

oG
ri

d
Fl

ex
is

ca
le

R
ac

ks
pa

ce
 c

lo
ud

C
om

pu
tin

g

ar
ch

ite
ct

ur
e

E
C

2
al

lo
w

s
up

lo
ad

in
g

X
E

N

vi
rt

ua
l m

ac
hi

ne
 im

ag
es

 to

th
e

in
fr

as
tr

uc
tu

re
 a

nd
 g

iv
es

cl

ie
nt

 A
PI

s
to

 in
st

an
tia

te

an
d

m
an

ag
es

 th
em

D
ed

ic
at

ed
 c

om
pu

te
r

re
so

ur
ce

s
on

 g
ri

d
ar

ch
ite

ct
ur

e

–	
D

at
a

ce
nt

er
 a

rc
hi

te
ct

ur
e

–	
M

er
ge

 th
e

id
ea

 o
f

cl
ou

d
co

m
pu

tin
g

w
ith

 th
e

tr
ad

iti
on

al
 m

an
ag

ed
/s

ha
re

d
se

rv
er

 e
nv

ir
on

m
en

t

–	
A

ut
on

om
ic

al
ly

 r
ec

on
fi

gu
ri

ng

fo
r

in
fr

as
tr

uc
tu

re
 to

 c
at

er
 to

fl

uc
tu

at
io

ns
 in

 th
e

de
m

an
d

–	
Pr

iv
at

e
C

lo
ud

’s
 s

in
gl

e-
te

na
nt

ar

ch
ite

ct
ur

e
V

ir
tu

al
iz

at
io

n

m
an

ag
em

en
t

X
en

 h
yp

er
vi

so
r

X
en

 h
yp

er
vi

so
r

X
E

N
-b

as
ed

 h
yp

er
vi

so
r

to
 p

ro
vi

de
 h

ar
dw

ar
e

vi
rt

ua
liz

at
io

n
on

 I
nt

el
 V

T

V
M

w
ar

e
E

SX
 S

er
ve

r

Se
rv

ic
e

Ia
aS

, X
en

 im
ag

es
Ia

aS
Ia

aS
Ia

aS
L

oa
d

ba
la

nc
in

g
B

al
an

ce
 in

co
m

in
g

re
qu

es
ts

an

d
tr

af
fi

c
ac

ro
ss

 m
ul

tip
le

E

C
2

in
st

an
ce

s
by

 u
si

ng

R
ou

nd
-R

ob
in

 a
lg

or
ith

m

F5
 lo

ad
 b

al
an

ci
ng

,
R

ou
nd

-R
ob

in
 a

lg
or

ith
m

U
se

s
m

ig
ra

tio
n

of
 v

ir
tu

al

se
rv

er
s

be
tw

ee
n

ph
ys

ic
al

no

de
s.

 I
t s

up
po

rt
s

bo
th

ho

ri
zo

nt
al

 a
nd

 v
er

tic
al

sc

al
in

g

B
y

re
qu

es
t b

al
an

ci
ng

 a
lg

or
ith

m

-S
im

pl
e

so
ft

w
ar

e
L

oa
d

B
al

an
ce

r
us

in
g

a

C
lo

ud
-S

er
ve

r-
Sc

al
e

C
lo

ud
Se

rv
er

 h
or

iz
on

ta
lly

or

 v
er

tic
al

ly
Fa

ul
t t

ol
er

an
ce

Sy
st

em
 s

ho
ul

d
au

to
m

at
ic

al
ly

al

er
t,

fa
ilo

ve
r,

an
d

re
-s

yn
c

ba
ck

 to
 th

e
“l

as
t k

no
w

n
st

at
e”

 a
s

if
 n

ot
hi

ng
 h

ad

fa
ile

d

In
st

an
tly

 s
ca

la
bl

e
an

d
re

lia
bl

e
fi

le
-l

ev
el

 b
ac

ku
p

se
rv

ic
e

It
 p

ro
vi

de
s

fu
ll

se
lf

-s
er

vi
ce

fo

r
st

ar
t/s

to
p/

de
le

te
, a

nd

ch
an

ge
s

m
em

or
y/

C
PU

/
st

or
ag

e/
IP

s
of

 v
ir

tu
al

de

di
ca

te
d

se
rv

er
s

Sh
ar

e
an

 I
P

be
tw

ee
n

tw
o

se
rv

er
s.

 H
ea

rt
be

at

ap
pl

ic
at

io
n

ru
ns

 o
n

bo
th

M

as
te

r
an

d
Sl

av
e

352  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

Ta
bl

e
2.

3 
C

lo
ud

 c
om

pu
tin

g
in

fr
as

tr
uc

tu
re

 te
ch

no
lo

gy
 a

nd
 s

ol
ut

io
n

pr
ov

id
er

 (
2\

2)

Fe
at

ur
es

A
W

S
G

oG
ri

d
Fl

ex
is

ca
le

R
ac

ks
pa

ce
 c

lo
ud

In
te

ro
pe

ra
bi

lit
y

Su
pp

or
t h

or
iz

on
ta

l
In

te
ro

pe
ra

bi
lit

y,
 e

.g
.

in
te

ro
pe

ra
bi

lit
y

am
on

g
E

C
2,

E

uc
al

yp
tu

s,
 e

tc
.

In
te

ro
pe

ra
bl

e
w

ith
 o

th
er

 c
lo

ud
s

su
ch

 a
s

G
ig

aS
pa

ce
s

A
pp

lic
at

io
ns

 c
an

 b
e

de
pl

oy
ed

on

ce
 a

nd
 m

an
ag

ed

tr
an

sc
lo

ud
s

to
 r

un
 o

n
A

m
az

on
, G

oG
ri

d,
 a

nd
 M

os
so

–	
O

pe
n

C
lo

ud
 m

an
if

es
to

–	
Pr

ov
id

es
 o

pe
n

sp
ec

s
fo

r
C

lo
ud

 S
er

ve
rs

 A
PI

s
an

d
C

lo
ud

 F
ile

s
A

PI
s

St
or

ag
e

–	
A

m
az

on
 S

im
pl

e
St

or
ag

e
Se

rv
ic

e
(S

3)
–	

C
on

ne
ct

in
g

ea
ch

 s
er

ve
r

to

Pr
iv

at
e

N
et

w
or

k
Fu

lly
 v

ir
tu

al
iz

ed
 h

ig
h-

en
d

SA
N

/
N

A
S

ba
ck

-e
nd

 a
nd

 u
se

s
a

N
et

A
pp

 F
A

S3
05

0
(h

yb
ri

d
SA

N
/N

A
S

de
vi

ce
, m

ax
im

um

st
or

ag
e

ca
pa

ci
ty

 o
f

16
8T

B

sp
re

ad
 o

ve
r

33
6

dr
iv

es
)

–	
St

or
ag

e
is

 b
as

ed
 o

n
R

ac
ks

pa
ce

 C
lo

ud
 F

ile
s

–	
T

ra
ns

fe
r

pr
ot

oc
ol

s
(R

SY
N

C
,

FT
P,

 S
A

M
B

A
, S

C
P)

 to

tr
an

sf
er

 d
at

a
to

 a
nd

 f
ro

m

C
lo

ud
 S

to
ra

ge

–	
U

se
s

lim
el

ig
ht

 n
et

w
or

k
–	

A
m

az
on

 S
im

pl
eD

B

Se
cu

ri
ty

A
W

S
Se

cr
et

 A
cc

es
s

K
ey

, T
yp

e
II

(S

A
S7

0
Ty

pe
 II

) c
er

tif
ic

at
io

n
–

fi
re

w
al

l,
X

.5
09

 c
er

tif
ic

at
e,

SS

L
-p

ro
te

ct
ed

 A
PI

–	
Se

cu
re

 V
L

A
N

 m
an

ag
em

en
t

Pr
ov

id
es

 V
ir

tu
al

 P
ri

va
te

 S
er

ve
rs

,
w

hi
ch

 g
iv

es
 p

ri
va

cy
 o

f
a

de
di

ca
te

d
se

rv
er

E
nc

ry
pt

ed
 c

om
m

un
ic

at
io

n
ch

an
ne

l,
A

PI

A
cc

es
s

K
ey

, s
es

si
on

au

th
en

tic
at

io
n

to
ke

n

–	
Pr

im
eC

lo
ud

 s
er

vi
ce

 f
or

ho

st
ed

 p
ri

va
te

 c
lo

ud
 w

ith
 n

o
re

so
ur

ce
s

sh
ar

ed
 w

ith
 o

th
er

cu

st
om

er
s

Pr
og

ra
m

m
in

g
fr

am
ew

or
k

A
m

az
on

 E
la

st
ic

 M
ap

R
ed

uc
e

fr
am

ew
or

k.
 S

up
po

rt
s

Ja
va

,
R

ub
y,

 P
H

P,
 e

tc
.

Su
pp

or
ts

 la
ng

ua
ge

s:
 J

av
a,

 P
yt

ho
n

, R
ub

y,
 P

H
P

Fl
ex

is
ca

le
 A

PI
 s

up
po

rt
 C

, C
 #

,
C

+
+

, J
av

a,
 P

H
P,

 P
er

l,
an

d
R

ub
y

Su
pp

or
ts

 .N
E

T,
 J

av
a,

Py

th
on

, R
ub

y,
 P

H
P

36 B.P. Rimal et al.

Ta
bl

e
2.

4 
C

lo
ud

 c
om

pu
tin

g
Pa

aS
 a

nd
 S

aa
S

pr
ov

id
er

(1
\3

)

Fe
at

ur
es

G
A

E
G

ig
aS

pa
ce

s
A

zu
re

R
ig

ht
Sc

al
e

Su
nC

lo
ud

Sa
le

sf
or

ce
.c

om

C
om

pu
tin

g
ar

ch
ite

ct
ur

e
G

oo
gl

e

ge
o-

di
st

ri
bu

te
d

ar
ch

ite
ct

ur
e

Sp
ac

e
ba

se

ar
ch

ite
ct

ur
e

A
n

in
te

rn
et

 s
ca

le

cl
ou

d
se

rv
ic

es

pl
at

fo
rm

 h
os

te
d

in
 M

ic
ro

so
ft

 d
at

a
ce

nt
er

s,
 w

hi
ch

pr

ov
id

es
 a

n
O

S
an

d
a

se
t o

f
de

ve
lo

pe
r

se
rv

ic
es

–	
M

ul
tis

er
ve

r
cl

us
te

rs
–	

So
la

ri
s

O
S,

 a
nd

Z

et
ta

-b
yt

e
Fi

le

Sy
st

em
 (

Z
FS

)
–	

Q
-l

ay
er

 e
na

bl
ed

fo

r
D

at
a

W
ar

eh
ou

se
 a

nd

en
te

rp
ri

se
 r

es
ou

rc
e

pl
an

ni
ng

M
ul

tit
en

an
t

ar
ch

ite
ct

ur
e

w
ith

m

et
ad

at
a-

dr
iv

en

m
od

el

–	
G

iv
es

 v
ir

tu
al

 p
ri

va
te

Se

rv
er

s
m

on
ito

ri
ng

sy

st
em

–	
O

pe
n

dy
na

m
ic

in

fr
as

tr
uc

tu
re

m

an
ag

em
en

t
st

ra
te

gy

–	
C

lo
ud

 m
an

ag
em

en
t

pl
at

fo
rm

–	
Pr

ov
id

es
 E

la
st

ic
 I

Ps

V
ir

tu
al

iz
at

io
n

m
an

ag
em

en
t

M
ul

tit
en

an
cy

G
ig

aS
pa

ce

Se
rv

ic
e

V
ir

tu
al

iz
at

io
n

Fr
am

ew
or

k

H
yp

er
vi

so
r

(b
as

ed
 o

n
H

yp
er

-V
)

X
en

 h
yp

er
vi

so
r

–	
H

yp
er

vi
so

r
(S

un

xV
M

 S
er

ve
r)

M
ul

tit
en

an
cy

ar

ch
ite

ct
ur

e.

It
 im

pr
ov

es

se
pa

ra
tio

n
be

tw
ee

n
sh

ar
ed

an

d
pr

iv
at

e
da

ta

an
d

lo
gi

c.

–	
O

S
(S

ol
ar

is

C
on

ta
in

er
s)

–	
N

et
w

or
k

(c
ro

ss
bo

w
)

–	
St

or
ag

e
(C

O
M

ST
A

R
, Z

FS
)

an
d

ap
pl

ic
at

io
ns

(G

la
ss

fi
sh

 a
nd

 J
av

a
C

A
PS

Se
rv

ic
e

Pa
aS

Pa
aS

Pa
aS

Pa
aS

Pa
aS

Sa
aS

 C
on

fi
ne

d

to
 A

PI

372  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

Ta
bl

e
2.

5 
C

lo
ud

 c
om

pu
tin

g
Pa

aS
 a

nd
 S

aa
S

pr
ov

id
er

(2
\3

)

Fe
at

ur
es

G
A

E
G

ig
aS

pa
ce

s
A

zu
re

R
ig

ht
Sc

al
e

Su
nC

lo
ud

Sa
le

sf
or

ce
.c

om

L
oa

d

ba
la

nc
in

g
A

ut
om

at
ic

 s
ca

lin
g

an
d

lo
ad

ba

la
nc

in
g

Pe
rf

or
m

ed
 th

ro
ug

h
G

ig
aS

pa
ce

s
hi

gh
-

pe
rf

or
m

an
ce

co

m
m

un
ic

at
io

n
pr

ot
oc

ol
 o

ve
r

E
C

2

B
ui

lt-
in

 h
ar

dw
ar

e
lo

ad
 b

al
an

ci
ng

H
ig

h
A

va
ila

bi
lit

y
Pr

ox
y

lo
ad

ba

la
nc

in
g

in

th
e

cl
ou

d

H
or

iz
on

ta
l

sc
al

ab
ili

ty
,

V
er

tic
al

sc

al
ab

ili
ty

L
oa

d
ba

la
nc

in
g

am
on

g
te

na
nt

s

Fa
ul

t to
le

ra
nc

e
–	

A
ut

om
at

ic
al

ly

pu
sh

ed
 to

 a

nu
m

be
r

of

fa
ul

t-
to

le
ra

nt

se
rv

er
s

U
se

s
O

pe
nS

pa
ce

s
Se

rv
ic

e
V

ir
tu

al
iz

at
io

n
Fr

am
ew

or
k

(S
V

F)
’s

 f
ai

lo
ve

r
ca

pa
bi

lit
ie

s

If
 a

 f
ai

lu
re

 o
cc

ur
s,

SQ

L
 d

at
a

se
rv

ic
es

 w
ill

au

to
m

at
ic

al
ly

be

gi
n

us
in

g
an

ot
he

r
re

pl
ic

a
of

th

e
co

nt
ai

ne
r

B
as

ic
,

in
te

rm
ed

ia
te

,
an

d
ad

va
nc

e
Fa

ilo
ve

r
A

rc
hi

te
ct

ur
es

fo

r
us

in
g

E
la

st
ic

 I
Ps

R
es

ou
rc

e
ba

se
d

sc
he

du
lin

g
of

 s
er

vi
ce

re

qu
es

t

Se
lf

-m
an

ag
em

en
t

an
d

se
lf

-t
un

in
g

–	
A

pp
 E

ng
in

e
C

ro
n

Se
rv

ic
e

St
or

ag
e

B
ig

ab
le

 d
is

tr
ib

ut
ed

st

or
ag

e
In

-m
em

or
y

da
ta

 g
ri

d
te

ch
ni

qu
e

us
es

 f
or

fr

on
t-

en
d

to
 th

e
da

ta
ba

se
. M

yS
Q

L

ac
ts

 a
s

in
-s

yn
c

pe
rs

is
te

nc
e

st
or

ag
e

in
 th

e
ba

ck
gr

ou
nd

–	
SQ

L
 S

er
ve

r
D

at
a

Se
rv

ic
es

 (
SS

D
S)

O
pe

n
st

or
ag

e
m

od
el

,
M

yS
Q

L

ba
ck

up
s

ar
e

E
la

st
ic

 B
lo

ck

St
or

e
(E

B
S)

ar

e
sa

ve
d

to
 S

3

Su
n

cl
ou

d
st

or
ag

e
W

eb
D

A
V

A

PI
, a

nd

Su
n

C
lo

ud

st
or

ag
e

ob
je

ct
 A

PI

Fo
rc

e.
co

m

da
ta

ba
se

,
w

hi
ch

 is
 ti

gh
tly

in

te
gr

at
ed

w

ith
 A

pe
x

pr
og

ra
m

m
in

g
la

ng
ua

ge

–	
 A

llo
w

s
st

or
in

g
bi

na
ry

 la
rg

e
ob

je
ct

s
(b

lo
bs

)
an

d
ca

n
be

 g
eo

-
lo

ca
te

d

38 B.P. Rimal et al.

Ta
bl

e
2.

6 
C

lo
ud

 c
om

pu
tin

g
Pa

aS
 a

nd
 S

aa
S

pr
ov

id
er

(3
\3

)

Fe
at

ur
es

G
A

E
G

ig
aS

pa
ce

s
A

zu
re

R
ig

ht
Sc

al
e

Su
nC

lo
ud

Sa
le

sf
or

ce
.c

om

In
te

ro
pe

ra
bi

lit
y

In
te

ro
pe

ra
bi

lit
y

be
tw

ee
n

pl
at

fo
rm

s
of

 d
if

fe
re

nt

ve
nd

or
s

an
d

pr
og

ra
m

m
in

g
la

ng
ua

ge
s

In
te

ro
pe

ra
bi

lit
y

be
tw

ee
n

di
ff

er
en

t
pr

og
ra

m
m

in
g

la
ng

ua
ge

s
su

ch

as
 J

av
a,

 .N
E

T,

an
d

C
+

+

In
te

ro
pe

ra
bl

e
pl

at
fo

rm
 c

an
 b

e
us

ed
 to

 b
ui

ld

ne
w

 a
pp

lic
at

io
ns

to

 r
un

 f
ro

m
 th

e
cl

ou
d

or
 e

nh
an

ce

th
e

ex
is

tin
g

ap
pl

ic
at

io
ns

In
te

gr
at

ed

m
an

ag
em

en
t

da
sh

bo
ar

d,

ap
pl

ic
at

io
n

ca
n

be
 d

ep
lo

ye
d

on
ce

 a
nd

m

an
ag

ed
 a

cr
os

s
cl

ou
ds

–	
O

pe
n

so
ur

ce

ph
ilo

so
ph

y
an

d
ja

va
 p

ri
nc

ip
le

s

A
pp

lic
at

io
n

le
ve

l
in

te
gr

at
io

n
be

tw
ee

n
di

ff
er

en
t

cl
ou

ds
–	

In
te

ro
pe

ra
bi

lit
y

fo
r

la
rg

e-
sc

al
e

co
m

pu
tin

g
re

so
ur

ce
s

ac
ro

ss

m
ul

tip
le

 c
lo

ud
s

Se
cu

ri
ty

–	
G

oo
gl

e
Se

cu
re

D

at
a

C
on

ne
ct

or
–	

SD
C

 u
se

s
T

L
S-

ba
se

d
se

rv
er

au

th
en

tic
at

io
n

–	
SD

C
 u

se
s

R
SA

/1
28

-b
it

or
 h

ig
he

r A
E

S
C

B
C

/S
H

A

Su
pp

or
t A

m
az

on

Se
cu

ri
ty

G

ro
up

s,
 b

ui
lt-

in

SS
H

 tu
nn

el
in

g

–	
Se

cu
ri

ty
 to

ke
n

se
rv

ic
e

(S
T

S)

cr
ea

te
s

Se
cu

ri
ty

A

ss
er

tio
n

M
ar

ku
p

Pr
iv

at
e

V
L

A
N

s
–	

U
se

r-
pr

ov
is

io
ni

ng

an
d

m
et

a
di

re
ct

or
y

so
lu

tio
n

–	
Sy

sT
ru

st
 S

A
S

70
 T

yp
e

II
–	

U
se

rs
 a

nd

se
cu

ri
ty

,
pr

og
ra

m
m

at
ic

an

d
pl

at
fo

rm

se
cu

ri
ty

fr

am
ew

or
k

–	
Pr

oc
es

s
an

d
us

er
 r

ig
ht

s
m

an
ag

em
en

t
tr

us
te

d
ex

te
ns

io
ns

–	
L

an
gu

ag
e

to
ke

n
ac

co
rd

in
g

to
 r

ul
e

–	
A

ss
ig

n
M

ul
tip

le

Se
cu

ri
ty

G

ro
up

s
Pr

og
ra

m
m

in
g

fr
am

ew
or

k
M

ap
R

ed
uc

e
pr

og
ra

m
m

in
g

fr
am

ew
or

k
th

at

su
pp

or
t P

yt
ho

n,

Ja
va

 a
s

Ja
va

Se

rv
le

t A
PI

,
JD

O
, a

nd
 J

PA

Su
pp

or
ts

 f
or

Sp

ri
ng

/J
av

a,

.N
E

T,
 C

+
+

M
ic

ro
so

ft
 .N

E
T,

PH

P
R

ub
y,

 P
H

P,

A
m

az
on

’s

Si
m

pl
e

Q
ue

ue

Se
rv

ic
e

So
la

ri
s

O
S,

 J
av

a,
 C

,
C

+
+

, F
O

R
T

R
A

N
,

R
E

ST
fu

l,
Ja

va
,

Py
th

on
, R

ub
y

Su
pp

or
ts

 f
or

.N

E
T,

 C
 #

A

pa
ch

e
A

xi
s

(J
av

a
an

d
C

+
+

)

392  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

Ta
bl

e
2.

7 
O

pe
n

so
ur

ce
 b

as
ed

 c
lo

ud
 c

om
pu

tin
g

se
rv

ic
es

 (
1\

2)

Fe
at

ur
es

E
uc

al
yp

tu
s

O
pe

nN
eb

ul
a

N
im

bu
s

E
no

m
al

y
el

as
tic

 c
om

pu
tin

g
pl

at
fo

rm

C
om

pu
tin

g
ar

ch
ite

ct
ur

e
A

bi
lit

y
to

 c
on

fi
gu

re

m
ul

tip
le

 c
lu

st
er

s,
 e

ac
h

w
ith

 p
ri

va
te

 in
te

rn
al

ne

tw
or

k
ad

dr
es

se
s,

 in
to

a

si
ng

le
 c

lo
ud

–	
Fo

cu
se

d
on

 th
e

ef
fi

ci
en

t,
dy

na
m

ic
, a

nd
 s

ca
la

bl
e

m
an

ag
em

en
t o

f
V

M
s

w
ith

in

da
ta

 c
en

te
rs

–	
B

as
ed

 o
n

H
ai

ze
a

sc
he

du
lin

g

–	
C

lie
nt

-s
id

e
cl

ou
d

co
m

pu
tin

g
in

te
rf

ac
e

to

G
lo

bu
s-

en
ab

le
d

Te
ra

Po
rt

cl

us
te

r

–	
A

 c
lu

st
er

ed
 v

ir
tu

al
 s

er
ve

r
ho

st
in

g
pl

at
fo

rm
; E

la
st

ic
D

ri
ve

,
a

di
st

ri
bu

te
d

re
m

ot
e

st
or

ag
e

sy
st

em
; a

nd
 G

eo
St

ra
tu

s,

a
pr

iv
at

e
co

nt
en

t d
el

iv
er

y
ne

tw
or

k
–	

C
on

te
xt

 B
ro

ke
r

co
m

bi
ne

s
se

ve
ra

l d
ep

lo
ye

d
vi

rt
ua

l
m

ac
hi

ne
s

in
to

 “
tu

rn
ke

y”

vi
rt

ua
l c

lu
st

er
s

–	
U

se
s

G
lu

st
er

FS
 f

or
 s

ca
lin

g
to

se

ve
ra

l p
et

ab
yt

es
V

ir
tu

al
iz

at
io

n
m

an
ag

em
en

t
X

en
 h

yp
er

vi
so

r
X

en
, K

V
M

, a
nd

 o
n-

de
m

an
d

ac
ce

ss
 to

 A
m

az
on

 E
C

2
X

en
 V

ir
tu

al
iz

at
io

n
K

V
M

 s
up

po
rt

s
X

en
 O

pe
nV

Z

an
d

Su
n’

s
V

ir
tu

al
 B

ox
, X

en

hy
pe

rv
is

or
Se

rv
ic

e
Ia

aS
, X

en
 im

ag
es

Ia
aS

Ia
aS

Ia
aS

L
oa

d
ba

la
nc

in
g

Si
m

pl
e

lo
ad

 b
al

an
ci

ng

cl
ou

d
co

nt
ro

lle
r

N
gi

nx
 S

er
ve

r
co

nf
ig

ur
ed

 a
s

lo
ad

 b
al

an
ce

r,
us

ed
 r

ou
nd

-
ro

bi
n

or
 w

ei
gh

te
d

se
le

ct
io

n
m

ec
ha

ni
sm

L
au

nc
he

s
se

lf
-c

on
fi

gu
ri

ng

vi
rt

ua
l c

lu
st

er
s,

 i.
e.

 th
e

co
nt

ex
t b

ro
ke

r

–	
U

se
s

us
er

-m
od

e
lo

ad
-b

al
an

ci
ng

so

ft
w

ar
e

w
ith

 it
s

ow
n

ne
tw

or
k

st
ac

ks
 th

at
 r

un
s

ov
er

 L
in

ux
 a

nd

So
la

ri
s

in
 th

e
fo

rm
 o

f
a

vi
rt

ua
l

se
rv

er
–	

Su
pp

or
ts

 d
if

fe
re

nt

lo
ad

-b
al

an
ci

ng
 m

et
ho

ds
,

in
cl

ud
in

g
ro

un
d-

ro
bi

n,

ra
nd

om
, h

as
h,

 a
nd

 le
as

t
re

so
ur

ce
Pr

og
ra

m
m

in
g

fr
am

ew
or

k
H

ib
er

na
te

, A
xi

s2
, a

nd
 J

av
a

Ja
va

, R
ub

y
Py

th
on

, J
av

a
R

ub
y

on
 r

ai
ls

, P
H

P,
 P

yt
ho

n

40 B.P. Rimal et al.

Ta
bl

e
2.

8 
O

pe
n

so
ur

ce
 b

as
ed

 c
lo

ud
 c

om
pu

tin
g

se
rv

ic
es

 (
2\

2)

Fe
at

ur
es

E
uc

al
yp

tu
s

O
pe

nN
eb

ul
a

N
im

bu
s

E
no

m
al

y
el

as
tic

 c
om

pu
tin

g
pl

at
fo

rm

Fa
ul

t t
ol

er
an

ce
Se

pa
ra

te
 c

lu
st

er
 w

ith
in

th

e
E

uc
al

yp
tu

s
cl

ou
d

re
du

ce
s

th
e

ch
an

ce
 o

f
co

rr
el

at
ed

 f
ai

lu
re

–	
T

he
 d

ae
m

on
 c

an
 b

e
re

st
ar

te
d

an
d

al
l t

he
 r

un
ni

ng

V
M

s
re

co
ve

re
d

C
he

ck
in

g
w

or
ke

r
no

de
s

pe
ri

od
ic

al
ly

an

d
re

co
ve

ry
O

ve
rf

lo
w

, d
is

as
te

r,
an

d
fa

ilo
ve

r
se

rv
ic

es

–	
Pe

rs
is

te
nt

 d
at

ab
as

e
ba

ck
en

d
to

 s
to

re
 h

os
t a

nd
 V

M

in
fo

rm
at

io
n

In
te

ro
pe

ra
bi

lit
y

M
ul

tip
le

 c
lo

ud
 c

om
pu

tin
g

in
te

rf
ac

es
 u

si
ng

 th
e

sa
m

e
“b

ac
k-

en
d”

in

fr
as

tr
uc

tu
re

In
te

ro
pe

ra
bl

e
be

tw
ee

n
in

tr
ac

lo
ud

 s
er

vi
ce

s
su

ch

as
 a

cc
es

s
A

m
az

on
 E

C
2

an
d

el
as

tic
 h

os
ts

 c
lo

ud
 v

ia

pl
ug

-i
n

St
an

da
rd

s:
 “

ro
ug

h
co

ns
en

su
s

an
d

w
or

ki
ng

 c
od

e”
C

lo
ud

 p
or

ta
bi

lit
y

an
d

in
te

ro
pe

ra
bi

lit
y

to
 c

ro
ss

cl

ou
d

ve
nd

or
s

St
or

ag
e

W
al

ru
s

(t
he

 f
ro

nt
 e

nd
 f

or

th
e

st
or

ag
e

su
bs

ys
te

m
)

–	
D

at
ab

as
e,

 p
er

si
st

en
t s

to
ra

ge

fo
r

O
N

E
 d

at
a

st
ru

ct
ur

es
Pr

ov
id

es
 s

ec
ur

e
m

an
ag

em
en

t o
f

cl
ou

d
di

sk
 s

pa
ce

 g
iv

in
g

ea
ch

us

er
 a

 r
ep

os
ito

ry
 v

ie
w

 o
f

V
M

im

ag
es

 a
nd

 w
or

ks
 w

ith
 g

lo
bu

s
G

ri
dF

T
P

M
ul

tip
le

 r
em

ot
e

cl
ou

d
st

or
ag

e
se

rv
ic

es
 (

S3
, N

ir
va

ni
x,

an

d
C

lo
ud

FS
)

, u
se

s
M

yS
Q

L
 f

or
 d

at
a

sh
ar

in
g

–	
SQ

L
ite

3
ba

ck
en

d
is

 th
e

co
re

 c
om

po
ne

nt
 o

f
th

e
O

pe
nN

eb
ul

a
in

te
rn

al
 d

at
a

st
ru

ct
ur

es
Se

cu
ri

ty
W

S-
se

cu
ri

ty
 f

or

au
th

en
tic

at
io

n,
 C

lo
ud

co

nt
ro

lle
r

ge
ne

ra
te

s
th

e
pu

bl
ic

/p
ri

va
te

 k
ey

Fi
re

w
al

l,
vi

rt
ua

l p
ri

va
te

ne

tw
or

k
tu

nn
el

PK
I

cr
ed

en
tia

l r
eq

ui
re

d
W

or
ks

 w
ith

G

ri
d

pr
ox

ie
s

V
O

M
S,

 S
hi

bb
ol

et
h

(v
ia

 G
ri

dS
hi

b)
, c

us
to

m
 P

D
Ps

“C
lu

st
er

ed
”

ha
nd

lin
g

of

se
cu

ri
ty

412  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

user level. Amazon S3 lacks in access control that supports delegation and auditing,
and makes implicit trust assumptions between S3 and clients [52]. Amazon’s work
[13] towards Statement on Auditing Standards No.70: Service Organizations, Type
II (SAS70 type II) certification may be helpful for those concerned with widely
varying levels of security competency. Generally, this is better than no certification
whatsoever. Some of the important security aspects of cloud-centric computing are
secure cloud resource virtualization, security for cloud programming models,
binary analysis of software for remote attestation and cloud protection, cloud-cen-
tric regulatory compliance issues, and mechanisms and foundations of cloud-centric
threat models that need to be considered for future cloud work.

2.5.2 � Cloud Computing PaaS and SaaS Provider

Google App Engine (GAE) provides a useful basis for people and companies to
make web applications from scratch without needing to worry about infrastructure.
GAE provides for automatic scaling and load balancing. This alone will be worth
while for a certain class of application developers. GAE has some clear advantages
and lowers the barriers to entry for startups and independent developers. The poten-
tial problem is lock-in that creates risk and more cost for long term. The lock-in is
caused by custom APIs such as BigTable, Python launcher, accounts and transpar-
ent scaling for both Python scripts and database. Google App Engine uses master/
slave replication between data centers. They chose this approach to provide low
latency writes, data center failure survival, and strong consistency guarantees.

GigaSpaces use an In-Memory Data-Grid (IMDG) technique to manage state
data in a database, which bridges the bottleneck of scalability. It provides all the basic
features of a high-end Data Grid as well as unique features, such as continuous
query and seamless integration with external data sources, and makes it extremely
easy to deploy, modify, and ensure high availability for applications running on
Amazon EC2.

GigaSpaces’s Space-Based Architecture (SBA) approaches are based on the
Tuple Space model [53] that can meet the challenge of running low-latency transac-
tional applications in a highly distributed environment such as Amazon EC2.

Security isolation is managed via virtualization in Azure. The Azure Fabric
Controller is a service that monitors, maintains, and provisions machines to host the
application that the developer creates and stores in the Microsoft cloud. Azure storage
provides persistent, redundant storage in the cloud. It can store data in three different
ways such as Blobs (large binary data), Queues (service communication abstraction),
and Tables (service state and user data). Storage can be geo-located, which means
you can choose in which region it can be hosted.

The agile nature of Sun Cloud provides multiple hardware architectures to cus-
tomize systems for workload, multitenancy, and resource sharing among a large
pool of users allowing centralized infrastructure with lower costs. Sun modular data
center is flourishing and ten times faster to deploy than a conventional data center.

42 B.P. Rimal et al.

Sun’s open storage provides a unique business model, which provides snapshot, repli-
cation, and compression without additional cost for data services. Hybrid cloud archi-
tecture is very important. One of the nice mechanisms of it is the open storage model
that is provided by Sun Cloud, which is a new and unique business model as well.

SFDC introduces the Force.com metadata-driven, multitenant, internet application
platform. In multitenant architecture, a single instance of the hosted application is
capable of servicing all customers (tenants). Not all clouds are using virtualization.
Clouds like GAE and SFDC use completely different technologies to create mul-
titenancy. From the developer point of view, multitenancy is not the main event.

2.5.3 � Open Source Based Cloud Computing Services

The role of open source cloud computing is to build mechanisms around digital
identity management [14], and outline technological building blocks that are
needed for controllable trust and identity verification. Nimbus supports the OASIS
WSRF standard [32] that defines a framework and uses web services to model and
access stateful resources. Enomaly cloud is focusing on the issue of interoperabil-
ity, which is essential for enterprise cloud system. Most of the open source clouds
are providing IaaS.

2.6 � Comments on Issues and Opportunities

There are some issues related to mechanisms such as security, privacy, (erosion
of) data integrity, load balancing, interoperability, and scalable storage. Cloud
computing services often provide common business applications online that are
accessed from a web browser, while the software and data are stored on the servers.
One of the issues is an integration of data and application across clouds. This
involves leveraging technology such as EAI (enterprise application integration), EII
(enterprise information integration or federated database), and ESB (enterprise ser-
vice bus). The market prognosis suggests raising the subscription fees as cloud
vendors provide higher performance, scalability, availability, better support, and
security. Transmitting huge volumes of multimedia data across clouds will continue
to be a challenge, and needs further research. Discovery and composition of the
services between multiple clouds is also a promising arena for enterprise cloud.
Clouds have a different paradigm for resource utilization, so they need a different
paradigm for managing these resources. Each previous revolution in computing also
revolutionized how resources were managed. Collaborating amongst different tech-
nologies, businesses, and people in cloud computing will be an issue that will enable
the enterprise to play a role as well. Quality assurance and information security are
always challenging. Researchers should leverage identity and security manage-
ment for business units. Furthermore, there are opportunities for the provision of a
new range of privacy services. As the user requirement changes, functionality and

432  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

privacy requirements may change, and so privacy requirements need to be reassessed
at regular intervals [30]. Policy-based dynamic privacy design patterns may be a
better technique for cloud computing. Cloud computing brings some novel attacks
that have not figured in much of the security discussion to date. We need more
research into this. Cloud computing systems for High-Performance Computing
(HPC) are also a promising area for future provision. Cloud is not yet mature
enough for HPC [31]. However, cloud computing helps save enterprise 30–60% of
their technology expenditure, but owing to lack of agreement on common standards,
many enterprises are losing opportunities. It is not so easy for cloud computing to
achieve its aim of being a universally accessible application that is based on open
standards. Amazon AWS Import/Export supports importing and exporting data into
and out of Amazon S3 buckets in the USA, but still leaves complications in migration
of data between clouds. A major challenge of moving applications to the cloud is the
need to master multiple programming languages and operating environments [27].
Special attention is needed for government agencies to integrate their data from tra-
ditional to PaaS, a need to learn some new programming models residing in the
cloud. Interoperability is another important issue for cloud. There is a need for data
access interoperability, which is a unique programming interface to access diverse
databases (such as JDBS, ODBC, Ado.NET). There are lots of standardization
issues; in the race to standardization, many organizations and forums are working,
but need to leverage the collaboration and discussions between them. Cloud
Computing Interoperability Forum (CCIF) [16] was formed to define an organiza-
tion that would enable interoperable enterprise class cloud computing platforms
through application integration and stakeholder cooperation. Similarly, Microsoft’s
approach to interoperability principles [28] is a good starting point. Other orga-
nizations such as Open Cloud Consortium (OCC) [36], Open Grid Forum (OGF)
[37], and Distributed Management Task Force (DMTF) [38] are also working on
interoperability issues and open formats. Armbrust et al. [15] also identified many
issues for future research. There are some complications with current programming
frameworks and programming languages for cloud computing such as Google
AppEngine with its SQL-like syntax called “GQL.” Select statements in GQL can
be performed on one table only. GQL does not support a join statement. The cloud
developers will need more flexible query-oriented and API-oriented programming
in future. Automated diagnosis is one of the problems in Hadoop. MapReduce is
better for limited tasks like text searching or data mining, the things Google does
on an epic scale. For tasks that require relational database capabilities at web scale,
database sharing has become a favorite practice. The main problem of why several
users do not use cloud computing yet is the lack of trust in the cloud itself (services,
providers, etc.) and this lack is based on several issues (no acknowledgement of the
policies applied for confidentiality of the user’s information, privileges of the users
in charge of the data, level of satisfaction in regard to compliance with the contract
specifications, if the provider permits audits, technical support offered). The com-
plexity will be there for developers to apply the disciplines of development across
multiple platform technologies and computational models. The alignment of user
needs with business strategy is also a challenging job for CIOs.

44 B.P. Rimal et al.

2.7 � Conclusions

Cloud computing is a promising paradigm for delivering IT services as computing
utilities. Clouds are designed to provide services to external users; providers need
to be compensated for sharing their resources and capabilities. There are signifi-
cant challenges and opportunities behind the ecosystem of cloud computing such as
resource management, reliability, fault tolerance, security, SLA, utility model, and
performance issues. There are many taxonomies, but they are vendor-concern ori-
ented. The proposed taxonomy focused more on engineering approaches such as
functional as well as structured aspects of cloud computing systems. We provided
a consistent set of guidelines for clarity, and reusability, which is employed to
classify a wide range of cloud computing systems. The value of the offered
taxonomy lies in that it captures a given system’s scope, scalability, generality,
reusability, manageability, and flexibility. This chapter presented a different way of
representing a taxonomy to classical approaches. This might be a new way to think
about the components of taxonomy as layered services that can give a wide range
of spectrum for flexibility and reusability. This taxonomy has been applied to the
different cloud systems to find out the technical strengths and weaknesses. A survey
of different cloud systems has been presented, and captures the different aspects of
the taxonomy that provide an idea about functional and architectural view of the
systems that they adopted. We concluded the chapter with a discussion of the con-
sidered systems, as well as directions for future research. It is hoped that this can
provide stimulus to the researcher and ideas to the developer with respect to current
cloud systems, hype, and challenges.

Acknowledgments  This research was supported by the MKE (Ministry of Knowledge and
Economy), Korea, under the ITRC (Information Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2009-C1090-0902-0026),
and research program on Kookmin University.

References

	 1.	 Dean J, Ghemawat S (January 2008) MapReduce: simplified data processing on large clusters.
Commun ACM 51(1):107–113

	 2.	 Sun Microsystems (2009). Virtualization for dummies
	 3.	 Software and Information Industry Association (2001, February). Software as a service:

strategic backgrounder
	 4.	 Choudhary V (2009) Software as a service: implications for investment in software development.

Proceedings of the 40th Hawaii international conference on system sciences
	 5.	 Kolakowski N (2009) Microsoft’s cloud azure service suffers outage. Retrieved from, http://

www.eweekeurope.co.uk/news/microsoft-s-cloud-azure-service-suffers-outage-396
	 6.	 Cruz A (2009) Gmail site reliability manager. Update in Gmail. Retrieved from, http://googleblog.

blogspot.com/2009/02/update-on-gmail.html
	 7.	 Mayer M (2009) Search Products andUser Experience: This site may harm your computer on

every search results. Retrieved from, http://googleblog.blogspot.com/2009/01/this-site-may-
harm-your-computer-on.html

452  A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems

	 8.	 Jackson T (2008) Gmail product manager: we feel your pain, and we’re sorry. Retrieved from,
http://gmailblog.blogspot.com/2008/08/we-feel-your-pain-and-were-sorry.html

	 9.	 Pete, App Engine Team (2008) App engine outage today. Retrieved from, http://groups.
google.com/group/google-appengine/

	10.	 Allen Stern (2008) Update from Amazon Regarding Friday’s S3 Downtime. Retrieved from,
http://www.centernetworks.com/amazon-s3-downtime-update

	11.	 AWS Service Health Dashboard (2008, July 20) Amazon S3 availability event. Retrieved
from, http: //status.aws.amazon.com/s3-20080720.html

	12.	 Tubanos A (2008) FlexiScale suffers 18-hour outage. Retrieved from, http://www.thewhir.
com/

	13.	 Amazon Web Services (AWS) (2008, Sept) Amazon web services: overview of security
processes

	14.	 Cavoukian A (2008, May 28) Privacy in the clouds: privacy and digital identity – implications
for the Internet. Information and privacy commissioner of Ontario

	15.	 Armbrust M et al (2009, February 10) Above the clouds: a berkeley view of cloud computing.
EECS department, University of California, Berkeley, Technical Report No. UCB/EECS-
2009-28

	16.	 The Cloud Computing Interoperability Forum (CCIF) (2009) http://www.cloudforum.org/
	17.	 Gathering Clouds of XaaS! (2008) Retrieved from, http://www.ibm.com/
	18.	 http://www.roughtype.com (2008)
	19.	 Apache Hadoop project (2009) Available from http://hadoop.apache.org/
	20.	 Amazon Elastic Cloud Computing (EC2) (2009) Available from http://aws.amazon.com/ec2/
	21.	 Crandell M (2008) Defogging cloud computing: a taxonomy. Available from http://gigaom.

com/2008/06/16/defogging-cloud-computing-a-taxonomy/
	22.	 Laird P (2009) Different strokes for different folks: a taxonomy of cloud offerings. Enterprise

cloud submit, INTEROP
	23.	 Cloud Computing Use Case Discussion Group (2009, August) Cloud computing use case.

White Paper version 1.0. 5
	24.	 Ried S (2009) Yet another cloud – how many clouds do we need? Retrieved from Forrester

Research, http://www.forrester.com/
	25.	Gammage B, Shiffler III G (2007, August 8) Report highlight for dataquest insight: PC

virtualization forecast scenarios. Gartner
	26.	 Dayley A et al (2009, Jan 5) Dataquest insight: virtualization market size driven by cost

reduction, resource utilization and management advantages. Gartner
	27.	 Hayes, B (2008, July) Cloud computing. Commun ACM 51(7)
	28.	 Microsoft’s approach to interoperability (2009) Retrieved from, http://www.microsoft.com/

interop/principles/default.mspx. Accessed 25 Sept 2009
	29.	 Gottfrid D (2009) Self-service, prorated super computing fun! Retrieved from http://open.

blogs.nytimes.com/
	30.	 Pearson S (2009) Taking account of privacy when designing cloud computing services.

Proceedings of the 2009 ICSE workshop on software engineering challenges of cloud
computing, IEEE Comp Soc, pp 44–52

	31.	 Napper J, Bientinesi P (2009) Can cloud computing reach the TOP500? Proceeding of the
combined workshops on unconventional high performance computing workshop plus memory
access workshop, ACM, pp 17–20

	32.	 OASIS (Organization for the Advancement of Structured Information Standards) (2009)
http://www.oasis-open.org/

	33.	 GoGrid’s prepaid cloud hosting plans (2009). http://www.gogrid.com/pricing/plans.php
	34.	 Rainge E (2009, May) Worldwide telecom cloud billing 2009–2013 forecast. IDC Doc

#217313
	35.	 CFengine (2009) http://www.cfengine.org/
	36.	 The Open Cloud Consortium (OCC) (2009) http://opencloudconsortium.org/
	37.	 The Open Grid Forum (2009) http://www.ogf.org/
	38.	 The Distributed management Task Force (DMTF) (2009) http://www.dmtf.org/about/

46 B.P. Rimal et al.

	39.	 Buco MJ et al (2004, Jan) Utility computing SLA management based upon business objectives.
IBM Syst J 43(1):159–178

	40.	 The Official Google Blog (2008, Nov) Sorting 1 PB with MapReduce. Retrieved from http://
googleblog.blogspot.com/

	41.	 rPath (2009) http://www.rpath.com
	42.	 Opscode (2009) http://www.opscode.com/
	43.	 Sheehan M (2009) Message from GoGrid founders regarding denial of service attack.

Retrieved from, GoGrid Official Blog, http://blog.gogrid.com/
	44.	 Ristenpart T et al (2009) Hey, you, get off of my cloud: exploring information leakage in

third-party compute clouds. Proceeding of ACM conference on computer and communications
security

	45.	 Linthicum DS, Morrison KS (2009) Value of SOA for cloud computing. Layer 7 technologies
	46.	 Patterson D (2009) Recovery oriented computing. http://roc.cs.berkeley.edu
	47.	Ghemawat S, Gobioff H, Leung ST (2003) The google file system. Proceedings of the

nine-teenth ACM symposium on operating systems principles, pp 29–43
	48.	Fielding RT (2000) Architectural styles and the design of network-based software archi-

tectures. Dissertation of doctor of philosophy, University of California, Irvine
	49.	 RSA (2009, March) The role of security in trustworthy cloud computing. Continental

Automated Building Association (CABA), Information Series, IS 2009-39
	50.	 Thusoo A (2009, June 11) Hive-A petabyte scale data warehouse using hadoop. Retrieved

from Facebook Engineering page, http://www.facebook.com
	51.	 Hadoop/Hive (2009) http://wiki.apache.org/hadoop/Hive
	52.	Palankar M et al (2008) Amazon S3 for science grids: a viable solution? Proceedings of

the 2008 international workshop on data-aware distributed computing workshop (DADC),
pp 55–64

	53.	 Carriero N, Gelernter D (1989) Linda in the context. Commun ACM 32(4):444–458
	54.	 Gray J et al (1996) The dangers of replication and solution. Proceedings of the 1996 ACM

SIGMOD international conference on management of data, pp 173–182

47

Abstract  In the last few years, cloud computing has emerged as a computational
paradigm that enables scientists to build more complex scientific applications to
manage large data sets or high-performance applications, based on distributed
resources. By following this paradigm, scientists may use distributed resources
(infrastructure, storage, databases, and applications) without having to deal with
implementation or configuration details. In fact, there are many cloud computing
environments already available for use. Despite its fast growth and adoption, the
definition of cloud computing is not a consensus. This makes it very difficult to
comprehend the cloud computing field as a whole, correlate, classify, and compare
the various existing proposals. Over the years, taxonomy techniques have been
used to create models that allow for the classification of concepts within a domain.
The main objective of this chapter is to apply taxonomy techniques in the cloud
computing domain. This chapter discusses many aspects involved with cloud com-
puting that are important from a scientific perspective. It contributes by proposing
a taxonomy based on characteristics that are fundamental for scientific applications
typically associated with the cloud paradigm.

3.1 � Introduction

The evolution of computer science in the last decades enabled the advent of e-Science,
which is entirely carried out in computational environments. The term “e-Science”
is strictly related to those experiments based on computer simulations that are
known as silico experiments [27].

The development of technologies such as grids [6] fostered the popularity of
e-Science and consequently in silico experiments. In silico experiments are com-
monly found in many scientific domains, such as oil exploration [20]. An in silico

D. de Oliveira (*)
COPPE, Federal University of Rio de Janeiro, 21945-970, Rio de Janeiro-RJ-Brazil
e-mail: danielcmo@gmail.com

Chapter 3
Towards a Taxonomy for Cloud Computing
from an e-Science Perspective

Daniel de Oliveira, Fernanda Araujo Baião, and Marta Mattoso

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_3, © Springer-Verlag London Limited 2010

48 D. de Oliveira et al.

experiment is conducted by a scientist, who is responsible for managing the entire
experiment, which comprises composing, executing, and analyzing it. Currently,
most of the work of scientists during an in silico experiment is related to the execu-
tion of a sequence of programs. Each program produces a collection of data with
certain semantics. These data are used as input to the next program to be executed
in the chain sequence. The chaining of these programs may become unfeasible with-
out systematic computational support. A scientific workflow may be defined as an
abstraction that allows the structured composition of programs and data as a sequence
of operations aiming at a desired result as defined by Mattoso et al. [16].

Simultaneously, in the last few years, cloud computing [28] emerged as a new
computational paradigm where web-based services enabled different kinds of users
to obtain a huge variety of capabilities, in infrastructure, software, and hardware,
without having to deal with configuration and implementation details.

The programs and data (that are fundamental parts of scientific workflows) are
moving from local environments to the cloud. Foster et al. [7] examined the differ-
ences between grid and cloud computing, offering a good foundation to categorize
the existing cloud computing projects and/or services. They define cloud comput-
ing as “A large-scale distributed computing paradigm that is driven by economies
of scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed
computing power, storage, platforms, and services are delivered on demand to exter-
nal customers over the Internet.”

The main advantage of cloud computing is that the average user is able to access
a great variety of resources without having to acquire or configure the whole infra-
structure. This is a fundamental need for scientific applications, since the scientists
can be isolated from the complexity of the environment, focusing only on their in
silico experiment.

The volume of published white papers and scientific papers evidences that cloud
computing has both emerged and is already being adopted by some scientific
projects [15]. Several technologies, platforms, applications, infrastructures, and
standards have already been proposed. However, the concepts involved with cloud
computing are not fully detailed or explained. Considering the growing interest in
cloud computing and the difficulty in finding organized definitions of concepts
associated to this paradigm, we present in this chapter a taxonomy for the cloud
computing from an e-Science perspective.

Taxonomies [4] are a particular classification structure where concepts are arranged
in a hierarchical way. The proposed cloud taxonomy provides an understanding of the
domain and aims to help scientists when comparing different cloud computing envi-
ronments. The cloud computing e-Science taxonomy presented in this chapter is useful
for the scientific community to classify environments and to compare different cloud
computing environments that are available for use. By consulting this taxonomy, they
may consider the features that meet their needs, which may vary depending on the
scientific experiment being conducted. The taxonomy considers a broad view of cloud
computing, comprising all its major issues. Using the proposed taxonomy as a com-
mon vocabulary may facilitate scientists to find common characteristics of the existing
environments and may help to choose the most adequate cloud environment.

493  Towards a Taxonomy for Cloud Computing from an e-Science Perspective

3.2 � Scientific Workflows and e-Science

This section presents the main definitions regarding e-Science and scientific work-
flow concepts. These concepts are presented along with some important aspects to
be considered when modeling or executing scientific experiments using cloud com-
puting. These aspects are used as a basis for elaborating the classes of the cloud
computing taxonomy.

3.2.1 � Scientific Workflows

According to the Workflow Management Coalition [31], a workflow may be defined
as “the automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according
to a set of procedural rules.” A workflow defines the order of task invocations or
conditions under which tasks must be invoked and the task synchronization. This
definition is related to business workflows; however, it can be exploited in the sci-
entific domain [26], where tasks will be related to scientific applications instead of
business ones. An example of scientific workflow is presented in Fig. 3.1. This work-
flow is part of a real deep water oil exploitation scientific experiment [20].

3.2.2 � Scientific Workflow Management Systems

Scientific Workflow Management Systems (SWfMSs) are responsible for coordinating
the invocation of programs, either locally or in remote environments. Many different
SWfMSs can be found in the literature [1, 5]. Although current SWfMSs have many
important characteristics and evolutions, according to Weske et al. [30], these
SWfMSs need to offer adequate support for the scientist throughout the experimentation
process, including: (i) designing the workflow through a guided interface; (ii) con-
trolling several variations of workflows; (iii) executing the workflow in an efficient
way; (iv) handling failures and; (v) accessing, storing, and managing data.

Most of this support can be achieved using the cloud computing paradigm. More
specifically, efficient execution of scientific experiments, as well as management of

Fig. 3.1  Deep water oil exploitation scientific workflow [20]

50 D. de Oliveira et al.

the large amount of scientific data produced by the experiment, is provided by the
computational infrastructure of cloud computing environments. The next section
presents some important aspects for scientific experiments to be considered when
choosing a cloud computing environment.

3.2.3 � Important Aspects of In Silico Experiments

In silico experiments (that are usually modeled as scientific workflows) have some
important aspects to be considered when being modeled or executed. Many of these
aspects should be taken into account when choosing a supporting cloud computing
environment. Cloud computing environments present some important characteristics
that are related to those aspects and may influence when scientists choose a cloud
environment to use. This section presents these aspects (business model, privacy,
pricing, technological infrastructure, architecture, access, and standards) as they
guide us to choose the classes of the proposed taxonomy.

One of the most important aspects for scientific experiments is reproducibil-
ity. To reproduce and validate an experiment, scientists must have all available
information related to the experiment, including which parameter values were
used in each instance of execution, the results (both final and intermediary) pro-
duced during its execution. This type of information is called provenance [8].
This data is stored in databases or via specialized services to store provenance,
thus handling failures and retaining data integrity. Therefore, to achieve experi-
ment reproducibility, the supporting cloud computing environment should pro-
vide two fundamental features, data storage and environment configuration.
Data storage is required to store provenance data. Preferably, there should be a
service that provides storage or database mechanisms to enable the scientist to
access provenance data and track how the results of an experiment execution
were obtained. Environment configuration is required since the whole environ-
ment used to execute the experiment should be able to be reconfigured. Those
characteristics are related to the business model followed by a cloud computing
environment.

Privacy is also a major issue for the scientific community. Usually, provenance
data and programs related to a scientific experiment are considered intellectual
property and because of that, they are not public until the research is published in
a scientific paper. This way, the privacy aspect of cloud environments must be
analyzed when dealing with scientific experiments.

Another important aspect to be considered is related to pricing. Scientists fre-
quently use open-source and community environments. This type of programs and
environments is freely available for general use, thus contributing to the reproduc-
ibility of experiment executions. The open-software culture of the scientific com-
munity must be considered, since most cloud environments are commercial, which
means that the service is paid for. Thus, scientists should take into account the pricing
of environments.

513  Towards a Taxonomy for Cloud Computing from an e-Science Perspective

The architecture characteristics of the environment chosen to execute the experi-
ment should also be taken into account. Scientific experiments need to be moni-
tored and controlled by scientists. This way, the chosen cloud environment should
provide characteristics such as monitoring, as well as individual control of an experi-
ment execution independent from others’ executions. Also, in many scenarios the
execution of a whole experiment requires running programs in different technological
platforms (operational systems, database servers), requiring that the cloud computing
environment deals with heterogeneity.

Another important aspect is related to performance. These experiments usually
need high-performance computational environments to run. Even using these
environments, experiments may need days, weeks, or even months to finish. It is
important to know (and classify) the technology infrastructure involved with the
experiment to discover if this technology is able to offer the necessary computa-
tional resources to execute the entire experiment.

Another important topic is related to how scientists access the cloud environment
to run experiments. The in silico scientific experiment must be able to access cloud
environments in different ways. For example, in a specific experiment, results must
be provided in a web page through a web browser; in another experiment, there
must be an API to control the execution of the experiment, and so on.

In silico scientific experiments should be based on standards, ideally already
used on the experiment domain or recommended by entities such as W3C [29].
These standards are important when modeling an in silico scientific experiment.
Scientific experiments are usually based on open standards. The next section pres-
ents the proposed taxonomy for cloud computing that takes into account the aspects
listed in this section.

3.3 � A Taxonomy for Cloud Computing

A taxonomy [4] is a particular classification arranged in a hierarchical structure.
It is typically organized by a parent–child relationship. Originally the term “tax-
onomy” referred only to the classification of living organisms. However, it has
become popular in certain domains of science to apply the term in a wider, more
general sense, where it may refer to a classification of things or concepts.

The cloud computing taxonomy presented in this chapter provides the classifica-
tion of the components of the cloud computing domain into categories based on
different aspects of this field and the requirements of a scientific experiment. This
section describes a cloud computing taxonomy (presented in Fig. 3.2), which is
decomposed into eight subtaxonomies.

The proposed taxonomy classifies the characteristics of cloud computing in
terms of architectural characteristics, business model, technology infrastructure,
privacy, standards, pricing, orientation, and access. Many of the classes of the tax-
onomy are interrelated. In Fig. 3.2, these relations are represented in orange arrows.
Each one of these relations is explained throughout the chapter.

52 D. de Oliveira et al.

3.3.1 � Business Model

According to the business model adopted, clouds are usually classified into three
major categories [18] (Fig. 3.3): Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS), creating a model named
SPI [34].

In SaaS, the software is deployed by a service provider (just like an application
to end-users) for commercial or free use as a service on demand. In IaaS, the
provider delivers a computational infrastructure (such as a supercomputer) to
the end-user on the web. In IaaS, the end-user is usually responsible for configuring
the environment to use. PaaS is the delivery of a programming environment as a
Service. The process of delivering platforms as services facilitates the deployment
of applications into the cloud.

However, these three categories are too generic. More classification levels are
indeed needed. For example, in the e-Science field, the generated data is one of the

Fig. 3.2  Cloud computing taxonomy

533  Towards a Taxonomy for Cloud Computing from an e-Science Perspective

most valuable resources. This classification does not take into account services that
are based on storage or databases.

Thus, the business model subtaxonomy should include the following areas:
Storage as a Service (StaaS) and Database as a Service (DaaS), which are funda-
mental for e-Science and scientific workflows. We may define Storage as a
Service as a service that provides structured ways to access and maintain a stor-
age facility that is remotely located. However, this kind of business model pro-
vides only the space and structure to store data. In scientific experiments, the
scientists usually need a database to store provenance data, because a database
provides features such as indexing and concurrency control, that a simple storage
does not provide.

This way, Database as a Service (DaaS) provides operations and functions of a
remotely hosted database, sharing it with other users, and having it logically func-
tion as if the database were local. This way, we may see the Database-as-a-Service
as one specialization of Storage-as-a-Service.

The business model directly influences the orientation of the cloud environ-
ment. For example, an IaaS business model allows a user-centric environment,
since the user is in control. On the other hand, an SaaS business model does not.
This class of the taxonomy is essential to guarantee the reproducibility of scien-
tific experiments. The business model directly defines if the cloud environment
offers data, infrastructure, or application as a service, essential to guarantee repro-
ducibility. For example, there should be a way to store provenance data to be
further analyzed, thus the cloud computing environment should follow DaaS to
allow data storage.

3.3.2 � Privacy

According to the privacy aspect, we may classify cloud environments as private,
public, and mixed (Fig. 3.4). Public clouds may be considered as the most tradi-
tional of all types. In this kind of cloud, the various resources are dynamically
provided over the Internet, via web applications or web services, to any user.
Private clouds are environments that emulate cloud computing on private networks,
inside a corporation or a scientific institution.

A mixed cloud environment is one that is composed by multiple public and/or
private clouds. The concept of mixed cloud is still dubious. Some authors call a
mixed cloud also as hybrid [25]. Although this term is not wrong, it is also used to

Fig. 3.3  Business model
subtaxonomy

54 D. de Oliveira et al.

define clouds that are implemented by different technologies [35], which may cause
confusion.

This class of the taxonomy is important for e-Science because of the importance
of privacy levels in scientific experiments. Programs and data are usually not
public and scientists may prefer not to install programs or store data in public
environments.

3.3.3 � Pricing

Since it is important for the scientific experiments to deal with costs, we must clas-
sify cloud environment according to a pricing criterion. This subtaxonomy
(Fig. 3.5) is composed of three main types of pricing. Free pricing is the pricing
model applied when you are using your own cloud environment, where the
resources are freely available for authorized users. The pay-per-use model is the
one where the user pays a specific value related to his resource utilization. Also, it
can be specialized to a component-based pricing, where each component (storage,
CPU, and so on) has a different price and the real-time bill broken down by exact
usage of components. These pay-per-use models are usually applied in both com-
mercial clouds and scientific clouds. Science users pay for cloud usage in the same
way as commercial users do. To our knowledge, there are no scientific institutions
that share their resources at no cost.

Pricing is influenced by access characteristics. Since a cloud environment offers more
access methods, each one of them is a component that can be priced by the provider.

3.3.4 � Architecture

This subtaxonomy (Fig. 3.6) classifies the main architectural characteristics of a
cloud computing environment. One fundamental architectural aspect of a cloud is

Fig. 3.4  Privacy subtaxonomy

Fig. 3.5  Pricing subtaxonomy

553  Towards a Taxonomy for Cloud Computing from an e-Science Perspective

heterogeneity. A cloud must support the aggregation of heterogeneous hardware
and software resources, as it happens with scientific experiments. The concept of
virtualization [2] is also a key aspect for clouds.

Through virtualization, many users may benefit from the same infrastructure
using independent instances. Virtualization enables the first security [10] level in
the clouds, since it allows the isolation of environments. In clouds, each user has
unique access to its individual virtualized environment. Resource sharing is pro-
vided by clouds, since each resource is represented as a single artifact, giving the
impression of a single dedicated resource. Scalability is mainly defined by increasing
the number of working nodes. By definition, clouds offer the automatic resizing of
virtualized hardware resources. Monitoring refers to the ability of watching the
current status of virtual machines or services provided.

Each one of those architectural characteristics is standardized by specific stan-
dards (which are in another class of the taxonomy). Besides that, some architectural
characteristics are important to scientific experiments, such as scalability and moni-
toring to control the execution.

3.3.5 � Technology Infrastructure

The technological infrastructure subtaxonomy (Fig. 3.7) is responsible to classify a
cloud environment according to the computational power provided by cloud envi-
ronments. Particularly in commercial clouds, scientists have no access to the kind
of technology that is used to implement it. In fact, in commercial cloud environ-
ments implementation details are hidden from the end-user (scientist). On the other
hand, in academic or private clouds it is possible to obtain this information. This
information may be quite useful in e-Science because many experiments need a
powerful computational environment to run and if the cloud environment is not able
to provide powerful resources, it will not be able to support these experiments. But,
it is complicated to scientists to choose between those environments (clusters,
blades, or grids) to run experiments, since they may not be computer experts. This
way, we need to classify the environments using another classification.

Fig. 3.6  Architecture subtaxonomy

Fig. 3.7  Technology infrastructure
subtaxonomy

56 D. de Oliveira et al.

This subtaxonomy provides a generic classification of cloud environments
according to the support provided for high-performance computing (HPC). Since
many experiments need HPC environments to run, cloud environments need to be
classified according to these aspects. This way, cloud environments may be classi-
fied into HPC support and non-HPC support. HPC support cloud environments are
those where multicore programming is allowed, and non-HPC support are those in
which this kind of mechanism is not provided, for example.

3.3.6 � Access

This subtaxonomy (Fig. 3.8) classifies cloud environments according to its access
types. In most cases, we may find four types of accesses: web browsers, thin clients,
mobile clients, and API. Browsers are the most common access way for cloud ser-
vices. Many applications and infrastructures are accessible only on web browsers.
It is intuitive since almost every computer has at least one browser installed and
may access cloud services. Thin clients and mobile are types of access to clouds out
of a desktop within handhelds or mobile phones. It has become popular to access
services through phones instead of desktops. And finally, API is a fundamental way
for accessing clouds.

API is a fundamental artifact for access through programming languages such as
Java, Python, or C. By using an API, more complex applications may use cloud
infrastructure in a native form. Since the scientific experiments modeled as scien-
tific workflows are enacted using SWfMSs, one important need to connect SWfMSs
to clouds is using an API because an API can be easily invoked by programmable
components and most of the scientists follow this tendency.

3.3.7 � Standards

This subtaxonomy (Fig. 3.9) presents some categories and standards found on
literature for cloud computing. The Extensible Messaging and Presence Protocol
(XMPP) [33] is an open technology for real-time communication, which powers a
wide range of applications. Hyper Text Transfer Protocol (HTTP) is the most
known standard for communication and it is intuitive to use it on the cloud, since
it is used on basic web applications. OAuth [19] is a security protocol to publish
and interact with protected data. In addition, it is an open protocol to allow secure

Fig. 3.8  Access subtaxonomy

573  Towards a Taxonomy for Cloud Computing from an e-Science Perspective

API authorization in a simple and standard way. On the other hand, OpenID [21]
is an open, decentralized standard for user authentication and access control,
allowing users to log onto many services with the same digital identity, as adopted
on grids. In addition, we may find SAML [17], which is a major player in cloud-
based systems. Atom Publishing Protocol [3] (or simply Atom) is a content licens-
ing protocol based on HTTP for creating and updating web resources. RSS [23]
must be included as a syndication standard as well. Even RSS is not a recom-
mended standard but a de facto standard. As highlighted on the scientific experi-
ments requirements, security is a key aspect and virtualization improves security.
Virtualization is a key aspect of cloud computing and needs some standards. The
OVF [22] is being considered as one of the de facto standards for virtualization.
OVF enables flexible and secure distribution of software and data, facilitating the
mobility of virtual machines. As happens in many web systems, data is usually
represented and transferred using XML (and many more XML-based languages
such as SAML [17], XACML [32], and JSON [11]). JSON is a lightweight data-
interchange format.

3.3.8 � Orientation

One important aspect of cloud computing for e-Science is the orientation (taxon-
omy represented in Fig. 3.10). Usually, the orientation changes as the type of ser-
vice changes. For instance, when an application is provided on the cloud, we may
consider it task-centric, because it is oriented to the task that will be executed. In
other words, you need to transfer control to the application owners instead of

Fig. 3.9  Standards subtaxonomy

Fig. 3.10  Orientation subtaxonomy

58 D. de Oliveira et al.

having control of it. However, when the infrastructure is provided as a service, the
user has control of the process. The programs, applications, and data are chosen by
the user. Thus, the cloud may be user-centric.

3.4 � Classifying Cloud Computing Environments
Using the Taxonomy

In this section, we present a summarized survey of the main existing cloud computing
environments according to the proposed taxonomy. Table 3.1 shows the selected
cloud computing environments with their categorization based on the taxonomy.
These cloud computing environments are the most commonly found in scientific
literature [9, 14, 15, 24].

In Table 3.1, we may observe that none of the analyzed environments pro-
vides all functionalities and characteristics presented in the proposed taxonomy.
Scientists will have to analyze their needs and verify in the classification the envi-
ronment that is the most suitable. For example, suppose that scientific experiments
require HPC support, API, and privacy as its main requirements. In a first analysis,
scientists would choose between Nimbus and Eucalyptus. However, if a database
service is also an important issue to be considered, they might trade between the
available environments.

Table 3.1  Classification of cloud computing environments

Categories

Cloud computing environments

Amazon EC2a Microsoft Azureb Nimbusc Eucalyptusd IBM cloude

Pricing Real time Real time Freef Free Freeg

Business
model

IaaS, DaaS PaaS, DaaSh IaaS IaaS IaaS, DaaS

Orientation User-centric Task-centric User-centric User-centric User-centric
Access API, Browser API, Browser API API Browser
Privacy Public Public Private Private Public
Virtualization OVF OVF OVF OVF OVF
Monitoring Yes N/Ai N/Ai N/Ai N/Ai

Technology HPC support Non-HPC support HPC support HPC support HPC support
a http://aws.amazon.com/ec2/
b  http://www.microsoft.com/windowsazure/
c www.nimbusproject.org/nimbus_cloud
d http://open.eucalyptus.com/
e http://www.ibm.com/ibm/cloud/
f Subject to acceptance
g  Free for tests
h Microsoft Azure is composed by Windows Azure, Microsoft SWL Azure, and Windows Azure
platform AppFabric
i Information not available

593  Towards a Taxonomy for Cloud Computing from an e-Science Perspective

3.5 � Taxonomies for Cloud Computing

There are some proposals in the literature related to cloud computing taxonomies.
All presented taxonomies have focused mostly on the commercial aspect (e.g.,
business model), lacking on describing the domain according to important aspects
for e-Science such as standards, privacy levels, and so on. Cloud computing providers
adopt a specialized taxonomy to explain their approach, especially if they have to
distinguish themselves from others. This section presents four taxonomies, already
developed for the cloud computing domain.

Youseff [34] proposes a unified ontology for cloud computing. It presents a sum-
mary of cloud computing components, with a classification of these components,
and their relationships. Even though this paper is a step forward, highlighting many
technical challenges involved in building cloud components, it is not a real ontology,
but a taxonomy that partially covers the cloud computing domain. In fact, this work
classifies just the cloud computing components in five main layers. In addition, this
ontology only takes the business model into account (classifying cloud computing
as software as a service, hardware as a service, and so on). Many other aspects are
needed to classify cloud computing environments, particularly for e-Science, such
as pricing, access methods, and so on.

Leavitt [13], presents the whole cloud scenario with advantages and disadvan-
tages, explaining the adoption of cloud by companies around the world and clas-
sifying cloud computing environments into four types that are equivalent to the
business models presented in this paper. However, it proposes a type called “gen-
eral services” that consider databases and storage provides as a service, differently
from our taxonomy that created a new type named DaaS to designate this type of
business model. This classification may be too generic since it groups in one class
(general services) many important types for e-Science. Services for different pur-
poses are classified as the same, and this may be not be desirable.

Laird [12] classifies cloud environments in a taxonomy that is composed by four
main classes: Infrastructure, Platform, Service, and Applications. In each of these
classes, it details some aspects and presents cloud environments that correspond to
the classification. Many of the classes used in this work are present in our tax-
onomy. However, it is not focused on e-Science aspects and many important classes
are not considered. Laird [12] is focused on commercial environments, and because
of that, some classification is missing, such as HPC supporting. Since it is not a
fundamental aspect for commercial applications that are executed in clouds, it was
not considered.

The United States National Institute of Standards and Technology (NIST)
recently provided definitions for cloud computing through an implicit taxonomy
[18]. However, different from the taxonomy presented in this chapter, the NIST
cloud computing taxonomy has focused on the business model aspect, lacking on
describing the domain according to different aspects such as standards, privacy
levels, and so on.

60 D. de Oliveira et al.

3.6 � Conclusions and Final Remarks

In this chapter, we have introduced a taxonomy for cloud computing from an
e-Science perspective. The authors believe that it will be useful for the scientific
community in evaluating and comparing different cloud environments. By classifying
environments using the proposed taxonomy, they may evaluate which environments
meet their needs for executing scientific experiments in clouds. Different from the
existing taxonomies, this taxonomy considers a broad view of cloud computing
according to important aspects of scientific experiments and aims to explore the
major properties of it.

This chapter highlights that despite the high interest about the topic, it is still a
wide open field. New solutions for cloud computing are available, and many others
are being announced, which makes the cloud computing field very fertile and hard
to be understood and classified. It is fundamental that scientists are able to choose
the best cloud environment for their experiments. The use of the taxonomy and its com-
mon vocabulary may facilitate scientists to find common characteristics of the
existing environments and may help them to choose the most adequate one.

Acknowledgments  The authors thank CNPq and CAPES for funding this research.

References

	 1.	 Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S (2004) Kepler: an extensible system
for design and execution of scientific workflows. In: 16th SSDBM, Santorini, Greece, pp 423–424

	 2.	 Asosheh A, Danesh MH (2008) Comparison of OS level and hypervisor server virtualization.
In: Proceedings of the 8th conference on systems theory and scientific computation, Rhodes,
Greece, pp 241–246

	 3.	 Atom (2010) Atom Publishing Protocol. AtomEnabled.org – Atom Publishing Protocol. http://
www.atomenabled.org/. Accessed 11 Jan 2010

	 4.	 Bruno D, Richmond H (2003) The true about taxonomies. Inform Manage J 37:44–46
	 5.	 Callahan SP, Freire J, Santos E, Scheidegger CE, Silva CT, Vo HT (2006) VisTrails: visuali

zation meets data management. In: Proceedings of the 2006 ACM SIGMOD, Chicago, IL,
pp 745–747

	 6.	 Foster I, Kesselman C (2004) The grid: blueprint for a new computing infrastructure. Morgan
Kaufmann, Los Altos, CA

	 7.	 Foster I, Yong Zhao, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree
compared. In: Grid computing environments workshop, 2008. GCE ‘08grid computing envi-
ronments workshop, 2008. GCE ‘08, Auxtin, TX, pp 1–10

	 8.	 Freire J, Koop D, Santos E, Silva CT (2008) Provenance for computational tasks: a survey.
Comput Sci Eng 10(3):11–21

	 9.	 Hoffa C, Mehta G, Freeman T, Deelman E, Keahey K, Berriman B, Good J (2008) On the use
of cloud computing for scientific workflows. In: SWBES 2008SWBES 2008, Indianapolis, IN

	10.	 Jensen M, Schwenk J, Gruschka N, Iacono LL (2009) On technical security issues in cloud
computing. In: Proceedings of the 2009 IEEE international conference on cloud computing,
Bangalore, India, pp 109–116

	11.	 JSON (2010) JSON interchange format. JSON Interchange Format. http://json.org/. Accessed
11 Jan 2010

613  Towards a Taxonomy for Cloud Computing from an e-Science Perspective

	12.	 Laird P (2009) Cloud computing taxonomy. http://peterlaird.blogspot.com/2009/05/cloud-
computing-taxonomy-at-interop-las.html. Accessed 11 Jan 2010

	13.	 Leavitt N (2009) Is cloud computing really ready for prime time? Computer 42(1):15–20
	14.	 Lizhe W, Jie T, Kunze M, Castellanos A, Kramer D, Karl W (2008) Scientific cloud comput-

ing: early definition and experience. In: Proceedings of HPCC ‘08, IEEE HPCC ‘08, pp
825–830

	15.	 Matsunaga A, Tsugawa M, Fortes J (2008) CloudBLAST: combining MapReduce and virtu-
alization on distributed resources for bioinformatics applications. In: Proceedings of the
fourth IEEE international conference on eScience, e-Science’08, IEEE Computer Society,
Washington, DC, vol 0, pp 222–229

	16.	 Mattoso M, Werner C, Travassos GH, Braganholo V, Murta L, Ogasawara E, Oliveira D, Cruz S,
Martinho W (2010) Towards supporting large scale in silico experiments life cycle. Int
J Bus Process Integr Manage (IJBPIM), 5(1):79–92

	17.	 Mishra P, Chopra D, Moreh J, Philpott R (2003) Differences between OASIS Security
Assertion Markup Language (SAML) V1.1 and V1.0. OASIS Draft, Technical Report sstc-
saml-diff-1.1-draft-01

	18.	 NIST (2009) NIST.gov – computer security division – computer security resource center. NIST
– cloud computing. http://csrc.nist.gov/groups/SNS/cloud-computing/index.html. Accessed 11
Jan 2010

	19.	OAuth (2010) OAuth – an open protocol to allow secure API authorization in a simple and
standard method from desktop and web applications. http://oauth.net/. Accessed 11 Jan
2010

	20.	 Oliveira D, Cunha L, Tomaz L, Pereira V, Mattoso M (2009) Using ontologies to support deep
water oil exploration scientific workflows. In: IEEE international workshop on scientific
workflows, Los Angeles, CA

	21.	 OpenID (2010) OpenID Foundation website. http://openid.net/. Accessed 11 Jan 2010
	22.	 OVF (2010) Open virtualization format (OVF) –virtual machines – virtualization. http://www.

vmware.com/appliances/getting-started/learn/ovf.html. Accessed 11 Jan 2010
	23.	 RSS (2010) RSS 2.0 specification (version 2.0.11). http://www.rssboard.org/rss-specification.

Accessed 11 Jan 2010
	24.	 Simmhan Y, Barga R, van Ingen C, Lazowska E, Szalay A (2008) On Building scientific

workflow systems for data management in the cloud. In: Proceedings of the fourth IEEE
international conference on eScience ’08, eScience ’08, IEEE Computer Society, Washington,
DC, pp 434–435

	25.	 Sotomayor B, Montero RS, Llorente IM, Foster I (2009) Virtual infrastructure management
in private and hybrid clouds. IEEE Internet Comput 13(5):14–22

	26.	 Taylor IJ, Deelman E, Gannon DB, Shields M (eds) (2007) Workflows for e-Science: scien-
tific workflows for grids, 1st ed. Springer, London

	27.	 Travassos GH, Barros MO (2003) Contributions of in virtuo and in silico experiments for the
future of empirical studies in software engineering. In: Proceedings of 2nd workshop on
empirical software engineering the future of empirical studies in software engineering,
Fraunhofer IRB Verlag, Roman Castles, Italy

	28.	 Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2009) A break in the clouds: towards
a cloud definition. SIGCOMM Comput Commun Rev 39(1):50–55

	29.	 W3C (2010) World Wide Web Consortium (W3C). http://www.w3.org/. Accessed 11 Jan
2010

	30.	 Weske M, Vossen G, Medeiros CB (1996) Scientific workflow management: WASA architec-
ture and applications, Universitat Munster, Germany

	31.	 WfMC I (2009) Binding, WfMC Standards, WFMC-TC-1023. http://www. wfmc. org/. Accessed
11 Jan 2010

	32.	XACML (2010) OASIS eXtensible access control markup language (XACML). http://
www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml. Accessed 11 Jan 2010

	33.	 XMPP (2010) XMPP standards foundation. XMPP standards. http://xmpp.org/. Accessed 11
Jan 2010

62 D. de Oliveira et al.

	34.	 Youseff L, Butrico M, Da Silva D (2008) Toward a unified ontology of cloud computing. In:
Grid computing environments workshop, 2008. GCE ‘08grid computing environments work-
shop, 2008, GCE ‘08, pp 1–10

	35.	 Zhang H, Jiang G, Yoshihira K, Chen H, Saxena A (2009) Intelligent workload factoring for
a hybrid cloud computing model. In: Proceedings of the 2009 Congress on services – I, IEEE
Computer Society, Washington, DC, pp 701–708

63

Abstract  Cloud computing, which refers to services provisioning and consumption
over the Internet, is the latest paradigm promising to deliver computing as a utility.
Though it is still in its infancy and facing many challenges, cloud computing has
drawn and is drawing more interest from both academia and industry. Taking grid
computing as the baseline and using the findings in computer-supported cooperative
work (CSCW) research, this chapter tries to answer such questions as why cloud
computing is so attractive and how to make the vision of cloud computing really
come true.

4.1 � Introduction

Delivering computing as a utility was envisioned a way back by computing pio-
neer John McCarthy in 1961 as [17] – “If computers of the kind I have advocated
become the computers of the future, then computing may someday be organized as
a public utility just as the telephone system is a public utility… The computer util-
ity could become the basis of a new and important industry.”, and by Leonard
Kleinrock in 1969 [10] – “As of now, computer networks are still in their infancy,
but as they grow up and become sophisticated, we will probably see the spread of
‘computer utilities’ which, like present electric and telephone utilities, will service
individual homes and offices across the country.” Along the journey toward this
dream, many computing paradigms have been proposed, including cluster comput-
ing, peer-to-peer (P2P) computing, services computing, and grid computing. Cloud
computing, which refers to service (hardware such as CPU and storage, platform,
and application) provisioning and consumption over the Internet in an on-demand
approach, is the latest one joining this family. Though it is just an emerging

J. Jiang (*)
Department of Computer Science & Technology, Tsinghua National Laboratory for Information
Science & Technology, Tsinghua University, 100084, Beijing, P.R. China
e-mail: jjlei@tsinghua.edu.cn

Chapter 4
Examining Cloud Computing
from the Perspective of Grid
and Computer-Supported Cooperative Work

Jinlei Jiang and Guangwen Yang

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_4, © Springer-Verlag London Limited 2010

64 J. Jiang and G. Yang

paradigm, more and more people [3,4,8,11] tend to think that cloud computing is the
state-of-the-art practice and holds the promise to realize the long-held dream of
“computing as a utility.”

Nowadays, cloud computing has become a trend, drawing a lot of interest from
both academia and industry. On the one hand, there are lots of hypes and columns
available in the media, especially the IT-related ones. For example, using Google’s
exact search, the term “cloud computing” yields about 25,200,000 web pages, com-
pared with 2,000,000 pages for “grid computing.” Another result given by Google is
also surprising – it only took 10 months for the cloud computing article by Berkeley
[2] to get 138 citations. On the other hand, there are quite some products and ser-
vices available on the market and still more products and services are coming. For
example, besides Amazon’s EC2 (Elastic Compute Cloud) and S3 (Simple Storage
Service), other well-known cloud computing products and services include
Salesforce’s Force.com and SFA (Sales Force Automation), IBM’s Blue Cloud,
Google’s App Engine and various Apps, and Microsoft’s Windows Azure, to name
but just a few. It is notable that AT&T and Verizon, two major telecom operators in
the United States, also expanded their horizons into cloud computing by launching
Synaptic Hosting and CaaS (computing-as-a-service), respectively, in 2009.

In spite of the facts above, cloud computing is still in its infancy with some
debates on its concept and scope [3,8]. Some people think cloud computing is just
another name given to utility computing. Others treat it as an upgrade to grid com-
puting. Yet others argue that it is a revolution in computing architecture. Given the
fact that cloud computing has a history of no more than 3 years, it is natural to see
such a situation and it is also natural that the debates continue. In this chapter, we
do not want to give another definition of cloud computing nor outline its boundary.
Instead, our aim is to explore the following two questions:

Why is cloud computing so attractive?•	
What should we do to make the vision of cloud computing really come true?•	

To do so, we first examine the differences between cloud and grid computing in
Section 2 with an aim to give a better understanding of the concept and scope of
cloud computing. Afterwards, we turn to findings in computer-supported coopera-
tive work (CSCW) research and try to give answers to the two questions. Our
answers aim to give some hints for the development of cloud computing rather than
solve all the challenges facing cloud computing.

4.2 � Cloud and Grid: A Comparison

It is always effective to understand a new thing by comparing it with the existing
ones. Here, grid computing is selected because it is the last computing paradigm
before cloud computing along the journey toward “computing as a utility” and
because it looks very much like cloud computing in many aspects. Figure 4.1 illus-
trates the paradigms of grid and cloud computing. As both grid and cloud computing

654  Examining Cloud Computing from the Perspective of Grid and Computer-Supported

are of many shapes and colors, in the following we will concentrate our comparison
on their origins, system design, and users.

4.2.1 � A Retrospective View

Though cloud and grid look very similar in the sense that they both aim to provide
enormous resources to their users in an on-demand manner, differences do exist
between them. In this section, we explore their origins. The purpose is to identify
the driving force behind grid and cloud computing and set a solid foundation for
other comparisons.

Grid computing stems from academia, or more precisely the field of high-perfor-
mance computing (HPC), in the 1990s with an aim to facilitate users to remotely
utilize idle computing power within other computing centers when the local one is
busy. This can be used to explain why the design of grid adopts a resource-centric
approach. The grid at the early stage is termed compute grid. It was over nearly
10 years of development that grid technology became generally accepted as an effective
way for “coordinated resource sharing and problem solving in dynamic, multi-insti-
tutional virtual organizations” [7]. As a result, compute grid evolved into grid com-
puting, drawing much attention and funding from governments around the world.
Along this transition, grid technology gets into the scope of enterprises. A milestone
in the development of grid computing is the convergence of grid and service-oriented

Computing/Data Center Computing/Data Center Computing/Data Center Computing/Data Center

Grid Middleware Cloudware

Fig. 4.1  A comparison of grid and cloud computing. Each computing/data center in the figure
represents an administrative domain. The design of grid adopts a resource-centric approach with
the focus to shield the heterogeneity of underlying resources and policies and to present various
users with a vast yet uniform resource pool. All users of a grid face the same operating environ-
ment required by the grid middleware. On the contrary, cloud computing adopts a user- and task-
centric design with an aim to deliver resources to users in their desired way. Each user in cloud
computing has his/her own operating environment independent of the underlying resources

66 J. Jiang and G. Yang

architecture (SOA) [13], resulting in first OGSA (Open Grid Services Architecture)
and then WSRF (Web Service Resource Framework). It is since then that the poten-
tial of grid computing for business has fully unfolded. However, owing to a lack of
explicit business model and many other factors that will be analyzed later, today
there is still no widely accepted commercial-running grid service available on the
market [12].

In contrast, cloud computing stems from the industry with an aim to sell
resources as a service to its customers. Three kinds of cloud services identified
are infrastructure as a service (IaaS, e.g., Amazon EC2 and S3, and IBM Blue
Cloud), platform as a service (PaaS, e.g., Google App Engine, Microsoft
Windows Azure, and Salesforce Force.com), and software as a service (SaaS,
e.g., Salesforce SFA, Google Doc, and Microsoft Dynamic CRM). Before cloud
computing was born, SOA has been prevalent for quite some time and much
experience has been gained with grid operation. Cloud computing has a better
starting point than any other computing paradigms mentioned in Section 1. Based
on the lessons learned in the past, cloud computing adopts a user- and task-centric
design as well as a “pay-as-you-go” business model. As a result, users’ experi-
ences with cloud services are enhanced greatly. Though cloud computing has a
short history to now, many products and services are already available on the
market.

4.2.2 � Comparison from the Viewpoint of System

Different starting points lead to different systems. In this section, we will examine
grid and cloud computing from a system point of view. Aspects covered are the
technology behind the curtain and the system management.

In technical language, the purpose of grid computing is to integrate resources
from different organizations forming a uniform resource pool, which can provide the
ability that is impossible with a single computing/data center or that is beyond what
a single organization can provide. Since these organizations are usually distributed
geographically and have their own rights in determining vendors of their resources,
the principal challenge facing grid computing is to shield the inherent heterogeneity
and distribution of underlying resources. In contrast, the purpose of cloud computing
is to divide resources into smaller pieces and deliver them to users in their desired
way whenever needed. Resources in cloud computing are usually possessed or oper-
ated by a single organization and physically, they can be centralized within the same
computing/data center or distributed across multiple computing/data centers, homo-
geneous or heterogeneous. In other words, resource heterogeneity and distribution is
no longer a key problem in cloud computing. Instead, the principal challenge is to
improve scalability, availability, and reliability.

Grid computing achieves its purpose through so-called grid middleware, a
specific software product that provides necessary yet generic services for shield-
ing the inherent underlying heterogeneity and distribution. Nowadays, there are

674  Examining Cloud Computing from the Perspective of Grid and Computer-Supported

well-established standards for grid middleware and quite some products and sys-
tems available, including Globus Toolkit (GT), Unicore, and gLite, to name but a
few. Core services provided by the existing grid middleware are as follows:

•	 Information Service: maintains detailed up-to-date knowledge of all the resources
or services in a grid environment. Based on the information service, suitable
resources or services are identified. Information service, is also known as meta-
data service or directory service.

•	 Security Service: resources and users in grids are from multiple autonomous
administrative domains. Security service is deployed to guarantee secure cross-
organizational resource access that not only protects communications but also
ensures no violation of the local administration policies.

•	 Data Management: provides some useful mechanisms for data access, data
movement, data replication and location, and data integration. In GT4, data
management related services include GridFTP, reliable file transfer (RFT), rep-
lica location service (RLS), data replication service (DRS), and data access and
integration (OGSA-DAI) where OGSA-DAI is supplied by the third-party rather
than the Globus team.

•	 Execution Management: deployed to fulfill a task using the resources provided,
to track the progress of that task, and to manage the computing result. The key
task of execution management is to determine where to run a given job accord-
ing to the information provided by the information service.

Cloud computing also achieves its purpose by a middleware layer, which is
called cloudware in this chapter. According to the type of service supplied (e.g.,
IaaS, PaaS, or SaaS), cloudware may provide various functionalities. In summary,
the core functions of the cloudware are as follows:

Maintains up-to-date information of the available physical resources (e.g., their •	
capability, current load, and so on) as happens in grid computing. The purpose
is to provide a basis for other functions such as virtual machine (VM) and appli-
cation management. However, unlike in grid computing, this information is even
transparent to developers.
Create and manage VMs according to users’ request. To utilize resources effec-•	
tively, some algorithms or policies are deployed to determine where to create a
VM, and when to start and stop a VM based on the information maintained. It
is the duty of the hypervisor to keep the resource entitlement of a given VM.
Application deployment, configuration, and execution. Meanwhile, the execu-•	
tion progress or status is also tracked.
User management, pricing, and accounting. The purpose is to determine how •	
users’ requests are charged and maintain the actual usage of resources by a cer-
tain request or user.

Grid and cloud computing also show differences in system management as
stated in the following.

In grid computing, since resources are owned and provided by different autonomous
organizations, a heavy burden is raised to system management. For each node,

68 J. Jiang and G. Yang

besides routine maintenance work, system administrators must do much extra work
to coordinate local administration policies with global ones. For example, they must
make sure that resources are shared in a way fully compliant with local regulations.
In addition, they must separate environments of local users from global ones to guar-
antee reliability and security. None of this work is trivial. Moreover, since there are
quite some independent or interrelated components and services involved in a grid,
installing and configuring the grid software itself implies a lot of work and presents
some challenges even to experienced system administrators.

On the contrary, resources in cloud computing are usually possessed or oper-
ated by a single organization and as a result, there is no need to coordinate differ-
ent administration policies. In addition, since each VM in cloud computing
provides an isolated and independent running environment that is fully controlla-
ble by the user who creates it, there is also no need for system administrators to
install and configure users’ programs and to worry that they may interfere with
each other and cause system disasters. Therefore, the burden of system management
is greatly eased.

4.2.3 � Comparison from the Viewpoint of Users

Different design philosophies lead to different systems, which in turn place different
constraints on their users. This section compares grid and cloud computing from the
viewpoint of users. Two kinds of users distinguished here are end-users who consume
resources and services, and application developers who develop new applications or
services using the resources and services supplied by a grid or a cloud.

Both grid and cloud computing provide two ways for end-users to consume
resources supplied. The first involves using pre-installed software services through
their own interfaces. Since these services are designed to support the needs of com-
mon users, in both cases end-users with special requirements or habits have to adapt
themselves to the preset operation styles and instructions. Given the fact that grids
are usually operated by computer scientists who know little about the domain
needs, the problem is especially severe. The second involves running a task directly
in a grid or a cloud. This shows quite some differences in operations and constraints
as stated below.

To run a task in a grid, end-users need to specify the type and quantity of
resources desired, information used for authentication, the program to be run and
its arguments, sources of the input, and the output and its destination. This is an
annoying procedure that often makes users stop. For example, globusrun-ws, the
command supplied by GT4 for job submission and management, has 30 options for
submitting a job and 15 options for monitoring a job. Though some tools have been
provided as a help, much work is still needed, for example, to compose a job
description file. Even if end-users have done all the work perfectly, there are still
other risks that prevent their jobs getting done. One thing often ignored is that,
because each grid middleware itself is a software system and has its special

694  Examining Cloud Computing from the Perspective of Grid and Computer-Supported

requirements on the running environment, the existing grids are very tightly bound
to a specific operating system (OS), software libraries, or applications. For exam-
ple, gLite presently can only run on Scientific Linux 4 and 5, and Debian 4. As a
result, if the program corresponding to a job is not executable on the platform on
top of which a grid middleware is running, or if one or more libraries needed by the
program are unavailable, the job just could not get done even if there are enough
resources available. Another depressing thing is that, because different grid systems
in the real world deploy quite different ways for users to express their needs, the
job description file prepared for one grid usually cannot be used in another one.

In contrast, running a task in clouds is much easier and faces fewer constraints.
The only thing needed is to reserve the desired resources and configure them for
the task to be run. Resource reservation can be done by several mouse clicks and
resource configuration makes no difference when compared with the activity using
local machines. Owing to the VM technology, users in cloud computing can always
set up an environment capable of running their programs and thus the constraints
laid by grids on the running programs as mentioned above no longer exist.

Grid and cloud computing also impose different requirements on application
developers. Generally speaking, developing applications on a grid is a complex
task. First, this implies that developers should know many details about the grid
environment, for example, the way to stage data to and from the execution site, the
way to find a specific service to be invoked, to name but a few. In addition, they
must spend much time learning the related APIs (Application Programming
Interfaces) – even the Simple API for Grid Applications (SAGA)1 has a document
of more than 300 pages. Second, since the grid is a highly dynamic environment,
developers must pay more attention to such issues as exception handling, fault
tolerance, scalability, performance, and so forth. Third, there are no mature tools
for debugging and measuring the behavior of grid applications. Developers must
struggle in their own ways (e.g., setting up an experimental grid of their own to
monitor the behaviors of the application) to ensure the correctness of the applica-
tion developed. It is easy to see from the statements above that programming on a
grid raises a heavy burden on application developers.

As a comparison, programming in clouds is much easier. For IaaS, developers
can always customize their working environments with their familiar tools and
configurations, so there is almost no difference to programming on local machines.
For PaaS, nearly every service provider supplies a platform SDK (Software
Development Kit) and/or some debugging tool. For example, Google App Engine
provides a fully featured local development environment with which developers can
write, for example, standard Java applications. The Google plug-in for Eclipse pro-
vides an IDE (Integrated Development Environment) with application wizard and
debug configuration for Google App Engine projects, making the development

1 SAGA is an open standard defined and maintained by the Open Grid Forum (OGF). Its aim is to
provide an interface for high-level grid application programming and enable application develop-
ers to write programs without knowing the detail of specific infrastructures.

70 J. Jiang and G. Yang

process much easier and more efficient. Similarly, Visual Studio 2010 also provides
a template for developers to write Windows Azure services. In this way, the com-
plexity of the platform is shielded from developers and the pains of application
development are greatly eased.

4.2.4 � A Summary

Table 4.1 summarizes the differences between grid and cloud computing. The key
points are highlighted below.

Grid computing adopts a resource-centric design and tries to meet various needs
by a unified resource pool. As a result, many unnecessary details of the infrastruc-
ture are brought to both end-users and developers, making it difficult to use and
hard to program. In addition, it also raises a heavy burden of system administration
due to many administrative domains being involved. Cloud computing, on the con-
trary, adopts a user- and task-centric design and it meets diverse needs by different
kinds of services, for example, infrastructure services, platform services, and soft-
ware services. In cloud computing, the complexity is shielded from users. As a
result, it is easy to use and program. In addition, managing a cloud is also easy since
for most of the time there is only one administrative domain involved in it.

4.3 � Examining Cloud Computing from the CSCW Perspective

In the previous section, we examined the differences between grid and cloud com-
puting. In this section, we present some findings in CSCW research and utilize
them to analyze the cloud.

Table 4.1  Grid and cloud computing fully compared

Grid computing Cloud computing

Origin Academia, HPC field Industry
Methodology One-size-fit-all Diversified services, e.g., IaaS, PaaS,

and SaaS
Focus Resource User, task
Business model No explicit one Pay-as-you-go
Purpose Resource integration Resource partition
Technical challenge Resource heterogeneity and

distribution
Scalability, availability, and reliability

Administrative domain Many One
System management Complex Simple
Constraint Many Few
Usage Complex Simple
Programmability Poor Good

714  Examining Cloud Computing from the Perspective of Grid and Computer-Supported

4.3.1 � CSCW Findings

CSCW is a research field dealing with the issue of how to use computers, or more
broadly information and communication technology (ICT), to facilitate a group of
people to fulfill a common task [6]. Over 20 years of development since the term
was first coined in 1984, people have gained much knowledge about this field. Cloud
computing holds the promise to deliver computing as a utility, so it is a socio-tech-
nical system. It is in this sense that we think that the following findings of CSCW
can also be used to answer the questions raised in Section 1 – why cloud computing
is so attractive and how to make the vision of cloud computing really come true?

Finding 1: To derive the greatest benefit from CSCW, the supporting technology
must infiltrate as widely as possible throughout the populace [16]. In this way,
cooperative system designers can relieve themselves from hard work on such issues
as heterogeneous resource management and interoperability and focus their efforts
on more essential issues such as understanding and accounting for the characteris-
tics of cooperative work and then devising proper mechanisms to support them.

Finding 2: Besides technical factors such as usability and functionality, the
deployment of CSCW is affected by social factors such as various administrative
and policy decisions [16]. Sometimes, the social factors function dominantly in
making the decision on whether to adopt a certain technology or not.

Finding 3: A successful collaborative system must provide enough respect for
the social habits of end-users [9]. Human is the most active and dynamic element
in a collaborative environment, and providing respect for his/her habits means users
can get better experiences during collaboration. This in turn implies that the col-
laborative system will be adopted by more and more users, and therefore, the criti-
cal mass problem [14] will easily be met.

Finding 4: Incentives are critical [1]. CSCW suffers from Grudin’s inequality
[9], which says that those who do additional work (capture and record the articula-
tion work associated with collaboration) to make collaboration succeed may not be
the ones who benefit most from the results, and thus it is necessary to provide some
incentives or reward to those persons. In this way, more people will join the col-
laboration process and the contribution of people will also increase.

4.3.2 � The Anatomy of Cloud Computing

The attractiveness of cloud computing can be accounted for using Finding 1,
Finding 3, and Finding 4 as follows.

First, cloud computing, in general, presents no new technology. Virtualization
technology, which is at the core of cloud computing, was first developed in the
1960s. Other technologies such as web services and Rich Internet Applications
(RIA) also have a history of no less than 5 years. Today, all these technologies
are well supported and popular. For example, Intel and AMD have released several
processors with support for virtualization technology and there are many virtual

72 J. Jiang and G. Yang

machine monitors (VMMs) available on the market (e.g., ESXi and vSphere from
VMware, Hyper-V from Microsoft, XEN and KVM from the open-source commu-
nity). In addition, web services and RIA have become a must for the development of
web applications. Thus, adopting these technologies sets up a good basis for the pros-
perity of this market because it makes entrance low. As a contrast, there was no preva-
lent integration technology at the beginning of grid computing and designers have to
develop their own ways to integrate various resources. Though the convergence of
grid computing and SOA provides new opportunities for resource integration, much
work is still needed to reconcile various ways of information representation. Put
simply, the entrance for grid computing is high. As a result, even after 10 years of
development, grid computing today is still in its infancy in many aspects [12].

Next, cloud computing provides enough respect for the social habits of users
because using a machine in the cloud is no different to using a local machine. As
mentioned above, users of cloud computing can always work with their familiar
tools and settings. In other words, users of cloud computing adapt the running
environment to their applications rather than adapt the applications to the environ-
ment. Therefore, they do not need to change habits developed over years, which
have a solid base. On the contrary, as we discussed in Section 2, users of grid com-
puting, whether end-users or application developers, have limited, if any, control
over the running environment, and have to bear many constraints being put on
them. For developers, to take the full advantage of grid computing, they have to
learn much for developing new applications or adapting the existing ones to the
grid, which is a heavy burden to them. In addition, system administrators also face
many new challenges in coordinating resource sharing and in guaranteeing the reli-
ability, availability, and security of the running environment due to the involvement
of multiple autonomous domains.

The last but the most important point, users of cloud computing need not do
much, if any, additional work to use the services provided by the cloud. All the
work they do is necessary and the same as what they do every day without cloud
computing. For example, reserving a VM in clouds is an analog of buying a physi-
cal machine, but with much greater convenience. Installing software in a VM is no
different to that in a physical machine. What’s more, users can benefit from the
advanced features of cloud computing such as unlimited resource being available
on demand, no upfront commitment and pay-as-you-go usage of resources [2], and
the great potentials for group collaboration as well as the universal access to infor-
mation and services [15]. These features are especially attractive to small- and
medium-sized businesses (SMBs) or start-ups that do not have enough resources
for buying and maintaining servers and developing applications from scratch, for
they imply a lot of savings of running costs. In contrast, things are quite different
with grid computing. To use grid computing, much more should be paid on applica-
tion development, system management, and so on. Particularly, since resource
providers in grid computing receive no reward for sharing their resources, they are
reluctant to help to solve various problems encountered.

In summary, compared with grid computing, cloud computing provides more
benefits and rewards without changing the working way that people are familiar with.

734  Examining Cloud Computing from the Perspective of Grid and Computer-Supported

Therefore, it is not strange at all that cloud computing is attractive. Indeed, cloud
computing has accumulated a huge (potential) base of both service providers and
consumers, and many market-research firms (e.g., IDC, Forrester, and Merrill
Lynch) believe that cloud computing has enormous growth potential.

In spite of the facts above, cloud computing is still in its infancy and only has a
limited adoption to now [11]. To make the vision of cloud computing really come
true, we examine the obstacles to (rapid) growth of cloud computing. As with any
other new paradigm, there are fears and concerns about cloud computing related to
technology, social factors, or both. For example, Armbrust M et al. [2] listed the
top ten obstacles as availability of service, data lock-in, data confidentiality and
auditability, data transfer bottlenecks, performance unpredictability, scalable stor-
age, bugs in large-scale distributed systems, scaling quickly, reputation fate sharing,
and software licensing; Leavitt N [11] identified the challenges facing cloud com-
puting as control, performance, latency, security and privacy, related bandwidth
costs, vendor lock-in and standards, transparency, reliability, and others. In our
opinion, issues such as performance, latency, scalability, and data transfer bottle-
necks are related to technology and have been suffered for a long time before the
emergence of cloud computing. Though they have some impact on the adoption of
cloud computing, the impact is limited. It is the following issues that hinder the
wide adoption of cloud computing.

4.3.2.1 � Security and Privacy

According to a survey by IDC, security and privacy is the main concern of chief
information officers and IT executives [11]. To us, such a concern arises from the
violation or change of users’ social habits – data and applications in cloud comput-
ing are usually stored or running on an external infrastructure outside a company’s
firewall, and users have to rely on service providers, NOT themselves, to protect
their data and applications. Obviously, this may be quite different from what users
are used to when using local machines. Since change of habit is a slow process, it
is a natural result that only cloud computing has a very limited adoption just now
according to Finding 2 and Finding 3. However security and privacy might be only
a perceived risk as asserted by Armbrust M et al. [2]:

We believe that there are no fundamental obstacles to making a cloud-computing environment
as secure as the vast majority of in-house IT environments, and that many of the obstacles can
be overcome immediately with well-understood technologies such as encrypted storage,
Virtual Local Area Networks, and network middleboxes (e.g., firewalls, packet filters).

4.3.2.2 � Data and/or Vendor Lock-In

This concern arises from the fact that there are currently no standards for IaaS,
PaaS, and SaaS interfaces, and as a result, much work is needed for customers to
port their data or programs from one cloud to another. While we admit that such

74 J. Jiang and G. Yang

concerns really matter it will become increasingly important as more and more
cloud providers emerge, we also argue that its impact may not be as great as people
think. On the one hand, people undergo such constraints in the real world. For
example, designers have to make a choice between J2EE and .NET platform when
developing new applications. When new hardware is bought, people have to install
system and application software again to deliver their services. If we treat migrating
an application from one infrastructure to another as the process of buying new
hardware, the inconvenience caused by incompatible virtual image formats – a
major problem with IaaS – would no more be a problem. On the other hand, people
have recognized this problem and as a result, many standardization activities are in
progress. Some of them are listed below. For more information, please refer to
http://cloud-standards.org.

Cloud Security Alliance2 was set up recently “to promote the use of best prac-
tices for providing security assurance within Cloud Computing, and provide educa-
tion on the uses of Cloud Computing to help secure all other forms of computing.”
The Open Grid Forum (OGF) established the Open Cloud Computing Interface
Working Group (OCCI-WG)3 in March 2009 to develop a clean, open API for
infrastructure clouds. The Storage Networking Industry Association (SNIA) has
created a technical workgroup to develop the new Cloud Data Management
Interface (CDMI).4 The Open Cloud Consortium (OCC),5 another newly estab-
lished organization, aims to “support the development of standards for cloud com-
puting and frameworks for interoperating between clouds.” Finally, the Distributed
Management Task Force (DMTF) has released the Open Virtualization Format
(OVF) Specification [5] that “describes an open, secure, portable, efficient, and
extensible format for the packaging and distribution of software to be run in virtual
machines.” Therefore, it is reasonable to believe that interoperation between clouds
will get easier, making the concern about data/vendor lock-in less important.

4.3.2.3 � Service Availability/Reliability

This concern ranked first in the list given by Armbrust M et al. [2]. It is a radical
requirement of business continuity – users will not adopt a system that is unreliable
and often unavailable to run their business. The reason why such a concern becomes
so important lies in the change of operating mode – services are running outside a
company’s firewall and the quality of services relies not only on software vendors
who develop services but also on providers who host services. No doubt, the well-
known outages of Amazon S3, Google App Engine, and Salesforce.com make the

2 http://www.cloudsecurityalliance.org/
3 http://www.occi-wg.org/
4 http://www.snia.org/cloud
5 http://opencloudconsortium.org/

754  Examining Cloud Computing from the Perspective of Grid and Computer-Supported

worry even much severe. However, as pointed out by Armbrust M et al. [2], the IT
infrastructures of Amazon, Google, and Salesforce are better than their peers.

In summary, as a new paradigm, cloud computing does bring changes to busi-
ness operation; that is, the operation is done remotely, out of the users’ reach and
full control. Since this differs from what users are used to, it is natural to see that
much concern is raised according to the Findings 2 and 3. To address this, time
matters. We need time to tackle technical challenges; we need time to cultivate
application developers; we need time to build trust between customers and service
providers; we need time to develop use cases to demonstrate the benefits of cloud
computing. Once people get to know the reward of cloud computing over its risks,
the wide adoption of cloud computing will come true as implied by Finding 4.

4.4 � Conclusions

In this chapter, we first examined the differences between cloud and grid computing
from their development and the viewpoint of system and users, respectively. Then,
we analyzed the reasons why cloud computing is so attractive and some related
concerns using the findings in CSCW research. Since cloud computing adopts a
user- and task-centric design philosophy and shows enough respect for the social
habits of users in using computers, its popularity is a natural result. At the same
time, like any other new thing, cloud computing faces some challenges that slow its
wide adoption. As time goes on and more and more experience is gained, cloud
computing will eventually become an effective and efficient way to deliver com-
puting as a utility. During this course, we researchers should address how to over-
come the obstacles and demonstrate the real benefits and/or advantages of cloud
computing.

Acknowledgments  The work reported here is co-sponsored by Natural Science Foundation of
China (NSFC) under grant Nos. 60773145 and 60736020, and National High-Tech R&D (863)
Program of China under grant Nos. 2006AA01A101, 2006AA01A108, 2006AA01A111, and
2006AA01A117.

References

	 1.	 Ackerman MS (2000) The intellectual challenge of CSCW: the gap between social require-
ments and technical feasibility. Hum-Comput Interact 15:179–203

	 2.	 Armbrust M, Fox A, Griffith R et al (2009) Above the clouds: a Berkeley view of cloud com-
puting. Technical Report No. UCB/EECS-2009-28, University of California, Berkeley

	 3.	 Buyya R, Yeo CS, Venugopal S et al (2009) Cloud computing and emerging IT platforms:
vision, hype, and reality for delivering computing as the 5th utility. Futur Gener Comp Syst
6:599–616

	 4.	 Dikaiakos MD, Katsaros D, Mehra P et al (2009) Cloud computing: distributed Internet
computing for IT and scientific research. IEEE Internet Comput 5:10–13

76 J. Jiang and G. Yang

	 5.	 DMTF (2009) Open Virtualization Format Specification. Document Number: DSP0243,
http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf. Accessed 4
January 2010

	 6.	 Ellis C, Gibbs S, Rein G (1991) Groupware: some issues and experiences. Commun ACM
2:38–58

	 7.	 Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual
organizations. Int J High Perform Comput Appl 15:200–222

	 8.	 Foster I, Zhao Y, Raicu I et al (2008) Cloud computing and grid computing 360-degree com-
pared. In: Proceedings grid computing environments workshop, IEEE Computer Society
Press

	 9.	 Grudin J (1988) Why CSCW applications fail: problems in the design and evaluation of orga-
nization of organizational interfaces. In: Proceedings of CSCW’88, ACM Press, pp 85–93

	10.	 Kleinrock L (2005) A vision for the Internet. ST J Res 1:4–5
	11.	 Leavitt N (2009) Is cloud computing really ready for prime time? IEEE Comp 1:15–20
	12.	 Lee CP, Dourish P, Mark G (2006) The human infrastructure of cyberinfrastructure. In:

Proceedings of CSCW 2006, ACM Press, pp 483–492
	13.	 Papazoglou MP, Heuvel W (2007) Service oriented architectures: approaches, technologies

and research issues. VLDB J 16:389–415
	14.	 Markus ML (1990) Toward a “Critical Mass” theory of interactive media. In: Fulk J, Steinfield

C (eds) Organizations and communication technology. Sage, Newbury Park, CA
	15.	 Miller M (2008) Cloud computing: web-based applications that change the way you work and

collaborate online. Que Publishing, Indianapolis, USA
	16.	 Mills KL (2003) Computer-supported cooperative work challenges. In: Drake M (ed)

Encyclopedia of library and information science, 2nd edn. Taylor & Francis, New York
	17.	 Wikipedia (2009) Utility Computing. http://en.wikipedia.org/wiki/Utility_computing.

Accessed 4 Jan 2010

77

Abstract  Cloud computing is slowly transforming itself from a hype to reality.
However, its maturity and further adoption depends on its ability to address con-
cerns such as security, interoperability, portability and governance at the earliest
opportunity. This can be accelerated by compliance to guidelines and standards
defined in consensus by the cloud providers. Without addressing these concerns,
users would be wary to tread this path in spite of its powerful economic model for
business computing. This chapter will explore the readiness of various standards
of interoperability, security, portability and governance for the cloud computing
model. The market adoption of these standards will also be explored and gaps or
opportunities for improvement will be discussed.

5.1 � Overview – Cloud Standards – What and Why?

An IDC Survey [1] of senior Information Technology (IT) executives/CIOs shows
that limited or lack of security, reliability, interoperability, portability and compli-
ance in the cloud are some of the top concerns for its mainstream adoption.

The impact of these challenges and solution responsibility are not limited to the
cloud providers, but span across all the players in the cloud ecosystem such as the
service consumers, service providers and governing bodies. Hence, a solution or an
approach to address these concerns should be built with consensus from all the
players. Cloud Standardisation is the means to such solutions.

A. Govindarajan (*)
Technical/Data Architect, Retail Banking Business Unit - UK EME
RBS Technology Services India Tower A, India Land Tech Park, Plot No.14,
3rd Main Street, Ambattur Industrial Estate, Ambattur, Chennai-600058 India
e-mail: ganandg@hotmail.com

Lakshmanan
Lead Principal, (IT Architecture Educator and Mentor)
Education & Research, Infosys Technologies Limited, Electronic City,
Bangalore 560 100 India

Chapter 5
Overview of Cloud Standards

Anand Govindarajan and Lakshmanan

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_5, © Springer-Verlag London Limited 2010

78 A. Govindarajan and Lakshmanan

Standardisation provides predictability for providers and consumers alike. It
enables innovation, promotes vendor independence, interoperability, encourages
repeatable processes and increases resources/skills availability.

IT has a fair share of standards that has lead to its maturity and faster adoption.
Cloud computing can look at re-use/extension of the IT standards, restricting the
creation of fresh ones to address unique scenarios and challenges of this model. For
example, Amazon, a public cloud provider, could utilise the existing security stan-
dards for data centres like physical security, network security, etc., to protect its
cloud environments. However, interoperability of a service between two public
cloud environments would need fresh standards.

There needs to be cautious balance between the levels of standardisation so that
it does not stifle innovation and enables early industry adoption. Hence, what will
be some of the important standards that typical Enterprises look for before adop-
tion? These are (restricting the definitions to IT):

Interoperability/integration – interoperability enables products/software compo-•	
nents to work with or integrate with each other seamlessly, in order to achieve a
desired result. Thus, it provides flexibility and choice to use multiple products
to achieve our need. This is enabled by either integrating through standard inter-
faces or by means of a broker that converts one product interface to another.
Security – security involves the protection of information assets through various •	
policies, procedures and technologies, which need to adhere to standards and
best practices in order to achieve the desired level of security. For example,
Payment Card Industry (PCI) data security standards from PCI SSC [2] define
ways to secure credit card data to avoid fraud. This is applicable to all organisa-
tions that hold, process or pass credit cardholder information.
Portability – as per Wikipedia [•	 3], a software is said to be portable when the cost
of porting the same from an existing platform for which it was originally devel-
oped, to a new platform, is less than the cost of re-writing it for the new plat-
form. Software with good portability thus avoids vendor lock-in. This is
typically achieved by adhering to standard interfaces defined between the soft-
ware component and vendor platforms. For example, Java programs are set to be
portable across operating systems (OS) that adhere to standard interfaces defined
between the Java runtime environment and the OS.
Governance, Risk Management and Compliance (GRC) – governance focuses •	
on ensuring that the enterprise adheres to defined policies and processes. Risk
management puts in controls to manage and mitigate risks as defined by the enter-
prise. Compliance ensures that the enterprise adheres to various legal/legislative
as well as internal policies. Standards have been defined for IT systems to adhere
to certain industry as well as legal standards such as Sarbanes–Oxley (SOX) [4],
Health Insurance Portability and Accountability Act (HIPAA) [5], etc.

Having discussed the need for standards, the subsequent sections will present the
various initiatives in this direction.

To understand the need for standards from the cloud perspective and the status of
various initiatives better, a hypothetical company called Nimbus Corp is considered.

795  Overview of Cloud Standards

Nimbus is actively moving its IT systems to various cloud options. It started its journey
into clouds with an IBM CloudBurst® private cloud for its marketing applications.
Having been successful in its pilot, Nimbus started to move some of its data-process-
ing-intensive applications to Amazon Web Services (public cloud) in time for handling
Christmas volumes. It moved a couple of custom-built applications to Amazon EC2
and the Marketing data mart to Amazon’s Oracle instance. The SaaS-based BI ven-
dors, Birst or PivotLink, are being looked at for replacing its current marketing dash-
board, having moved the data mart to the cloud. Nimbus is also considering using
Force.com or Google App Engine (GAE) PaaS environments to build additional mar-
keting applications. The standards are reviewed with this company in mind.

5.2 � Deep Dive: Interoperability Standards

In using the new cloud setup for its applications, Nimbus faces the following
interoperability challenges:

The SaaS-based marketing dashboard on one vendor cloud has to fetch the data ––
from the Marketing data mart sitting on Amazon’s infrastructure (IaaS)
The marketing applications built on Force.com or GAE (PaaS) needs to interact ––
with the other applications running on Amazon EC2

Similarly, there could be many such scenarios between public and private cloud
deployments as well as across various delivery models such as SaaS, PaaS and
IaaS. What are the expectations from standards to address these challenges?

5.2.1 � Purpose, Expectations and Challenges

Interoperability is typically achieved through APIs or brokers between the two
interacting parties where the control and the data originating from the requestor is
converted into a common format and then moved to the provider and vice versa.
The purpose of the standards is thus to set guidelines for vendors, cloud providers
and developers of these APIs/brokers to enable interoperability across various
cloud resources and hence avoid vendor lock-in.

There are, however, additional challenges posed for interoperability in the cloud
scenario when compared with that of the traditional IT environments, such as:

In addition to the interoperability of application control and data, other support-•	
ing aspects of policy management, security management and deployment/provi-
sioning are also to be managed across all the interfacing environments.
In the infrastructure layer, cloud computing is supported by the concept of vir-•	
tualisation. Interoperability heavily depends on the compatibility of these virtual
machines (VM).

How do some of the current standardisation initiatives fare?

80 A. Govindarajan and Lakshmanan

5.2.2 � Initiatives – Focus, Sponsors and Status

Tables 5.1 and 5.2 show some of the key initiatives by industry bodies as well as by
vendors towards interoperability standards.

5.2.3 � Market Adoption

From Tables 5.1 and 5.2, except for industry initiatives like OVF, the standards
are in very early stages of development. In addition, there are emerging cloud

Table 5.1  Interoperability – group initiatives

Standard name Group/body Focus Readiness

Unified Cloud
Interface [6]

Cloud Computing
Interoperability
Forum [7]

Vision is to build an API
of all cloud APIs
available from different
vendors using RDF
based on ontology
language and thus enable
interoperability

Draft Model
defined

Open Cloud
Computing
Interface [8]

Open Grid
Forum [9]

To provide an API
specification for remote
management of IaaS
services across vendors

Draft API
document
ready

Open Virtualisation
Format [10]

DMTF [11] Build an industry standard
format for portable
virtual machines. VMs
thus built can interoperate
with any other VMs

Version 1.0 of
OVF available

Standards and
Interoperability
of Large Data
Clouds [12]

Open Cloud
Consortium
(OCC) [13]

To work on standards for
large data clouds and
interfaces between storage
and compute clouds

Projects
MalStone and
Thriftstore in
early releases

Table 5.2  Interoperability – vendor initiatives

Standard name Group/body Focus Readiness

GoGrid API [14] GoGrid [15] To build a Public API to
control their GoGrid Cloud
infrastructure. The API is now
open sourced

Available for use

Cloudware Open
Architecture [16]

3Tera [17] To build an Open Architecture/
framework for Cloud
Computing for multiple
players – subscribers,
publishers, data-centre
operators, etc. (entire
ecosystem) to interoperate

Delivered in stages
planned for
the next 12–24
months

815  Overview of Cloud Standards

brokering/management vendors (such as RightScale, CloudKick and CloudSwitch)
whose tools interoperate across cloud environments to provide management capa-
bilities through a single interface. They eventually, as predicted by Gartner [18],
could provide lot of additional services by building an abstraction layer across the
clouds. Some of them are a part of the standard bodies driving these standards.

5.2.4 � Gaps/Areas of Improvement

The mature initiatives are focused towards the infrastructure layer. The scenarios
discussed earlier, such as:

1.	 Interoperability/integration between cloud delivery models (SaaS, PaaS and
IaaS) is not addressed. Except for Unified Cloud Interface and Cloudware Arch,
the rest primarily focus on the Infrastructure layer (IaaS).

2.	 Standards for interaction between private and public clouds are also not addressed.
One such scenario is the usage of hybrid cloud.

Various vendors such as Amazon and other cloud brokers seem to have the required
technology, but have to contribute by participating in the standardisation initiatives.

5.3 � Deep Dive: Security Standards

Some of the scenarios of security that Nimbus would encounter, having adopted
cloud computing, would be:

Availability/Reliability – Amazon Web Services or Force.com could have out-––
ages that render Nimbus’ marketing application unusable
Data isolation/multi-tenancy – cloud providers, especially the SaaS vendors, ––
enable multi-tenancy in their environment. This could lead to data isolation
issues unless secured with proper access controls. Nimbus could have its data
exposed to another client of Birst if the right controls are not in place.
Data ownership – ideally Nimbus should own the data even if it resides with the ––
cloud provider. However, the cloud provider also has access and could take
ownership of some of the derived data such as platform usage patterns. This
needs to be clarified between the parties.
Trust – the relationship between Nimbus and the cloud provider runs on ––
trust. Nimbus could have performed audits or been shown audit reports of,
say, Amazon’s environment, but it is a matter of trust to believe what has
been shown is indeed active on Nimbus environment or its data are not mis-
used by the provider’s employees.

There are many more aspects of security such as service levels on data usage, data
privacy, compliance, etc., that a cloud user would encounter. Are the reasons behind
these unique challenges understood?

82 A. Govindarajan and Lakshmanan

5.3.1 � Purpose, Expectations and Challenges

Cloud computing brings in certain security challenges not seen in typical on-prem-
ise/enterprise infrastructure due to the nature of its model, such as:

Distributed model – the data and services are spread across multiple data •	
centres and infrastructures causing concerns of availability, ownership and
compliance.
Shared model – the cloud works on sharing code bases/services and infra-•	
structure for data and services across multiple clients causing concerns of
data isolation.
Access ubiquity – cloud services are web-based and can be accessed from any-•	
where by means of any client type – secure or non-secure – causing concerns of
hacking.

The focus is thus to ensure that security controls are effective to address these chal-
lenges. Broadly, the expectation from the standard would be to address:

Cloud Data Security ensuring•	
Accountability (validating claim of identity by a user, user authentication •	
and auditing of user actions)
Authorisation (access control to allow or deny user access based on privilege •	
and confidentiality to prevent information disclosure to unauthorised parties)
Availability (data to be accessible whenever needed and with integrity)•	

Cloud Service access security•	
To avoid Domain Name System (DNS) security threats during service •	
access (e.g. IP hijacking, changing the path to destination IP)
To avoid Denial-of-Service(DoS) attacks on the cloud, impacting its availability•	

Managing compliance due to issues such as data storage across geographies, etc. •	
(this is extensively covered in the compliance section subsequently).

5.3.2 � Initiatives – Focus, Sponsors and Status

Tables 5.3 and 5.4 show some of the key initiatives by industry bodies as well as by
vendors towards security standards.

Table 5.3  Security – group initiatives

Standard name Group/body Focus Readiness

Cloud Security
Alliance
Guidelines [19]

Cloud Security
Alliance [20]

To outline areas of security
concern and guidance
for cloud providers to
improve security of their
service offerings

First version ready.
Ver 2 expected in
October 2009

835  Overview of Cloud Standards

5.3.3 � Market Adoption

Cloud Security Alliance is formed and backed by industry heavy weights such as HP,
Verizon, VMware, McAfee, etc. This would speed up its adoption. Amazon [25] has
put into practice several security measures to address all of the discussed issues.

5.3.4 � Gaps/Areas of Improvement

Security is a very broad and most important concern to be addressed in cloud com-
puting. Scenarios discussed are to be addressed before security is removed from the
top concerns list of various user surveys.

5.4 � Deep Dive: Portability Standards

Nimbus, having tried with an initial set of cloud providers, now decides to move
some of its applications to other competitive/well-rated providers and some back to
its on-premise environments. Portability here becomes a major concern and some
relevant scenarios will be:

The marketing applications built on Force.com need to be moved to the GAE or ––
Microsoft Azure environment (PaaS) or even back to Nimbus data centre (applica-
tion/service portability)
Nimbus plans to consolidate its data marts into a centralised data warehouse. ––
Hence, it wants its Marketing data mart to be moved back to Nimbus environ-
ment (data portability).

Do the current standards address these scenarios?

Table 5.4  Security – vendor initiatives

Standard name Group/body Focus Readiness

Amazon Virtual
Private Cloud
(VPC) [21]

Amazon Web
Services
(AWS) [22]

To enable enterprises to
securely connect their
existing infrastructure to
AWS compute resources via
a Virtual Private Network
(VPN) connection

Available for use

Online Security
Services and
Compliance
(OSSC) [23]

Microsoft [24] To build a framework ensuring
security, privacy, risk
management, business
continuity management,
global criminal compliance
and operational compliance
of MS cloud infrastructure

Applied to MS cloud
infrastructure

84 A. Govindarajan and Lakshmanan

5.4.1 � Purpose, Expectations and Challenges

The standards around portability are expected to enable smooth switch of cloud
providers with minimal impact to cost and service quality. The purpose is thus to
set guidelines for the cloud providers to build relevant layers of abstraction in their
environments to help portability. Looking across the delivery models, the following
are some of the challenges to address portability:

SaaS – the content, data and metadata (application configurations) should be •	
portable to a new environment for a smooth switch
PaaS – the code base, application frameworks, data and metadata would be some •	
things to port
IaaS – the software runtime environments (configurations and APIs) would need •	
to be ported. Typically, this would be the VM.

5.4.2 � Initiatives – Focus, Sponsors and Status

Tables 5.5 and 5.6 show some of the key initiatives by industry bodies as well as by
vendors towards portability standards.

5.4.3 � Market Adoption

The current status shows that the portability using virtualisation (OVF standard) is
the one in place. IBM has built an OVF toolkit and Citrix has Project Kensho OVF
tool as a part of their Xenserver Virtualisation technology. Sun, Eucalyptus and few
other vendors, however, are claiming portability by using open source-based
platforms.

Table 5.5  Portability – group initiatives

Standard name Group/body Focus Readiness

Open Virtualisation
Format [10]

DMTF [11] To build an industry standard
format for portable virtual
machines. Services running on
VMs thus can be ported onto
any virtualisation platform

Version 1.0 of OVF
available

Cloud Storage
Initiative [26]

SNIA [27] To build a standard interface
(CDMI) between the data and
the cloud storage provider,
indicating the data services
to offer, thus enabling data
portability across vendors

Cloud storage
reference model
and use cases
drafts are ready
to allow standards
development

855  Overview of Cloud Standards

5.4.4 � Gaps/Areas of Improvement

OVF standard addresses portability through movement of VMs, which is the typical
technology basis for the cloud. This addresses the IaaS level portability. Standards/
guidelines for portability of other models (SaaS, PaaS) as discussed earlier need to
be addressed.

5.5 � Deep Dive: Governance, Risk Management
and Compliance Standards

Having placed several core and non-core systems on the cloud, Nimbus has a key
dependency on the provider to ensure that these systems do not fail and impact its
business. Several assessments and discussions with the provider were done and a
contract signed up. Now, how does Nimbus ensure the contractual terms are being
met on an on-going basis by the provider? What if there is a breach? How can this
risk be managed? Nimbus has signed up for several regulatory measures. How far
are these adhered to by the provider? What if there is a breach? These are some
concerns handled by GRC function.

5.5.1 � Purpose, Expectations and Challenges

GRC in cloud computing can be considered as an extension of the traditional model,
but has to address several new challenges as this is applied to an environment exter-
nal to the organisation. The governance requirements can be classified as:

1.	 Design-time governance covering

(a)	 Service definition (e.g. design, build management, source code manage-
ment, and QA)

(b)	 Service deployment

Table 5.6  Portability – vendor initiatives

Standard name Group/body Focus Readiness

Cloud-Ready Server
Templates [28]

RightScale [29] To provide server deployment
templates that allow
portability of servers across
multiple cloud environments

Available
for use

Open Cloud
Platform [30]

Sun [31] To enable Open cloud based on
open technologies such as
Java, MySQL, OpenSolaris,
Open Storage, etc., enabling
portability on similar cloud
platforms

Launched in
March 2009

86 A. Govindarajan and Lakshmanan

2.	 Runtime governance covering
(a)	 Service policy management (e.g. security, performance, reliability, etc.)
(b)	 Service retirement

3.	 Change management for services, policies, processes, data and infrastructure

The governance spans across all the cloud service types, viz. software (SaaS), plat-
form (PaaS) or infrastructure services (IaaS).

Risk management in a cloud will be relevant to managing all types of IT and
business risks that ensue due to managing services in an external environment, such
as operational risk (e.g. outages), security risks (both data and process), financial
risk and legal risk (due to non-compliance of regulatory needs).

Lastly, compliance of cloud to various regulatory needs brings in typical require-
ments, such as:

1.	 Records management (ensuring records for all activities)
2.	 Auditing (audit of all transactions)
3.	 Legal and eDiscovery needs (support for any forensic investigation)
4.	 Data privacy (meeting privacy laws as per region)
5.	 Geography (restrictions on geography imposed by organisations/governments)

The expectation from the standards is to enable the cloud meet all the above-listed
requirements.

5.5.2 � Initiatives – Focus, Sponsors and Status

There are very few guidelines focused on GRC. The Cloud Security Alliance [19]
discussed in Security standards also covers the aspects of GRC and is the only
industry initiative. Table 5.7 shows the vendor initiatives only.

Table 5.7  Governance, risk and compliance – vendor initiatives

Standard/
product name Group/body Focus Readiness

WebLayers Center
5.0 [32]

WebLayers [33] To provide automated governance
software with a central policy
management feature to enforce
policies and detect violations across
all service life-cycle stages as well
as across different infrastructures.

Available
for use

Cloud-Ready
Server
Templates [28]

RightScale [29] To provide server deployment templates
for the cloud with the server
configuration and policies pre-
defined, thus ensuring governance
and compliance

Available
for use

875  Overview of Cloud Standards

5.5.3 � Market Adoption

As seen from Table 5.7, there is only one initiative that is focused on GRC. This
initiative also has not yet seen large-scale adoption. Furthermore, the initiatives
from vendors are not yet standardised.

5.5.4 � Gaps/Areas of Improvement

Given the importance of this focus area for an organisation to successfully and
safely conduct its business with its system on the cloud, there seems to be a dearth
of standards.

5.6 � Deep Dive: Other Key Standards

5.6.1 � Initiatives – Focus, Sponsors and Status

Apart from standards classified under interoperability, security, portability and
governance and compliance, there are some key standards that are worth tracking.
They focus either on other areas such as modelling, architecture frameworks or a
broad support movement towards a cloud with open standards (Table 5.8).

Table 5.8  Other key standards – Group initiatives

Standard name Group/body Focus Readiness

Open Cloud Open Cloud
Manifesto [34]

To support movement
towards building
a cloud with open
standards

Initial Goals and
Principles
defined

OMG
collaboration [35]

Object Management
Group
(OMG) [36]

To collaborate with other
leading standards body
to coordinate and
communicate standards
for cloud computing
and storage

Formed in July
2009

Multiple standards Organisation for the
Advancement
of Structured
Information
Standards
(OASIS) [37]

Cloud as a natural
extension of SOA.
Standards already in
place for security,
interoperability, data
import/export, etc.

Available for use

e.g., OASIS SAML,
ebXML, SOA-RM

88 A. Govindarajan and Lakshmanan

5.7 � Closing Notes

Standardisation historically has been a challenge. Getting competitors to agree on
standards or switch to another vendor’s standards is tough. However, drive by power-
ful standards, organisations such as DMTF, SNIA, etc., with backing from industry
leaders, can definitely make it possible whilst avoiding excessive proliferation. The
aim should be to extend the IT standards to address the new scenarios that cloud
brings in and not create fresh standards making its definition and adoption tougher.

References

	 1.	 IT Cloud Services User Survey by IDC (2009) http://blogs.idc.com/ie/?p=210. Accessed 11
Dec 2009

	 2.	 PCI Data Security Standard (2009) https://www.pcisecuritystandards.org/security_standards/
pci_dss.shtml. Accessed 11 Dec 2009

	 3.	 Porting on Wikipedia (2009) http://en.wikipedia.org/wiki/Portability_(computer_science).
Accessed 11 Dec 2009

	 4.	 Sarbanes-Oxley (SOX) on Wikipedia (2009) http://en.wikipedia.org/wiki/
Sarbanes%E2%80%93Oxley_Act. Accessed 11 Dec 2009

	 5.	 HIPAA on Wikipedia (2009) http://en.wikipedia.org/wiki/HIPAA. Accessed 11 Dec 2009
	 6.	 Unified Cloud Interface (2009) http://code.google.com/p/unifiedcloud/. Accessed 11 Dec 2009
	 7.	 CCIF (2009) http://www.cloudforum.org/. Accessed 11 Dec 2009
	 8.	 OCCI (2009) http://www.occi-wg.org/doku.php. Accessed 11 Dec 2009
	 9.	 OGF (2009) http://www.ogf.org/. Accessed 11 Dec 2009
	10.	 Open Virtualization Format Specification (2009) http://www.dmtf.org/standards/published_

documents/DSP0243_1.0.0 .pdf. Accessed 11 Dec 2009
	11.	 DMTF (2009) http://www.dmtf.org. Accessed 11 Dec 2009
	12.	 Standards and Interoperability of Large Data Clouds (2009). http://opencloudconsortium.org/

working-groups. Accessed 11 Dec 2009
	13.	 Open Cloud Consortium (2009) http://opencloudconsortium.org/. Accessed 11 Dec 2009
	14.	 GoGrid Moves API Specification to Creativecommons (2009) http://www.gogrid.com/com-

pany/press-releases/gogrid-moves-api-specification-to-creativecommons.php. Accessed 11
Dec 2009

	15.	 GoGrid (2009) http://www.gogrid.com/. Accessed 11 Dec 2009
	16.	 Cloudware Open Architecture (2009) http://www.3tera.com/Cloud-computing/. Accessed 11

Dec 2009
	17.	 3Tera (2009) http://www.3tera.com/. Accessed 11 Dec 2009
	18.	 Gartner Says Cloud Consumers Need Brokerages to Unlock the Potential of Cloud Services

(2009) http://www.gartner.com/it/page.jsp?id=1064712. Accessed 11 Dec 2009
	19.	 Cloud Security Alliance Guidelines (2009) http://www.cloudsecurityalliance.org/guidance/

csaguide.pdf. Accessed 11 Dec 2009
	20.	 Cloud Security Alliance (2009) http://www.cloudsecurityalliance.org/. Accessed 11 Dec 2009
	21.	 Amazon VPC (2009) http://aws.amazon.com/vpc/. Accessed 11 Dec 2009
	22.	 Amazon Web Services (2009) http://aws.amazon.com/. Accessed 11 Dec 2009
	23.	 Securing Microsoft Cloud Infrastructure (2009) http://www.globalfoundationservices.com/

security/index.html. Accessed 11 Dec 2009
	24.	 Microsoft Cloud Computing (2009) http://www.microsoft.com/virtualization/cloud-computing/

default.mspx. Accessed 11 Dec 2009

http://blogs.idc.com/ie/?p=210
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://en.wikipedia.org/wiki/Portability_(computer_science
http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act
http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act
http://en.wikipedia.org/wiki/HIPAA
http://code.google.com/p/unifiedcloud/
http://www.cloudforum.org/
http://www.occi-wg.org/doku.php
http://www.ogf.org/
http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0
http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0
http://www.dmtf.org
http://opencloudconsortium.org/working-groups/
http://opencloudconsortium.org/working-groups/
http://opencloudconsortium.org/
http://www.gogrid.com/company/press-releases/gogrid-moves-api-specification-to-creativecommons.php
http://www.gogrid.com/company/press-releases/gogrid-moves-api-specification-to-creativecommons.php
http://www.gogrid.com/
http://www.3tera.com/Cloud-computing/
http://www.3tera.com/
http://www.gartner.com/it/page.jsp?id=1064712
http://www.cloudsecurityalliance.org/guidance/csaguide.pdf
http://www.cloudsecurityalliance.org/guidance/csaguide.pdf
http://www.cloudsecurityalliance.org/
http://aws.amazon.com/vpc/
http://aws.amazon.com/
http://www.globalfoundationservices.com/security/index.html
http://www.globalfoundationservices.com/security/index.html
http://www.microsoft.com/virtualization/cloud-computing/default.mspx
http://www.microsoft.com/virtualization/cloud-computing/default.mspx

895  Overview of Cloud Standards

	25.	 Amazon Web Services: Overview of Security Processes (2009) http://aws.amazon.com/.
Accessed 11 Dec 2009

	26.	 Cloud Storage Initiative (2009) http://www.snia.org/forums/csi/. Accessed 11 Dec 2009
	27.	 Storage Networking Industry Assoc (SNIA) (2009) http://www.snia.org/. Accessed 11 Dec

2009
	28.	 Cloud-Ready Server Templates (2009) http://www.rightscale.com/products/advantages/cloud-

ready-servertemplates.php. Accessed 11 Dec 2009
	29.	 RightScale website (2009) http://www.rightscale.com/. Accessed 11 Dec 2009
	30.	 Open Cloud Platform (2009) http://www.sun.com/solutions/cloudcomputing/index.jsp.

Accessed 11 Dec 2009
	31.	 Sun Microsystems website (2009) http://www.sun.com/. Accessed 11 Dec 2009
	32.	 WebLayers Center 5.0. (2009) http://www.weblayers.com/products/wl-center.shtml. Accessed

11 Dec 2009
	33.	 WebLayers (2009) http://www.weblayers.com/. Accessed 11 Dec 2009
	34.	 Open Cloud Manifesto (2009) http://www.opencloudmanifesto.org/. Accessed 11 Dec 2009
	35.	 J. Nicholas Hoover (2009), Group Seeks Cloud Computing Standards (2009) http://www.

informationweek.com/news/government/cloud-saas/showArticle.jhtml?articleID=218500732.
Accessed 11 Dec 2009

	36.	 Object Management Group (OMG) (2009) http://www.omg.org/. Accessed 11 Dec 2009
	37.	 OASIS (2009) http://www.oasis-open.org/. Accessed 11 Dec 2009

http://aws.amazon.com/
http://www.snia.org/forums/csi/
http://www.snia.org/
http://www.rightscale.com/products/advantages/cloud-ready-servertemplates.php
http://www.rightscale.com/products/advantages/cloud-ready-servertemplates.php
http://www.rightscale.com/
http://www.sun.com/solutions/cloudcomputing/index.jsp
http://www.sun.com/
http://www.weblayers.com/products/wl-center.shtml
http://www.weblayers.com/
http://www.opencloudmanifesto.org/
http://www.informationweek.com/news/government/cloud-saas/showArticle.jhtml?articleID=218500732
http://www.informationweek.com/news/government/cloud-saas/showArticle.jhtml?articleID=218500732
http://www.omg.org/
http://www.oasis-open.org/

Part II
Cloud Seeding

93

Abstract  Cloud computing focuses on the idea of service as the elementary unit
for building any application. Even though Cloud computing was originally developed
in commercial applications, the paradigm is quickly and widely spreading in open
contexts such as scientific and academic communities. Two main research directions
can thus be identified: provide an open Cloud infrastructure able to provide and
share resources and services to the community; and implement an interoperable
framework, allowing commercial and open Cloud infrastructures to interact and
interoperate. In this chapter, we present the Cloud@Home paradigm that proposes
to merge Volunteer and Cloud computing as an effective and feasible solution for
building open and interoperable Clouds. In this new paradigm, users’ hosts are
not passive interfaces to Cloud services anymore, but can interact (for free or by
charge) with other Clouds, which therefore must be able to interoperate.

6.1 � Introduction and Motivation

Cloud computing is a distributed computing paradigm that mixes aspects of Grid
computing, Internet computing, Autonomic computing, Utility computing, and
Green computing. Cloud computing is derived from the service-centric perspective
that is quickly and widely spreading in the IT world. From this perspective, all
capabilities and resources of a Cloud (usually geographically distributed) are
provided to the users as a service, to be accessed through the Internet without any
specific knowledge of, expertise with, or control over the underlying technology
infrastructure that supports them.

Cloud computing offers a user-centric interface that acts as a unique, user
friendly, point of access for users’ needs and requirements. Moreover, it provides

V.D. Cunsolo (*), S. Distefano, A. Puliafito, and M. Scarpa
University of Messina, Contrada di Dio, 98166, S. Agata, Messina, Italy
e-mail: vdcunsolo@unime.it; sdistefano@unime.it; apuliafito@unime.it;mscarpa@unime.it

Chapter 6
Open and Interoperable
Clouds: The Cloud@Home Way

Vincenzo D. Cunsolo, Salvatore Distefano, Antonio Puliafito,
and Marco Scarpa

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_6, © Springer-Verlag London Limited 2010

94 V.D. Cunsolo et al.

on-demand service provision, QoS guaranteed offer, and autonomous system for
managing hardware, software, and data transparency to the users [25].

In order to achieve such goals, it is necessary to implement a level of abstraction
of physical resources, uniforming their interfaces, and providing means for their
management, adaptively, to user requirements. This is done through virtualizations,
service mashups (Web 2.0), and service-oriented architectures (SOA). These factors
make the Kleinrock outlook of computing as the fifth utility [13], following gas,
water, electricity, and telephone.

Virtualization [4,23] allows execution of a software version of a hardware
machine in a host system in an isolated way. It “homogenizes” resources: problems
of compatibility are overcome by providing heterogeneous hosts of a distributed
computing environment (the Cloud) using the same virtual machine software.

Web 2.0 [20] provides an interesting way to interface Cloud services, imple-
menting service mashups. It is mainly based on an evolution of JavaScript with
improved language constructs (late binding, closures, lambda functions, etc.) and
AJAX interactions.

SOA is a paradigm for organizing and utilizing distributed capabilities that may
be under the control of different ownership domains [14]. In SOA, services are the
mechanism by which needs and capabilities are brought together. SOA defines
standard interfaces and protocols that allow developers to encapsulate information
tools as services that clients can access without the knowledge of, or control over,
their internal workings [8].

An interesting attempt to fix Cloud concepts and ideas is provided in [26]
through an ontology that demonstrates a dissection of the Cloud into the five main
layers shown in Fig. 6.1. In this, higher layers services can be composed from the
services of the underlying layers, which are:

1.	 Cloud Application Layer: provides interface and access-management tools (Web
2.0, authentication, billing, SLA, etc.), specific application services, services
mashup tools, etc. to the Cloud end users. This model is referred to as Software
as a Service (SaaS).

Cloud Application
(SaaS)

Cloud Sw Environment
(PaaS)

Cloud Sw Infrastructure

Sw Kernel

Firmware/Hardware
(HaaS)

Computational
Resources (IaaS)

Storage
(DaaS)

Communication
(CaaS)

Fig. 6.1  The five main layers of Cloud

956  Open and Interoperable Clouds: The Cloud@Home Way

2.	 Cloud Software Environment Layer: providers of the Cloud software environments
supply the users and Cloud applications’ developers with a programming-language-
level environment with a set of well-defined APIs. The services provided by this
layer are referred to as Platform as a Service (PaaS).

3.	 Cloud Software Infrastructure Layer: provides fundamental resources to other
higher-level layers. Services can be categorized into:

(a)	 Computational resources – provides computational resources (VM) to Cloud
end users. Often, such services are dubbed Infrastructure as a Service
(IaaS).

(b)	 Data storage – allows users to store their data at remote disks and access
them anytime from any place. These services are commonly known as
Data-Storage as a Service (DaaS).

(c)	 Communications – provides some communication capabilities that are
service-oriented, configurable, schedulable, predictable, and reliable.
The concept of Communication as a Service (CaaS) emerged toward this
goal, to support such requirements.

OAP and REST are examples of interface protocols used with some Cloud
computational resources.

4.	 Software Kernel: provides the basic software management for the physical
servers that comprise the Cloud. OS kernel, hypervisor, virtual machine monitor,
clustering, grid middleware, etc.

5.	 Hardware and Firmware: form the backbone of the Cloud. End users directly
interacting with the Cloud at this layer have huge IT requirements in need of
subleasing Hardware as a Service (HaaS).

Great interest in Cloud computing has been manifested from both academic and
private research centers, and numerous projects from industry and academia have
been proposed. In commercial contexts, among the others, we highlight: Amazon
Elastic Compute Cloud, IBM’s Blue Cloud, Sun Microsystems Network.com,
Microsoft Azure Services Platform, Dell Cloud computing solutions, etc. There are
also several scientific activities driving toward Open Cloud-computing middlewares
and infrastructures, such as: Reservoir [18], Nimbus-Stratus-Wispy-Kupa [22],
OpenNebula [7], Eucalyptus [17], etc. All of them support and provide an on-demand
computing paradigm, in the sense that a user submits his/her requests to the Cloud,
which remotely, in a distributed fashion, processes them and gives back the results.
This client–server model fits the aims and scope of commercial Clouds: the busi-
ness. But, on the other hand, it represents a restriction for open/scientific Clouds,
requiring great amounts of computing-storage resources usually not available from a
single open/scientific community. This suggests the necessity to collect such
resources from different providers and/or contributors who could share their resources
with the specific community, perhaps by making “symbiotic” federations. In fact, one
of the most successful paradigms in such contexts is Volunteer computing.

Volunteer computing (also called Peer-to-Peer computing, Global computing,
or Public computing) uses computers volunteered by their owners as a source
of computing power and storage to provide distributed scientific computing [2].

96 V.D. Cunsolo et al.

It is the basis of the “@home” philosophy of sharing/donating network connected
resources for supporting distributed scientific computing.

We believe that the Cloud-computing paradigm is also applicable at lower
scales, from the single contributing user who shares his/her desktop, to research
groups, public administrations, social communities, and small and medium enterprises,
who can make their distributed computing resources available to the Cloud. Both
free sharing and pay-per-use models can be easily adopted in such scenarios.

From the utility point of view, the rise of the “techno-utility complex” and the
corresponding increase in computing resource demands, in some cases growing
dramatically faster than Moore’s Law, predicted by the Sun CTO Greg Papadopoulos
in the red shift theory for IT [15], could take us in a close future, toward an oligar-
chy, a lobby or a trust of few big companies controlling the whole computing
resources market.

To avoid such a pessimistic but achievable scenario, we suggest addressing the
problem in a different way: instead of building costly private data centers that
the Google CEO, Eric Schmidt, likes to compare with the prohibitively expensive
cyclotrons [3], we propose a more “democratic” form of Cloud computing, in which
the computing resources of single users accessing the Cloud can be shared with
others in order to contribute to the elaboration of complex problems.

As this paradigm is very similar to the Volunteer computing one, it can be named as
Cloud@Home. Both hardware and software compatibility limitations and restrictions
of Volunteer computing can be solved in Cloud computing environments, allowing
to share both hardware and software resources and/or services.

The Cloud@Home paradigm could also be applied to commercial Clouds, estab-
lishing an open computing-utility market where users can both buy and sell their
services. Since the computing power can be described by a “long-tailed” distribution,
in which a high-amplitude population (Cloud providers and commercial data centers)
is followed by a low-amplitude population (small data centers and private users) that
gradually “tails off” asymptotically, Cloud@Home can catch the Long Tail effect
[1], providing similar or higher computing capabilities than commercial providers’
data centers, by grouping small computing resources from many single contributors.

In the following, we demonstrate how it is possible to realize all these aims
through the Cloud@Home paradigm. In Section 2, we describe the functional
architecture of the Cloud@Home infrastructure, and in Section 3, we characterize
the blocks implementing the functions previously identified into the Cloud@Home
core structure. Section 4 concludes the chapter by recapitulating our work and
discussing challenges and future work.

6.2 � Cloud@Home Overview

The idea behind Cloud@Home is to reuse “domestic” computing resources to build
voluntary contributors’ Clouds that are interoperable and, moreover, interoperate
with other foreign, and also commercial, Cloud infrastructures. With Cloud@Home,

976  Open and Interoperable Clouds: The Cloud@Home Way

anyone can experience the power of Cloud computing, both actively by providing
his/her own resources and services, and passively by submitting his/her applications
and requirements.

6.2.1 � Issues, Challenges, and Open Problems

Ian Foster summarizes the computing paradigm of the future as follows [9]: “... we
will need to support on-demand provisioning and configuration of integrated ‘virtual
systems’ providing the precise capabilities needed by an end user. We will need to
define protocols that allow users and service providers to discover and hand off
demands to other providers, to monitor and manage their reservations, and arrange
payment. We will need tools for managing both the underlying resources and the
resulting distributed computations. We will need the centralized scale of today’s Cloud
utilities, and the distribution and interoperability of today’s Grid facilities....”

We share all these requirements, but in a slightly different way: we want to
actively involve users into such a new form of computing, allowing them to create
their own interoperable Clouds. In other words, we believe that it is possible to
export, apply, and adapt the “@home” philosophy to the Cloud-computing
paradigm. In this way, by merging Volunteer and Cloud computing, a new para-
digm can be created: Cloud@Home. This new computing paradigm gives back the
power and control to users, who can decide how to manage their resources/services
in a global, geographically distributed context. They can voluntarily sustain scien-
tific projects by freely placing their resources/services at the scientific research
centers’ disposal, or can earn money by selling their resources to Cloud-computing
providers in a pay-per-use/share context.

Therefore, in Cloud@Home, both the commercial/business and volunteer/
scientific viewpoints coexist: in the former case, the end-user orientation of Cloud
is extended to a collaborative two-way Cloud in which users can buy and/or sell
their resources/services; in the latter case, the Grid philosophy of few but large
computing requests is extended and enhanced to open Virtual Organizations. In
both cases, QoS requirements could be specified, introducing in to the Grid and
Volunteer philosophy (best effort) the concept of quality.

Cloud@Home can also be considered as a generalization and a maturation of the
@home philosophy: a context in which users voluntarily share their resources
without compatibility problems. This allows knocking down both hardware (pro-
cessor bits, endianness, architecture, and network) and software (operating systems,
libraries, compilers, applications, and middlewares) barriers of Grid and Volunteer
computing. Moreover, Cloud@Home allows users to share not only physical
resources, as in @home projects or Grid environments, but any kind of service. The
flexibility and extensibility of Cloud@Home can allow to easily arrange, manage,
and make available with significant computing resources (greater than those in
Clouds, Grids, and/or @home environments) to everyone who owns a computer.
Another significant improvement of Cloud@Home with regard to Volunteer computing

98 V.D. Cunsolo et al.

paradigms is the QoS/SLA management: starting from the credit management sys-
tem and other similar experiments on QoS, a mechanism for adequately monitor-
ing, ensuring, negotiating, accounting, billing, and managing, in general, QoS and
SLA will be implemented.

On the other hand, Cloud@Home can be considered as the enhancement of the
Grid-Utility vision of Cloud computing. In this new paradigm, user’s hosts are not
passive interfaces to Cloud services, but can be actively involved in computing. At
worst, single nodes and services could be enrolled by the Cloud@Home middle-
ware to build own-private Cloud infrastructures that can with interact with other
Clouds.

The Cloud@Home motto is: heterogeneous hardware for homogeneous Clouds.
Thus, the scenario we prefigure is composed of several coexisting and interoperable
Clouds, as depicted in Fig. 6.2. Open Clouds (yellow) identify open VO operating
for free Volunteer computing; Commercial Clouds (blue) characterize entities or
companies selling their computing resources for business; and Hybrid Clouds
(green) can both sell or give for free their services. Both Open and Hybrid Clouds
can interoperate with any other Clouds, as well as Commercial, while these latter
can interoperate if and only if the Commercial Clouds are mutually recognized. In
this way, it is possible to make federations of heterogeneous Clouds that can work
together on the same project. Such a scenario has to be implemented transpar-
ently for users who do not want to know whether their applications are running in
homogeneous or heterogeneous Clouds. The differences among homogeneous
and heterogeneous Clouds are only concerned with implementation issues, mainly
affecting the resource management: in the former case, resources are managed
locally to the Cloud; in heterogeneous Clouds, interoperable services have to be
implemented in order to support discovery, connectivity, translation, and negotia-
tion requirements amongst Clouds.

Commercial
Cloud

Open Cloud

Hybrid Cloud

Amazon EC2

IBM Blue
Cloud

Hybrid Cloud

Scientific
Cloud Open Cloud

Academic
Cloud

Microsoft
Azure S.P.

Sun
Network.com

Fig. 6.2  Co-existing and interoperable Clouds anticipated for the Cloud@Home Scenario

996  Open and Interoperable Clouds: The Cloud@Home Way

The overall infrastructure must deal with the high dynamism of its nodes/
resources, allowing to move and reallocate data, tasks, and jobs. It is therefore
necessary to implement a lightweight middleware, specifically designed to
optimize migrations. The choice of developing such middleware on existing
technologies (as done in Nimbus-Stratus starting from Globus) could be limiting,
inefficient, or not adequate from this point of view. This represents another signifi-
cant enhancement of Cloud@Home against Grid: a lightweight middleware allows
to involve limited resources’ devices into the Cloud, mainly as consumer hosts
accessing the Cloud through “thin client” but also, in some specific applications, as
contributing hosts implementing (light) services according to their availabilities.
Moreover, the Cloud@Home middleware does not influence code writing as Grid
and Volunteer computing paradigms do.

Another important goal of Cloud@Home is security. Volunteer computing has
security concerns, while the Grid paradigm implements complex security mecha-
nisms. Virtualization in Clouds implements isolation of services, but does not pro-
vide any protection from local access. With regard to security, the specific goal of
Cloud@Home is to extend the security mechanisms of Clouds to the protection of
data from local access. As Cloud@Home is composed of an amount of resources
potentially larger than commercial or proprietary Cloud solutions, its reliability can
be compared with Grid or the Volunteer computing and should be greater than other
Clouds.

Lastly, interoperability is one of the most important goals of Cloud@Home.
This is an open problem in Grid, Volunteer, and Cloud computing, which we want
to address in Cloud@Home.

The most important issues that should be taken into account in order to
implement such a form of computing can be listed as follows:

•	 Resources and Services management – a mechanism for managing resources and
services offered by Clouds is mandatory. This must be able to enroll, discover,
index, assign and reassign, monitor, and coordinate resources and services.
A problem to face at this level is the compatibility among resources and services
and their portability.

•	 Frontend – abstraction is needed in order to provide users with a high-level
service-oriented point of view of the computing system. The frontend provides
a unique, uniform access point to the Cloud. It must allow users to submit
functional computing requests, only providing requirements and specifications,
without any knowledge of the system-resources deployment. The system
evaluates such requirements and specifications, and translates them into physical
resource demands, deploying the elaboration process. Another aspect concerning
the frontend is the capability of customizing Cloud services and applications.

•	 Security – effective mechanisms are required to provide authentication, resources
and data protection, data confidentiality, and integrity.

•	 Resource and service accessibility, reliability, and data consistency – it is neces-
sary to implement redundancy of resources and services, and hosts’ recovery
policies because users voluntarily contribute to the computing, and therefore,
can asynchronously, at any time, log out or disconnect from the Cloud.

100 V.D. Cunsolo et al.

•	 Interoperability among Clouds – it should be possible for Clouds to
interoperate.

•	 Business models – for selling Cloud computing, it is mandatory to provide QoS and
SLA management for both commercial and open-volunteer Clouds (traditionally
best effort) to discriminate among the applications to be run.

6.2.2 � Basic Architecture

A possible Cloud@Home architecture that could address the issues listed earlier is
shown in Fig. 6.3, which has been adapted to the ontology provided in [26] and
reported in Fig. 6.1. Two types of users are distinguished in such an architecture
according to the role that they assume in the Cloud: end users, if they only interface
the Cloud for submitting requests, and/or contributing users if they make available
their resources and services for building up and supporting the Cloud. According to
this point of view, the Cloud is composed of several contributing hosts offered by
the corresponding contributing users to end users who interact with the Cloud and
submit their requests through their consumer hosts. To access a Cloud, both
contributing and end users must authenticate themselves into the system. One of
the main enhancements of Cloud@Home is that a user/host can be contributing
and/or end user/consumer host, establishing a symbiotic mutual interaction with
the Cloud.

Such an architecture will be described below by identifying and detailing tasks
and functions of each of the five layers characterized in the Cloud ontology
presented in Section 1.

Firmware-Hardware

Sw Kernel

Frontend

Contributing Host

Hypervisor Hypervisor Hypervisor

C@H FS C@H FS

Web 2.0Frontend
Client

Low level
Web

PKI

Consumer Host

C@H
Remote

Disk

C@H
VM

End
User

Contributing Host

Sw Infrastructure

VM VM VM VM VM VM

Frontend
Sw Environment

Torrent

XMPP

Torrent

XMPP

Virtual Storage

CPU Mem Disk

Contributing FrontendPKI

Contributing Host

Local Disk
Contributing

User

REST/
SOAP

REST/
SOAP

C@H FS
Hypervisor CPU Mem Disk

Contributing Host

CPU Mem Disk

C@H FS

Fig. 6.3  Basic architecture of Cloud@Home

1016  Open and Interoperable Clouds: The Cloud@Home Way

6.2.2.1 � Software Environment

The Cloud@Home software environment implements the user-infrastructure
frontend interface. It is responsible for the resources and services management
(enrolling, discovery, allocation, coordination, monitoring, scheduling, etc.) from
the global Cloud system’s perspective. It also provides tools, libraries, and APIs for
translating user requirements into physical resource demands. Moreover, in com-
mercial Clouds, it must be able to negotiate the QoS policy to be applied (SLA),
thus monitoring for its fulfillment and, in case of unsatisfactory results, adapting
the computing workflow to such QoS requirements.

If the Cloud’s available resources and services do not satisfy the requirements,
the frontend provides mechanisms for requesting further resources and services
from other Clouds, both open and/or commercial. In other words, the Cloud@
Home frontend implements the interoperability among Clouds, also checking for
service reliability and availability. To improve reliability and availability of services
and resources, especially if QoS policies and constraints have been specified, it is
necessary to replicate services and resources by introducing redundancy.

The Cloud@Home software environment is split into two parts, as shown in
Fig. 6.3: the server side, implementing resource management and related problems,
and the client side, providing mechanisms and tools for authenticating, enrolling,
accessing, and interacting with the Cloud services and resources. The client fron-
tend is distinguished according to the role assumed by the user/host: for end users,
only a thin client able to interact with the frontend server and to submit requests to
the Cloud must be installed into the consumer hosts; for contributing users, contrib-
uting hosts must provide the software for interfacing with the Cloud@Home fron-
tend server and for supporting the Cloud (C@H FS library, storage space, and/or
hypervisor according to the service supported).

In a widely distributed system that is globally spread, the knowledge of resource
accesses and uses assumes great importance. To access and/or use the Cloud ser-
vices, a generic user first authenticates him/herself and then specifies whether he/
she wants to make available his/her resources and services for sharing, or he/she
only uses the Cloud resources for computing. The frontend provides means, tools,
and policies for managing users. The best mechanism to achieve secure authentica-
tion is the Public Key Infrastructure (PKI) [21], better if combined with smartcard
devices that, through a trusted certification authority, ensure user identification. In
order to avoid multiple authentications, a mechanism of authentication manage-
ment and credential delegation, such as single sign-on (SSO), must be provided by
the server frontend.

Referring to Fig. 6.3, three alternative solutions can be offered to end users
by the software environment for accessing a Cloud: (a) Cloud@Home frontend
client, (b) Web 2.0 user interface, and (c) low-level Web interface (directly speci-
fying REST or SOAP queries). These also provide mechanisms for customizing
user applications by composing (service mashup and SOA) and submitting own
services.

102 V.D. Cunsolo et al.

6.2.2.2 � Software Infrastructure

The virtualization of physical resources offers a homogeneous view of Cloud’s
services and resources to end users. Two basic services are provided by the
software infrastructure to the software environment, and consequently, to end
users: execution and storage services.

The execution service, implementing the computational resources sublayer of
Fig. 6.1, allows to create and manage virtual machines. A user, sharing his/her
resources within a Cloud@Home, allows the other users of the Cloud to execute
and manage virtual machines locally at his/her node, according to policies and
constraints negotiated and monitored through the software environment. In this
way, a Cloud of virtual machine’s executors is established, where virtual machines
can migrate or can be replicated in order to achieve reliability, availability, and QoS
targets. As shown in Fig. 6.3, from the end user’s point of view, an execution Cloud
is seen as a set of virtual machines available and ready-to-use. The virtual machines’
isolation implements protection and therefore security. This security is ensured by
the hypervisor that runs the virtual machine’s code in an isolated scope, similarly
to a sandbox, without affecting the local host environment.

The storage service implements a storage system distributed across the storage
hardware resources composing the Cloud, highly independent of them because data
and files are replicated according to QoS policies and requirements to be satisfied.
From the end user’s point of view, a storage Cloud appears as a locally mounted
remote disk, similar to a Network File System or a Network Storage. Tools, libraries,
and API for interfacing to storage Clouds are provided by the frontend client to end
users, while the service is implemented by the Cloud@Home software infrastructure
and software kernel.

In a distributed environment where any user can host a part of private data, it is
necessary to protect such data from unauthorized accesses (data security). A way
to obtain data confidentiality and integrity could be cryptography, as better
explained in the software kernel description.

6.2.2.3 � Software Kernel

The software kernel provides infrastructure, mechanisms, and tools to the software
for locally managing the physical resources of the Cloud in order to implement
execution and storage services.

Cloud@Home negotiates with users who want to join a Cloud about his/her
contribution. This mechanism involves the software kernel that provides tools for
reserving execution and/or storage resources for the Cloud, and monitors these
resources so that constraints, requirements, and policies specified are not violated.
This ensures reliability and availability of the resources, avoiding overloading
of the local system and therefore reducing the risk of crashes.

To implement the execution service in a generic device or to enroll it into an
execution Cloud, the device must have a hypervisor ready to allocate and run virtual

1036  Open and Interoperable Clouds: The Cloud@Home Way

machines, as shown in Fig. 6.3 . If a storage service is installed into the device, a
portion of the local storage system must be dedicated for hosting the Cloud data.
In such cases, the Cloud@Home file system is installed into the devices’ shared
storage space.

The software kernel also implements data security (integrity and confidentiality),
ensuring that stored data cannot be accessed by those who physically host them
(insider attacks, identity thefts, account hijacking, etc.). We propose an approach that
combines the inviolability of the Public Key Infrastructure asymmetric cryptography
and the speed of symmetric cryptography (details in [6]). Data are first encrypted by
the symmetric key and then stored into the selected host with the symmetric key
encrypted by the user private key. This ensures that only authorized users can
decrypt the symmetric key and consequently access the data.

In order to implement secure and reliable connections amongst nodes, we
choose the Extensible Messaging and Presence Protocol (XMPP) protocol [19].
XMPP is an open technology for real-time communication, which powers a wide
range of applications including instant messaging, presence, multi-party chat, voice
and video calls, collaboration, lightweight middleware, content syndication, and
generalized routing of XML data, also supporting security features. However, as
the data stored in a Cloud@Home storage are encrypted, it is not necessary to use
a secure channel for data transfers, and hence, a more performant protocol, such as
BitTorrent [5] can be used. The XMPP secure channel is required for sending and
receiving nonencrypted messages and data to/from remote hosts.

6.2.2.4 � Firmware/Hardware

The Cloud@Home firmware/hardware layer is composed of a “cloud” of generic
contributing nodes and/or devices geographically distributed across the Internet.
They provide the physical-hardware resources to the upper layers for implementing
the execution and storage services.

6.2.3 � Application Scenarios

Several possible application scenarios can be imagined for Cloud@Home:

•	 Research centers, public administrations, and communities – the Volunteer
computing inspiration of Cloud@Home provides means for the creation of
open, interoperable Clouds for supporting scientific purposes, overcoming the
portability and compatibility problems highlighted by the @home projects.
Similar benefits could be experienced in public administrations and open
communities (social networks, peer-to-peer, gaming, etc). Through Cloud@
Home, it could be possible to implement resources and service management
policies with QoS requirements (characterizing the scientific project importance)

104 V.D. Cunsolo et al.

and specifications (QoS classification of resources and services available).
A new deal for Volunteer computing, since this latter does not take into consi
deration QoS, follows a best effort approach.

•	 Enterprises – planting a Cloud@Home computing infrastructure in business-
commercial environments can bring considerable benefits, especially in small
and medium, as well as big enterprises. Usually, in every enterprise, there
exists a capital of stand-alone computing resources dedicated to a specific task
(office automation, monitoring, designing, and so on). Since such resources are
only (partially) used in office hours, through Internet connectivity, it becomes
possible to build up a Cloud@Home data center, in which shared services are
allocated (web server, file server, archive, database, etc.) without any compati-
bility constraints or problems.
The interoperability amongst Clouds allows to buy computing resources from •	
commercial Cloud providers if needed or, otherwise, to sell the local Cloud com-
puting resources to the same or different providers. This allows reducing and
optimizing business costs according to QoS/SLA policies, improving perfor-
mances and reliability. For example, this paradigm allows dealing with the peaks
economy: data centers could be sized for managing the medium case, and worst
cases (peaks) could be managed by buying computing resources from Cloud pro-
viders. Moreover, Cloud@Home drives towards resource rationalization: all the
business processes can be securely managed over the web, allocating resources
and services where needed. In particular, this can improve marketing and trading
(E-commerce), making available a lot of customizable services to sellers and cus-
tomers. The interoperability could also point to another scenario, in which private
companies buy computing resources in order to resell them (subcontractors).

•	 Ad-hoc networks, wireless sensor networks, and home automation – the Cloud-
computing approach, in which both software and computing resources are
owned and managed by service providers, eases the programmers’ efforts in facing
device heterogeneity problems. Mobile application designers should start to
consider that their applications, besides needing to be usable on a small device,
will need to interact with the Cloud. Service discovery, brokering, and reliability
are important issues, and services are usually designed to interoperate. In order
to consider the arising consequences related to the access of mobile users to
service-oriented grid architecture, researchers have proposed new concepts such
as mobile dynamic virtual organizations [24].
An open research issue is whether or not a mobile device should be considered •	
as a service provider of the Cloud itself. The use of modern mobile terminals,
such as smart-phones, not just as Web service requestor but also as mobile hosts
that can themselves offer services in a true mobile peer-to-peer setting, is also
discussed in [16]. Context-aware operations involving control and monitoring,
data sharing, synchronization, etc, could be implemented and exposed as
Cloud@Home Web services. Cloud@Home could be a way to implement
Ubiquitous and Pervasive computing: many computational devices and systems
can be engaged simultaneously for performing ordinary activities, and may not
necessarily be aware of the fact that they are doing so.

1056  Open and Interoperable Clouds: The Cloud@Home Way

6.3 � Cloud@Home Core Structure

Once the functional architecture of Cloud@Home has been introduced, it is
necessary to characterize the blocks implementing the functions thus identified.
These blocks are pictorially depicted in the layered model of Fig. 6.4 that reports
the core structure of the overall system implementing the Cloud@Home server-side.
As done for the functional architecture, the core structure is also specified by fol-
lowing the Cloud ontology characterized in Fig. 6.1. Moreover, the Cloud@Home
core structure is subdivided into two subsystems: management and resource subsys-
tems. Such subsystems are strictly interconnected: the management subsystem imple-
ments the upper layer of the functional architecture, while the resource subsystem
implements the lower level functionalities.

Figure 6.5 pictorially depicts the deployment of the Cloud@Home core structure
into the physical infrastructure. Such implementation highlights the hierarchical-
distributed approach of Cloud@Home. On top of the hierarchy, there are the blocks
implementing the management subsystem that can be deployed into different servers/
nodes, one for each block, or can be grouped into the same node. Nevertheless, in
order to achieve reliability and availability goals, it is necessary to adequately

Firmware/Hardware

S
W

 E
nv

iro
nm

en
t

S
W

In

fr
as

tr
uc

tu
re

S
W

 K
er

ne
l

Storage CloudExecution Cloud

Resources Engine

VM Scheduler

VM
Provider VM

Resource
Monitor

HyperVisor

OS

Chunk
Provider

Policy Manager

User Frontend

M
an

ag
em

en
t

S
u

b
sy

st
em

Storage
Master

R
es

o
u

rc
e

S
u

b
sy

st
em

Cloud Broker

Storage
Resource

Monitor

Fig. 6.4  Cloud@Home Core Structure Organisation

106 V.D. Cunsolo et al.

replicate such nodes, in particular if all the management subsystem blocks are
deployed into the same unique node.

VM schedulers and storage masters manage smaller groups (grid, clusters, multi-
core nodes, etc.) of resources. They can be designated both globally by the management
subsystem and/or locally by applying self-organizing/autonomic algorithms such as
election mechanisms. A VM scheduler and a storage master can be deployed into
the same node/server, while, obviously, two or more VM schedulers/storage masters
cannot coexist in the same node. For reliability/availability purpose, they can also
be replicated and/or hierarchically organized.

At the bottom of the hierarchy, there are the contributing hosts. Each contains
the software for supporting the specific service for what was enrolled into the
Cloud. Thus, a node contributing to the execution Cloud has a hypervisor, a VM
provider, and a VM resource monitor, while a storage Cloud contributing host has
a chunk provider and a storage resource monitor. As shown in Fig. 6.4 and also
stated earlier, it is possible that the same host contributes to both execution and
storage Clouds, and therefore, has both execution and storage components.

6.3.1 � Management Subsystem

In order to enroll and manage the distributed resources and services of a Cloud, provid-
ing a unique point of access for them, it is necessary to adopt a centralized approach
that is implemented by the management subsystem. It is composed of four parts: the
user frontend, the Cloud broker, the resource engine, and the policy manager.

Cloud@Home

C@H User Frontend

Policy
Manager

Cloud
Broker

Resource
Engine

Storage
Master

Chunk
Provider

C@H
FS

Chunk
Provider

C@H
FS

Chunk
Provider

C@H
FS

Host SRM Host SRM Host SRM

Storage
Master

VM
Scheduler

VM
Scheduler

Host Host Host

VM
Provider

VM
Provider

VM
Provider

VM
RM

HV VM
RM

HV VM
RM

HV

Host

VM
Provider

VM
RM

HV

Chunk
Provider

C@H
FS

SRM

Fig. 6.5  Cloud@Home Core Structure Infrastructure Deployment.

1076  Open and Interoperable Clouds: The Cloud@Home Way

The user frontend provides tools for Cloud@Home-user interactions. It collects
and manages the users’ requests issued by the Cloud@Home clients. All such
requests are transferred to the blocks composing the underlying layer (resource
engine, Cloud broker, and policy manager) for processing.

An important task carried out by the user frontend is the Clouds interoperability,
implemented point-to-point, connecting the interface of the Clouds wishing to
interoperate. If one of the Clouds does not have the Cloud@Home core structure
of Fig. 6.3, it is necessary to translate the requests between Cloud@Home and
foreign Clouds formats, a task delegated by the user frontend to the Cloud broker.
The Cloud broker collects and manages information about the available Clouds and
the services they provide (both functional and non-functional parameters, such as QoS,
costs, and reliability, request formats’ specifications for Cloud@Home-foreign
Cloud translations, etc.).

The policy manager provides and implements the Cloud’s access facilities.
This task falls into the security scope of identification, authentication, authorization,
and permissions management. To achieve this target, the policy manager uses an
infrastructure based on PKI, smartcard devices, Certification Authority, and SSO.
The policy manager also manages the information about users’ QoS policies and
requirements.

The resource engine is the heart of Cloud@Home. It is responsible for the
resources’ management, the equivalent of a Grid resource broker in a broader
Cloud environment. To meet this goal, the resource engine applies a hierarchical
policy. It operates at a higher level, in a centralized way, indexing all the resources
of the Cloud. Incoming requests are delegated to VM schedulers or storage masters
that, in a distributed fashion, manage the computing or storage resources, respectively,
coordinated by the resource engine.

The management subsystem is implemented as a centralized subsystem managing
the whole infrastructure. Although this solution introduces a single point of failure
into the architecture, this is the only possible way to manage resource QoS, SLA,
dynamic provisioning, and monitoring because there has to be a subsystem that
aggregates information and has to know the condition of the whole infrastructure,
there needs to be a coordinator. Reliability, availability, and fault-tolerance issues
can be achieved by replicating the management subsystem and its components,
adequately managing the consistency of redundant replicas.

6.3.2 � Resource Subsystem

The resource subsystem contains all the blocks implementing the local and distributed
management functionalities of Cloud@Home. This subsystem can be logically split
into two parts offering different software infrastructure services: the execution Cloud
and the storage Cloud. The management subsystem is also able to merge them,
providing a unique Cloud that can offer both execution and/or storage services.

108 V.D. Cunsolo et al.

The execution Cloud provides tools for managing virtual machines according to
users’ requests and requirements coming from the management subsystem. It is
composed of four blocks: VM scheduler, VM provider, VM resource monitor, and
hypervisor.

The VM Scheduler is a peripheral resource broker of the Cloud@Home infra-
structure, to which the resource engine delegates the management of computing/
execution resources and services of the Cloud. It establishes which, what, where,
and when to allocate a VM; moreover, it is responsible for moving and managing
VM services. From the end user’s point of view, a VM is allocated somewhere on
the Cloud; therefore, its migration is transparent for the end user that is not aware of
any VM migration mechanism. However, some problems can affect VM migrations
into the Cloud@Home environment. As the nodes implementing the Cloud are,
generally, widely distributed across the Internet, for migrating a VM with its entire
context from one node to another (remote) node, great transfer delays are introduced.
In a highly dynamic environment, where VM migrations could be highly frequent,
this could become a serious problem.

A possible solution to such a problem is the introduction of technique-based
difference algorithms, similar to the one implemented in the union file system
(UnionFS) [27]. In each node contributing to the execution Cloud of the Cloud@
Home infrastructure, redundant basic VM images must be available (if possible).
Thus, in case of migration, starting from the selected data/files comparison algo-
rithm (diff), instead of transferring the whole VM with its context, a lighter (diff)
file only containing the differences between a new VM and the one to migrate is
sent to the destination host, which recomposes the original VM starting from a new
VM instance and runs it. This technique can considerably reduce the amount of
data to transfer, and consequently the corresponding transfer times.

Differentiation techniques might be appropriate for moving VM disk images
(although they would require some fundamental restrictions to be placed on the
images that could be used), but they do not address the problem of migrating
VM memory state. Such a problem could be addressed by exploiting specific and
advanced live migration techniques implementing reduced bandwidth usage,
just-in-time live migration behavior, and live migration across WAN, mainly based
on compression algorithms [11,12].

The VM provider, the VM resource monitor, and the hypervisor are responsible
for managing a VM locally to a physical resource. A VM provider exports func-
tions for allocating, managing, migrating, and destroying a virtual machine on the
corresponding host. The VM resource monitor allows taking the local computing
resources under control, according to requirements and constraints negotiated in
the setup phase with the contributing user. If during a virtual machine execution, the
local resources crash or become insufficient to keep the virtual machine running,
the VM resource monitor asks the scheduler to migrate the VM elsewhere.

In order to implement the storage Cloud, we specify the Cloud@Home file system
(FS), adopting an approach similar to the Google FS [10]. The Cloud@Home FS splits
data and files into chunks of fixed or variable size, depending on the storage resources
available. The architecture of the storage file system is hierarchical: data chunks are

1096  Open and Interoperable Clouds: The Cloud@Home Way

physically stored on chunk providers and corresponding storage masters index the
chunks through specific file indexes (FI). The storage master is the directory server,
indexing the data stored in the associated chunk providers. It directly interfaces with the
resource engine to discover the resources storing data. In this context, the resource
engine can be considered, in its turn, as the directory server indexing all the storage
masters. To improve the storage Cloud reliability, storage masters must be replicated.
Moreover, a chunk provider can be associated to more than one storage master.

In order to avoid a storage master becoming a bottleneck, once the chunk providers
have been located, data transfers are implemented by directly connecting end users
and chunk providers. Similar techniques to the ones discussed about VM schedulers
can be applied to storage masters for improving performance and reliability of the
storage Clouds.

Chunk providers physically store the data that, as introduced earlier, are encrypted
to achieve the confidentiality goal. Data reliability can be improved by replicating
data chunks and chunk providers, consequently updating the corresponding storage
masters. In this way, a corrupted data chunk can be automatically recovered and
restored through the storage masters, without involving the end user.

In order to achieve QoS/SLA requirements in a storage Cloud, it is necessary to
periodically monitor its storage resources, as done in the execution Cloud for VM.
For this reason, in the Cloud@Home core structure of Fig. 6.3, we have introduced a
specific storage resource monitor block. As it monitors the state of a chunk provider,
it is physically located and deployed into each chunk provider composing the
storage Cloud. The choice of replicating the resource monitor in both execution and
storage Clouds is motivated by the fact that we want to implement two different,
separated, and independent services.

6.4 � Conclusions

In this chapter, we have discussed an innovative computing paradigm merging
volunteer contributing and Cloud approaches into Cloud@Home. This proposal
represents a solution for building Clouds, starting from heterogeneous and independent
nodes, not specifically conceived for this purpose. Cloud@Home implements a
generalization of both Volunteer and Cloud computing by aggregating the compu-
tational potentialities of many small, low-power systems, exploiting the long-tail
effect of computing.

In this way, Cloud@Home opens the Cloud computing world to scientific and
academic research centers, as well as to public administration and communities,
and potentially single users: anyone can voluntarily support projects by sharing his/
her resources. On the other hand, it opens the utility computing market to the single
user who wants to sell his/her computing resources. To realize this broader
vision, several issues must be adequately taken into account: reliability, security,
portability of resources and services, interoperability among Clouds, QoS/SLA,
and business models and policies.

110 V.D. Cunsolo et al.

It is necessary to have a common understanding regarding an ontology that
fixes concepts, such as resources, services, virtualization, protocol, format,
interface, and corresponding metrics, including Clouds’ functional and nonfunc-
tional parameters (QoS, SLA, and so on), which must be translated into specific
interoperable standards.

References

	 1.	 Anderson C. (2006) The long tail: how endless choice is creating unlimited demand. Random
House Business Books, London

	 2.	 Anderson DP, Fedak G (2006) The computational and storage potential of volunteer computing.
In: CCGRID ’06, pp 73–80

	 3.	 Baker S (2008, December 24) Google and the wisdom of clouds. BusinessWeek. http://www.
businessweek.com/magazine/content/07_52/b4064048925836.htm

	 4.	 Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A
(2003) Xen and the art of virtualization. In: Proceedings of the nineteenth ACM symposium
on operating systems principles (SOSP ’03), ACM, pp 164–177

	 5.	 Cohen B (2008) The BitTorrent protocol specification. BitTorrent.org. http://www.bittorrent.
org/beps/bep_0003.html

	 6.	 Cunsolo VD, Distefano S, Puliafito A, Scarpa M (2009) Implementing data security in grid
environment. Enabling technologies, IEEE international workshops on 0, pp 177–182

	 7.	 Distributed Systems Architecture Research Group: OpenNEbula Project [URL]. Universidad
Complutense de Madrid (2009). http://www.opennebula.org/

	 8.	 Foster I (2005) Service-oriented science. Science 308(5723)
	 9.	 Foster I (2008) There’s grid in them thar clouds. Ian Foster’s blog. http://ianfoster.typepad.

com/blog/2008/01/theres-grid-in.html
	10.	 Ghemawat S, Gobioff H, Leung ST (2003) The google file system. SIGOPS Oper Syst Rev

37(5):29–43
	11.	Hacking S, Hudzia B (2009) Improving the live migration process of large enterprise

applications. In: Proceedings of the 3rd international workshop on virtualization technologies
in distributed computing (VTDC ’09), ACM, pp 51–58

	12.	 Jin H, Deng L, Wu S, Shi X, Pan X (2009) Live virtual machine migration with adaptive,
memory compression. In: IEEE cluster computing and workshops (CLUSTER ’09), pp 1–10

	13.	 Kleinrock L (2005) A vision for the internet. ST J Res 2(1):4–5
	14.	 MacKenzie CM, Laskey K, McCabe F, Brown PF, Metz R, Hamilton BA (2006) Reference

model for service oriented architecture 1.0. http://docs.oasis-open.org/soa-rm/v1.0/
	15.	 Martin R (2007, August 20) The red shift theory. InformationWeek. http://www.information-

week.com/news/hardware/showArticle.jhtml?articleID=201800873
	16.	 Narayana SS, Jarke M, Prinz W (2006) Mobile web service provisioning. In: AICT-ICIW ’06,

IEEE Computer Society, p 120
	17.	 Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D (2008)

The eucalyptus open-source cloud-computing system. In: Proceedings of cloud computing
and its applications (2008)

	18.	 Reservoir Consortium: Reservoir Project [URL] (2009). http://www-03.ibm.com/press/us/en/
pressrelease/23448.wss/

	19.	 Saint-Andre P, Tronçon R, Smith K (2008) XMPP: the definitive guide: building real-time
applications with jabber technologies, rough cuts version edn. O’Reilly

	20.	 Tim O’Reilly: What is WEB 2.0 (2005). http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html

1116  Open and Interoperable Clouds: The Cloud@Home Way

	21.	 Tuecke S, Welch V, Engert D, Pearlman L, Thompson M (2004) Internet X.509 Public Key
Infrastructure (PKI) proxy certificate profile

	22.	University of Chicago-University of Florida-Purdue University-Masaryk University:
Nimbus-Stratus-Wispy-Kupa Projects [URL] (2009). http://workspace.globus.org/clouds/
nimbus.html/, http://www.acis.ufl.edu/vws/, http://www.rcac.purdue.edu/teragrid/resources/
#wispy, http://meta.cesnet.cz/cms/opencms/en/docs/clouds

	23.	 VMWare: Understanding Full Virtualization, Paravirtualization, and Hardware Assist (2007).
White Paper

	24.	 Waldburger M, Stiller B (2006) Toward the mobile grid: service provisioning in a mobile
dynamic virtual organization. In: IEEE international conference on computer system and
application, pp 579–583

	25.	 Wang L, Tao J, Kunze M, Castellanos AC, Kramer D, Karl W (2008) Scientific cloud computing:
early definition and experience. In: HPCC ’08, pp 825–830

	26.	 Youseff L, Butrico M, Da Silva D (2008) Toward a unified ontology of cloud computing.
In: Grid computing environments workshop (GCE ’08), pp 1–10

	27.	 Zadok E, Iyer R, Joukov N, Sivathanu G, Wright CP (2006)) On incremental file system
development. ACM Trans Storage 2((2):161–196

113

Abstract  MapReduce is a programming model widely used in Cloud computing
environments for processing large data sets in a highly parallel way. MapReduce
implementations are based on a master-slave model. The failure of a slave is man-
aged by re-assigning its task to another slave, while master failures are not managed
by current MapReduce implementations, as designers consider failures unlikely in
reliable Cloud systems. On the contrary, node failures – including master failures – are
likely to happen in dynamic Cloud scenarios, where computing nodes may join
and leave the network at an unpredictable rate. Therefore, providing effective
mechanisms to manage master failures is fundamental to exploit the MapReduce
model in the implementation of data-intensive applications in those dynamic Cloud
environments where current MapReduce implementations could be unreliable. The
goal of our work is to extend the master-slave architecture of current MapReduce
implementations to make it more suitable for dynamic Cloud scenarios. In particular, in
this chapter, we present a Peer-to-Peer (P2P)-MapReduce framework that exploits
a P2P model to manage participation of intermittent nodes, master failures, and
MapReduce job recovery in a decentralized but effective way.

7.1 � Introduction

Cloud computing is gaining increasing interest both in science and industry for its
promise to deliver service-oriented remote access to hardware and software facili-
ties in a highly reliable and transparent way. A key point for the effective imple-
mentation of large-scale Cloud systems is the availability of programming models
that support a wide range of applications and system scenarios. One of the most
successful programming models currently adopted for the implementation of data-
intensive Cloud applications is MapReduce [1].

F. Marozzo (*) 
Department of Electronics, Computer Science and Systems (DEIS),
University of Calabria, Rende, Italy
e-mail: fmarozzo@deis.unical.itomenico

Chapter 7
A Peer-to-Peer Framework for Supporting
MapReduce Applications in Dynamic
Cloud Environments

Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_7, © Springer-Verlag London Limited 2010

114 F. Marozzo et al.

MapReduce defines a framework for processing large data sets in a highly parallel
way by exploiting computing facilities available in a large cluster or through a
Cloud system. In MapReduce, users specify the computation in terms of a map
function that processes a key/value pair to generate a list of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated with the
same intermediate key.

MapReduce implementations (e.g., Google’s MapReduce [2] and Apache Hadoop
[3]) are based on a master-slave model. A job is submitted by a user node to a master
node that selects idle workers and assigns each one a map or a reduce task. When all map
and reduce tasks have been completed, the master node returns the result to the user node.
The failure of a worker is managed by re-executing its task on another worker, while
current MapReduce implementations do not cope with master failures, as designers
consider failures unlikely in large clusters or reliable Cloud environments.

On the contrary, node failures – including master failures – can occur in large
clusters and are likely to happen in dynamic Cloud environments such as an
Intercloud, a Cloud of clouds, where computing nodes may join and leave the system
at an unpredictable rate. Therefore, providing effective mechanisms to manage master
failures is fundamental to exploit the MapReduce model in the implementation of
data-intensive applications in large dynamic Cloud environments where current
MapReduce implementations could be unreliable. The goal of our work is to study
how the master-slave architecture of current MapReduce implementations can be
improved to make it more suitable for dynamic Cloud scenarios such as Interclouds.

In this chapter, we present a Peer-to-Peer (P2P)-MapReduce framework that
exploits a P2P model to manage participation of intermittent nodes, master failures,
and MapReduce job recovery in a decentralized but effective way. An early version
of this work, presenting a preliminary architecture of the P2P-MapReduce frame-
work, has been presented in [4]. This chapter extends the previous work by describing
an implementation of the P2P-MapReduce framework and a preliminary perfor-
mance evaluation.

The remainder of this chapter is organized as follows. Section 2 provides a
background to the MapReduce programming model. Section 3 describes the P2P-
MapReduce architecture, its current implementation, and preliminary evaluation of
its performance. Finally, Section 4 concludes the chapter.

7.2 � MapReduce

As mentioned earlier, MapReduce applications are based on a master-slave model.
This section briefly describes the various operations that are performed by a generic
application to transform input data into output data according to that model.

Users define a map and a reduce function [1]. The map function processes a
(key, value) pair and returns a list of intermediate (key, value) pairs:

map (k1,v1) → list(k2,v2).

1157  A Peer-to-Peer Framework for Supporting MapReduce Applications in Dynamic Cloud

The reduce function merges all intermediate values having the same intermedi-
ate key:

reduce (k2, list(v2)) → list(v2).

The whole transformation process can be described through the following steps
(see Fig. 7.1):

1.	 A master process receives a “job configuration” describing the MapReduce job to
be executed. The job configuration specifies, amongst other information, the loca-
tion of the input data, which is normally a directory in a distributed file system.

2.	 According to the job configuration, the master starts a number of mapper and
reducer processes on different machines. At the same time, it starts a process that
reads the input data from its location, partitions that data into a set of splits, and
distributes those splits to the various mappers.

3.	 After receiving its piece of data, each mapper process executes the map function
(provided as part of the job configuration) to generate a list of intermediate key/
value pairs. Those pairs are then grouped on the basis of their keys.

4.	 All pairs with the same keys are assigned to the same reducer process. Hence,
each reducer process executes the reduce function (defined by the job configura-
tion), which merges all the values associated with the same key to generate a
possibly smaller set of values.

5.	 The results generated by each reducer process are then collected and delivered to
a location specified by the job configuration, so as to form the final output data.

Besides the original MapReduce implementation by Google [2], several other
MapReduce implementations have been realized within other systems, including
Hadoop [3], GridGain [5], Skynet [6], MapSharp [7], and Disco [8]. Another system

Fig. 7.1  Execution phases in a generic MapReduce application

116 F. Marozzo et al.

sharing most of the design principles of MapReduce is Sector/Sphere [9], which has
been designed to support distributed data storage and processing over large Cloud
systems. Sector is a high-performance distributed file system, and Sphere is a paral-
lel data processing engine used to process Sector data files. In [10], a distributed data
mining application developed using such system has been described.

Several applications of the MapReduce paradigm have been demonstrated. In [11],
some examples of interesting applications that can be expressed as MapReduce com-
putations, including: performing a distributed grep, counting URL access frequency,
building a reverse Web-link graph, building a term-vector per host, and building
inverted indices, performing a distributed sort. In [3], many significant types of appli-
cations that have been (or are being) implemented by exploiting the MapReduce
model, including machine learning and data mining, log file analysis, financial analy-
sis, scientific simulation, image retrieval and processing, blog crawling, machine
translation, language modeling, and bioinformatics have been mentioned.

7.3 � P2P-MapReduce

The objective of the P2P-MapReduce framework is twofold: (i) handling master
failures by dynamically replicating the job state on a set of backup masters;
(ii) supporting MapReduce applications over dynamic networks composed by
nodes that join and leave the system at unpredictable rates.

To achieve these goals, P2P-MapReduce exploits the P2P paradigm by defining
an architecture in which each node can act either as a master or slave. The role
assigned to a given node depends on the current characteristics of that node, and
hence, it can change dynamically over time. Thus, at each time, a limited set of
nodes is assigned the master role, while the others are assigned the slave role.

Moreover, each master node can act as a backup node for other master nodes.
A user node can submit the job to one of the master nodes, which will manage it as
usual in MapReduce. That master will dynamically replicate the entire job state
(i.e., the assignments of tasks to nodes, the locations of intermediate results, etc.)
on its backup nodes. In case those backup nodes detect the failure of the master,
they will elect a new master among them that will manage the job computation
using its local replica of the job state.

The remainder of this section describes the architecture of the P2P-MapReduce frame-
work, its current implementation, and a preliminary evaluation of its performance.

7.3.1 � Architecture

The P2P-MapReduce architecture includes three basic roles, shown in Fig. 7.2: user
(U), master (M), and slave (S). Master nodes and slave nodes form two logical P2P
networks called M-net and S-net, respectively. As mentioned earlier, computing
nodes are dynamically assigned the master or slave role, and hence, M-net and

1177  A Peer-to-Peer Framework for Supporting MapReduce Applications in Dynamic Cloud

S-Net change their composition over time. The mechanisms used for maintaining
this infrastructure are discussed in Section 3.2.

In the following, we describe, through an example, how a master failure is
handled in the P2P-MapReduce architecture. We assume the initial configuration
represented in Fig. 7.2, where U is the user node that submits a MapReduce job,
nodes M are the masters, and nodes S are the slaves.

The following steps are performed to submit the job and recover from a master
failure (see Fig. 7.3):

1.	 U queries M-net to get the list of the available masters, each one characterized by
a workload index that measures how busy the node is. U orders the list by ascend-
ing values of workload index and takes the first element as a primary master. In
this example, the chosen primary master is M

1
; thus, U submits the MapReduce

job to M
1
.

2.	 M
1
 chooses k masters for the backup role. In this example, assuming that k=2, M

1

chooses M
2
 and M

3
 for this role. Thus, M

1
 notifies M

2
 and M

3
 that they will act as

backup nodes for the current job (in Fig. 7.3, the apex “B” to nodes M
2
 and M

3

indicates the backup function). This implies that whenever the job state changes,
M

1
 backs up it on M

2
 and M

3
, which in turn will periodically check whether M

1

is alive.
3.	 M

1
 queries S-net to get the list of the available slaves, choosing (part of) them to

execute a map or a reduce task. As for the masters, the choice of the slave nodes
to use is done on the basis of a workload index. In this example, nodes S

1
, S

3
, and

S
4
 are selected as slaves. The tasks are started on the slave nodes and managed as

usual in MapReduce.
4.	 The primary master M

1
 fails. Backup masters M

2
 and M

3
 detect the failure of M

1

and start a distributed procedure to elect a new primary master among them.
5.	 The new primary master (M

3
) is elected by choosing the backup node with the

lowest workload index. M
2
 continues to play the backup function, and to keep k

backup masters active, another backup node (M
4
, in this example) is chosen by

M
3
. Then, M

3
 proceeds to manage the MapReduce job using its local replica of

the job state.
6.	 As soon as the MapReduce job is completed, M

3
 returns the result to U.

Fig. 7.2  Basic architecture of a P2P-MapReduce network

118 F. Marozzo et al.

It is worth noticing that the master failure and the subsequent recovery procedure
are transparent to the user. It should also be noted that a master node may simulta-
neously play the role of primary master for one job and that of backup master for
another job.

7.3.2 � Implementation

We implemented a prototype of the P2P-MapReduce framework using the JXTA
framework [12]. JXTA provides a set of XML-based protocols that allow computers
and other devices to communicate and collaborate in a P2P fashion. Each peer
provides a set of services made available to other peers in the network. Services
are any type of programs that can be networked by a single or a group of peers.

In JXTA, there are two main types of peers: rendezvous and edge. The rendez-
vous peers act as routers in a network, forwarding the discovery requests submitted

1) 2)

3) 4)

5) 6)

Fig. 7.3  Steps performed to submit a job and to recover from a master failure

1197  A Peer-to-Peer Framework for Supporting MapReduce Applications in Dynamic Cloud

by edge peers to locate the resources of interest. Peers sharing a common set of
interests are organized into a peer group. To send messages to each other, JXTA
peers use asynchronous communication mechanisms called pipes. Pipes can be
either point-to-point or multicast, so as to support a wide range of communication
schemes. All resources (peers, services, etc.) are described by advertisements that
are published within the peer group for resource-discovery purposes.

In the following, we briefly describe how the JXTA components are used in the
P2P-MapReduce system to implement basic mechanisms for resource discovery,
network maintenance, job submission, and failure recovery. Then, we describe the
state diagram that steers the behavior of a generic node and the software modules
provided by each node in a P2P-MapReduce network.

7.3.2.1 � Basic Mechanisms

�Resource Discovery

All master and slave nodes in the P2P-MapReduce system belong to a single JXTA
peer group called MapReduceGroup. Most of these nodes are edge peers, but some
of them also act as rendezvous peers, in a way that is transparent to the users. Each
node exposes its features by publishing an advertisement containing basic informa-
tion, such as its Role and WorkloadIndex.

An edge peer publishes its advertisement in a local cache and sends some keys
identifying that advertisement to a rendezvous peer. The rendezvous peer uses those
keys to index the advertisement in a distributed hash table called Shared Resource
Distributed Index (SRDI), managed by all the rendezvous peers of MapReduceGroup.
Queries for a given type of resource (e.g., master nodes) are submitted to the JXTA
Discovery Services that uses SRDI to locate all the resources of that type without
flooding the entire network.

Note that M-net and S-net, represented in Fig. 7.2, are “logical” networks in the
sense that queries to M-net (or S-net) are actually submitted to the whole
MapReduceGroup, but restricted to nodes having the attribute Role set to
“Master” (or “Slave”) using the SRDI mechanisms.

�Network Maintenance

Network maintenance is carried out cooperatively by all nodes on the basis of their
role. The maintenance task of each slave node is to periodically check the existence
of at least one master in the network. In case no masters are found, the slave promotes
itself to the master role. In this way, the first node joining the network always assumes
the master role. The same happens to the last node remaining into the network.

The maintenance task of master nodes is to ensure the existence of a given per-
centage p of masters on the total number of nodes. This task is performed periodically
by one master only (referred to as coordinator), which is elected for this purpose among

120 F. Marozzo et al.

all the masters using a variation of the “bully” election algorithm. The coordinator has
the power of changing slaves into masters, and vice versa. During a maintenance
operation, the coordinator queries all nodes and orders them by ascending values of
workload index: the first p percent of nodes must assume (or maintain) the master
role, while the others will become or remain slaves. Nodes that have to change their
role are notified by the coordinator in order to update their status.

Job Submission and Failure Recovery

To describe the JXTA mechanisms used for job submission and master-failure
recovery, we take the six-point example presented in Section 3.1 as reference:

1.	 The user node invokes the Discovery Service to obtain the advertisements of the
master nodes published in MapReduceGroup. Based on the WorkloadIndex,
it chooses the primary master for its job. Then, it opens a bidirectional pipe
(called PrimaryPipe) to the primary master and submits the job configuration.

2.	 The primary master invokes the Discovery Service to choose its backup masters and
opens a multicast pipe (BackupPipe) to the backup masters. The BackupPipe has two
goals: replicating job state information to the backup nodes and allowing backup nodes
to detect a primary master failure in case the BackupPipe connection times out.

3.	 The primary master invokes the Discovery Service to select the slave nodes to be
used for the job. Slave nodes are filtered on the basis of WorkloadIndex attri-
bute. The primary master opens a bidirectional pipe (SlavePipe) to each slave
and starts a map or a reduce task on it.

4.	 The backup masters detect a primary master failure (i.e., a timeout on the
BackupPipe connection) and start a procedure to elect the new primary master
(to this end, they connect each other with a temporary pipe and exchange infor-
mation about their current WorkloadIndex).

5.	 The backup master with the lowest WorkloadIndex is elected as the new
primary master. This new primary master binds the pipes previously associated
with the old primary master (PrimaryPipe, BackupPipe and SlavePipes),
chooses (and connect to) a substitute backup master, and then continues to manage
the MapReduce job using its replica of the job state.

6.	 The primary master returns the result of the MapReduce job to the user node
through the PrimaryPipe.

The primary master detects the failure of a slave by getting a timeout to the associated
SlavePipe connection. If this event occurs, a new slave is selected and the failed map
or reduce task is assigned to it.

7.3.2.2 � State Diagram and Software Modules

The behavior of a generic node is modeled as a state diagram that defines the dif-
ferent states that a node can assume, and all the events that determine the transitions

1217  A Peer-to-Peer Framework for Supporting MapReduce Applications in Dynamic Cloud

from one state to another one. Figure 7.4 shows such a state diagram modeled using
the UML State Diagram formalism.

The state diagram includes two macro-states, SLAVE and MASTER, which
describes the two roles that can be assumed by each node. The SLAVE state has
three states, IDLE, CHECK_MASTER_EXISTENCE, and ACTIVE, which repre-
sent a slave waiting for task assignment, a slave checking the existence of a master,
and a slave executing a given task, respectively.

The MASTER state is modeled with three parallel macro-states, which represent
the different roles that a master can perform concurrently: possibly acting as a pri-
mary master for one or more jobs (MANAGEMENT), possibly acting as a backup
master for one or more jobs (RECOVERY), and coordinating the network for main-
tenance purposes (COORDINATION).

The MANAGEMENT macro-state contains two states: NOT_PRIMARY, which
represents a master node currently not acting as a primary master for any job, and
PRIMARY, which in contrast, represents a master node currently managing at least
one job as a primary master.

Similarly, the RECOVERY macro-state includes two states: NOT_BACKUP (the
node is not managing any job as a backup master) and BACKUP (at least one job is
currently being backed up on this node).

The COORDINATION macro-state includes four states: NOT_COORDINATOR
(the node is not acting as coordinator), COORDINATOR (the node is acting as coor-
dinator), WAITING_COORDINATOR, and ELECTING_COORDINATOR for

Fig. 7.4  UML state diagram describing the behavior of a generic node in the P2P-MapReduce
framework

122 F. Marozzo et al.

nodes currently participating in the election of the new coordinator, as mentioned
in Section 3.2.1.

The combination of the concurrent states [NOT_PRIMARY, NOT_BACKUP,
NOT_COORDINATOR] represents the abstract state MASTER.IDLE. The transi-
tion from master to slave role is allowed only to masters in the MASTER.IDLE
state that receive a becomeSlave message from the coordinator. Similarly, the tran-
sition from slave to master role is allowed to slaves that receive a becomeMaster
and are not in ACTIVE state.

Finally, we briefly describe the software modules inside each node and how
those modules interact with each other in a P2P-MapReduce network. Figure 7.5
shows such modules and interactions using the UML Deployment/Component
Diagram formalism.

Each node includes three software modules/layers: Network, Node, and
MapReduce. The Network module is in charge of the interactions with the other
nodes and the JXTA Discovery Service. The Node module controls the lifecycle of

Fig. 7.5  UML deployment/component diagram describing the software modules inside each node
and the interactions among nodes

1237  A Peer-to-Peer Framework for Supporting MapReduce Applications in Dynamic Cloud

the node in its various aspects, including network maintenance, job management,
and so on; its core is represented by the FSM component that implements the logic
of the finite state machine described in Fig. 7.4. The MapReduce module manages
the local execution of jobs (when the node is acting as a master) or tasks (when the
node is acting as a slave).

7.3.3 � Evaluation

We carried out a preliminary set of experiments to evaluate the behavior of the
P2P-MapReduce framework when compared with a centralized implementation of
MapReduce, in the presence of dynamic-nodes participation. The experimental
results demonstrate that by using a P2P approach, it is possible to extend the
MapReduce architectural model making it suitable for highly dynamic Cloud
environments where failure must be managed to avoid a critical loss of computing
resources and time.

The evaluation has been carried out by implementing a simulator of the system
in which each node is represented by an independent thread. Each thread executes
the algorithms specified by the state diagram in Fig. 7.4, and communicates with
the other threads by invoking local routines having the same interface of the JXTA
pipes. Our simulation analyzes the system in steady state, that is, when M-net and
S-net are formed and the desired ratio between the number of masters and slaves is
reached.

The network includes 1,000 nodes. To simulate dynamic-nodes participation, a
joining rate R

J
 and a leaving rate R

L
 are defined. On average, for every 1/R

J
 s, one

node joins the network, while for every 1/R
L,
 another node abruptly leaves the net-

work so as to simulate an event of failure (or a disconnection). In our simulation,
R

J
 = R

L
 in order to keep the total number of nodes and the master/slave ratio

approximately constant during the whole simulation. In particular, we considered
the following values for R

J
 and R

L
: 0.05, 0.1, and 0.2, which correspond to the join/

failure of one node (out of 1,000 nodes)–every 20, 10, and 5 s, respectively.
For every 120 s (mean value), a user entity submits one job to the system. The

average sequential duration of a job is 20 h that are distributed, on an average, to
100 nodes. On the basis of the actual number of slaves, the system determines the
amount of time each slave will be busy to complete its task. Every node, other than
managing a job or a task, executes the network-maintenance operations described
earlier (election of the coordinator, choice of backup masters, etc.).

The main task performed by the simulator is evaluating the number of jobs failed
versus the total number of jobs submitted to the system. For the purpose of our
simulations, a “failed” job is a job that does not complete its execution, that is, it
does not return a result to the submitting user. The failure of a job is always caused
by an unmanaged failure of the master responsible for that job. The failure of a
slave, on the contrary, never causes a failure of the whole job because its task is
re-assigned to another slave.

124 F. Marozzo et al.

The system has been evaluated in two scenarios: (i) centralized, where there is
only one primary master and there are no backup masters; (ii) P2P, where there are
ten masters and each job is managed by one master that periodically replicates the
job state on one backup master. Figure 7.6 presents the percentage of completed
jobs in centralized and P2P scenarios after the submission of 100 jobs.

As expected, in the centralized scenario the number of failed jobs increases as
the leaving rate increases. In contrast, the P2P-MapReduce scenario is able to com-
plete all the jobs for all the considered leaving rates, even if we used just one
backup per job. It is worth noticing that when a backup master becomes primary
master as a consequence of a failure, it chooses another backup in its place to main-
tain the desired level of reliability.

The percentages given in Fig. 7.6 can be translated into lost CPU hours, by
multiplying the average job duration to the average number of failed jobs. In the
centralized scenario, the absolute number of failed jobs is 4, 15, and 22 for leaving
rates of 0.05, 0.1, and 0.2, respectively. Hence, with an average sequential duration
of 20 h per job, the total number of lost computing hours equals, in the worst case,
80, 300, and 440 h.

We can further estimate the amount of resources involved in a typical MapReduce
job by taking the statistics about a large set of MapReduce jobs run at Google,
presented in [1]. In March 2006, the average completion time per job was 874 s, using
268 slaves on average. By assuming that each machine is fully assigned to one
job, the overall machine time is 874 × 268 s (about 65 h). In September 2007, the
average job completion time was 395 s using 394 machines, with an overall
machine time of 43 h.

Fig. 7.6  Percentage of completed jobs in centralized and P2P scenarios for a leaving rate ranging
from 0.05 to 0.2

1257  A Peer-to-Peer Framework for Supporting MapReduce Applications in Dynamic Cloud

From the statistics reported earlier, and from the results generated by our experiments,
we see that a master failure causes loss of dozens of CPU hours for a typical
MapReduce job. Moreover, when the number of available machines per user is limited
(as in a typical Cloud systems where resources are shared among thousands of users),
a master failure also produces a significant loss of time because the job completion
time increases as the number of machines decreases.

7.4 � Conclusions

Providing effective mechanisms to manage master failures, job recovery, and participa-
tion of intermittent nodes is fundamental to exploit the MapReduce model in the imple-
mentation of data-intensive applications in dynamic Cloud environments or Cloud of
clouds scenarios where current MapReduce implementations could be unreliable.

The P2P-MapReduce model presented in this chapter exploits a P2P model to
perform job state replication, manage master failures, and allow participation of
intermittent nodes in a decentralized but effective way. Using a P2P approach, we
extended the MapReduce architectural model, making it suitable for highly
dynamic environments where failure must be managed to avoid a critical loss of
computing resources and time.

References

	 1.	 Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters.
Commun ACM 51(1):107–113

	 2.	 Google’s Map Reduce (2009). http://labs.google.com/papers/mapreduce.html (Visited:
September 2009)

	 3.	 Hadoop (2009) http://hadoop.apache.org (Visited: September 2009)
	 4.	 Marozzo F, Talia D, Trunfio P (2008) Adapting MapReduce for dynamic environments using

a peer-to-peer model. Workshop on cloud computing and its applications, Chicago, USA
	 5.	 Gridgain (2009) http://www.gridgain.com (Visited: September 2009)
	 6.	 Skynet (2009) http://skynet.rubyforge.org (Visited: September 2009)
	 7.	 MapSharp (2009) http://mapsharp.codeplex.com (Visited: September 2009)
	 8.	 Disco (2009) http://discoproject.org (Visited: September 2009)
	 9.	 Gu Y, Grossman R (2009) Sector and sphere: the design and implementation of a high perfor-

mance data cloud. Philos Tr S A 367(1897):2429–2445
	10.	 Grossman R, Gu Y (2008) Data mining using high performance data clouds: experimental

studies using sector and sphere. SIGKDD 2008, Las Vegas, USA
	11.	 Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters.

Symposium on Operating Systems Design and Implementation (OSDI), San Francisco, USA
	12.	 Gong L (2001) JXTA: a network programming environment. IEEE Internet Comput 5(3):

88–95

127

Abstract  We introduce the concept of network resource visibility and performance
awareness in the cloud control logic, aiming at optimizing the transport layer activi-
ties within the cloud, and thus coping with the scalability problems experienced in
traditional Internet-based clouds by large-scale data processing applications. With
the aid of new dynamic “network on demand” facilities complementing the existing
cloud services portfolio, we can gain some form of control on the underlying transport
layer, bypassing the actual locality constraints in resource allocation and allowing
the flexible orchestration of resources available in different sites and belonging to
different administrative domains.

8.1 � Introduction

Sharing of computer and storage resources has become a popular solution for a
number of key enterprise applications, including resolving complicated simulation
tasks, distributing high workloads between several sites, and dispersing critical
data and/or information technology assets among several locations to minimize the
risk of catastrophic failures. During times of limited budgets, resource sharing has
also become a popular means to reduce cost. Traditionally, this approach was
limited to data center infrastructures, but the latest trends such as virtualization
and broadband interconnects have pushed resource-sharing concepts even further.
The emerging cloud-computing paradigm allows us to locate computing and
storage resources anywhere in the world. No longer does the computer (whether it
is a PC or supercomputer) have to be co-located with its users or funding institution.
More precisely, cloud computing is referred to as an information service that is
available to an end-user out of a “transparent” cloud, whereby the cloud is an
abstract model for the end-user, which has no specific physical location. The cloud
is generally a conglomerate of interconnected, redundant data centers built to provide
certain services. Originally starting with Internet-related services such as search

F. Pamieri (*)
Università degli Studi di Napoli Federico II, CSI, Via Cinthia, 5, 80126 Napoli, Italy
e-mail: fpalmier@unina.it

Chapter 8
Enhanced Network Support for Scalable
Computing Clouds

Francesco Pamieri and Silvio Pardi

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_8, © Springer-Verlag London Limited 2010

128 F. Pamieri and S. Pardi

engines, more traditional services, applications, and tasks that used to reside on an
end-user’s terminal or computer get transferred to the cloud. The only requirement
to gain access to them is a broadband connection. With the available high band-
width optical networks, it is now possible to locate the available resources on the
cloud within properly equipped sites in remote locations throughout the world. A
move towards clouds signals a fundamental shift in how we handle information. At
the most basic level, it is the computing equivalent of the evolution in electricity a
century ago when farms and businesses shut down their own generators and bought
power instead from efficient industrial utilities. Unfortunately, the best-effort deliv-
ery system of the Internet, often used as the underlying transport network for most
of the existing cloud infrastructures, imposes severe constraints on the transfer of
massive amounts of data, and thus restricts the deployment of the above-men-
tioned applications on wide-area scales. Besides the lack of bandwidth, the inability
to provide dedicated links makes the current network technology not well suited for
performance-critical Grid computing. A solution is needed for providing dedicated
end-to-end connections, dynamically allocable on-demand or by scheduled reserva-
tion, to critical data-intensive applications. Accordingly, in this chapter, we intro-
duce the concept of network resource visibility and network performance awareness
into the cloud control logic for coping with the severe scalability limits (with
respect to the more demanding data-intensive application) of cloud infrastructures
operating in a network-oblivious fashion. We present the benefits of such an
extended cloud by proposing a new service and resource management model,
where each service is associated with specific performance requirements to be
enforced by considering both the needed runtime resources available and the end-
to-end communication features of the connections between them. We focus our
efforts on the transport facilities located at the “lowest” layer of the cloud systems,
because here we can provide a solid foundation on top of which language-, service-,
and application-level cloud-computing systems can be explored and developed. By
introducing some form of control of the underlying transport layer, we bypass the
usual locality constraint in computation and storage resource allocation needed to
ensure acceptable performances within the cloud runtime system, allowing the flex-
ible orchestration of resources available in different sites and belonging to different
administrative domains. Also, by adopting proven circuit switched network
concepts with modern wavelength-routed networks as an improved hybrid transport
facility within clouds, we address the “missing link” in the cloud networking “big
picture”, i.e. the concept of dynamic “network on demand” services complementing
the existing cloud resource-sharing and computing-services portfolio.

8.2 � The Cloud Evolution

The upcoming evolution of cloud computing is a major change in our computing
technology. One of the most important parts of that evolution is the advent of the first
production platforms based on the cloud paradigm. Such platforms promise real

1298  Enhanced Network Support for Scalable Computing Clouds

gains in terms of performance scalability and agility to their users. By leveraging
cloud computing, an organization can rapidly deploy applications where the under-
lying technological components can expand and contract with the natural ebb and
flow of the involved business lifecycle. Traditionally, once an application was
deployed, it was bound to a particular infrastructure until the infrastructure was
upgraded/improved. The result was low efficiency, poor utilization, and limited
flexibility. Cloud enablers such as virtualization and grid computing allow applica-
tions to be dynamically deployed onto the most suitable infrastructure at runtime.
Cloud computing takes these concepts further, by allowing more automated resource
and workload management practices. This elastic aspect of cloud computing allows
applications to scale and grow without needing traditional “fork-lift” upgrades. Like
any new paradigm, Cloud computing represents an architectural shift from the tradi-
tional distributed computing approaches. Such a shift is best described by the addition
of a new and as transparent as possible middleware layer on top of the existing com-
puter and device operating systems that we can call a Cloud Operating System
(COS). It can be considered as a network operating system running atop a cloud, i.e.
a hyper network of computers. As its name suggests, this kind of runtime platform
lets users write applications that run in the cloud, or to use services provided from
the cloud, or both. But the transformation that cloud computing makes possible goes
beyond simply running applications on a virtualized platform built on someone
else’s hardware. It extends the computing model with the transparent utilization of a
platform that the provider has created, and which, to some degree, abstracts the
essence of scalability and distributed processing. More generally, the concept of
cloud computing can incorporate various computer technologies including web
infrastructure, Web 2.0, and many other emerging technologies. People may have
different perspectives from different views. For example, from the view of the end-user,
the cloud-computing service moves the application software and operation system
from desktops to the cloud side, which enables users to plug-in anytime from any-
where and utilize large-scale storage and computing resources. On the other hand,
the cloud-computing service provider may focus on how to distribute and schedule
the computer resources. Nevertheless, storage and computing on massive data are
the key issues for a cloud infrastructure.

8.3 � Improved Network Support for Cloud Computing

The promise of cloud computing is ubiquitous access to a broad set of applications
and services, which are delivered over the network to multiple customers. Such
services are essentially offered through interfaces available within the “clouds,”
rather than spread over the single computers connected through the Internet. On the
other hand, such cloud infrastructures, because of their high degree of abstraction,
have the potential to introduce unpredictable performance behaviours. In fact, while
sharing the resources available on a large distributed infrastructure can average out
the variability of individual workloads, it is extremely difficult to predict the exact

130 F. Pamieri and S. Pardi

performance characteristics of your application at any particular time. Like in any
shared infrastructure, varying individual workloads, resource demands, of and net-
work load conditions, can result in unpredictable performance behaviour of the
combined applications. Furthermore, as cloud computing enables users and appli-
cations to store all their data on the network, handling and moving large volumes
of data within the cloud or between the users and the cloud may become a challeng-
ing issue. Consequently, cloud-service providers must guarantee that data are pro-
cessed automatically and transferred transparently when and where they are needed.
Also important to the notion of cloud is the automation of these tasks. An environ-
ment in which the system requires human intervention to allocate bandwidth on
communication links or resources to processes is not a cloud: it is simply a data
center. Integrating an accurate network view into the cloud management in order to
support these types of services would make the cloud more flexible and also
increase the efficient use of the available resources and communication infrastruc-
ture. The underlying network architecture building the foundation for cloud com-
puting consists of interconnected server farms within the data centers and a
high-speed transport network providing connectivity to remote and backup sites.
These high-speed connections form the backbone of the cloud network and are
required to run at highest bandwidth with lowest transmission latency, and in gen-
eral, according to a properly defined QoS degree. Cloud-computing resources can
be made accessible through the public Internet, private high-performance networks,
and often through a hybrid mixing of the two. Providers and users of cloud services
must understand the performance, redundancy, and cost associated with all the
available options, because not all the applications that have to be run on the cloud
have the same features: some will only require the basic capabilities available on
the public Internet or traditional public connection services, while others may
require the enforcing of specific network performance constraints.

8.3.1 � Why the Internet is Not Enough?

The public Internet is the simplest choice for delivering cloud-based services. In this
model, the cloud provider simply purchases Internet connectivity and its customers
access the services via their own Internet connections. However, modern high-
performance applications are raising communication and bounded-time execution
requirements that the public Internet cannot meet neither at the present nor even in
the foreseeable future. In fact, the traditional Internet-shared network paradigm is
based on the best-effort packet-forwarding service that is a proven efficient technol-
ogy for transporting burst transmission of short data packets, e.g., for remote login,
consumer-oriented email, and web applications. Unfortunately, this is not enough to
meet the challenge of the large-scale data transfer and connectivity requirement of the
modern cloud-based collaborations. More precisely, the traditional packet-forwarding
paradigm, based on statistical multiplexing, is not scalable in its ability to rapidly
move very large data quantities. Making forwarding decisions every 1,500 bytes is

1318  Enhanced Network Support for Scalable Computing Clouds

sufficient for emails or 10–100 KB web pages. This is not the optimal mechanism if
we have to cope with data size of six to nine orders larger in magnitude. For example,
copying 1.5 TB of data using packet switching requires making the same forwarding
decision about one billion times, over many routers along the path. Internet-based
cloud infrastructures lack the scalability features required by modern data-transfer-
intensive applications in several aspects: network resources cannot be reserved in
advance, bandwidth is too low, QoS is not guaranteed, and hence, neither application
success nor a bounded completion time can be ensured to the users. Particularly,
reservation of connectivity resources is needed to facilitate the transportation of enor-
mous datasets between distant sites within the cloud in predictable times. Clearly, this
cannot be easily achieved in traditional packet-switched networks, where the resource
needs are usually not known and hence cannot be planned in advance.

8.3.2 � Transparent Optical Networks for Cloud
Applications: The Dedicated Bandwidth Paradigm

Creating a dedicated circuit over several available high-speed links will be a much
more effective multiplexing technique for large data transfers. Consequently, there
is the need to develop new architectures and services that support cloud infrastruc-
tures in association with emerging networks technologies, having the potential to
always provide in advance the available large bandwidth pipes with a capacity of
several orders of magnitude beyond that of today’s communication infrastructures.
Only a modern optical transport network provides the capacity and bandwidth
needed to support these demanding cloud-computing applications. Accordingly, in
order to achieve connectivity resources in terms of bandwidth and quality of service
(QoS) when and where the applications need, it is necessary to perform advanced
provisioning of end-to-end dedicated optical “virtual circuits” through the network,
implemented on properly reserved wavelengths on the available Wavelength
Division Multiplexing (WDM)-based optical transport infrastructures. In detail,
according to the WDM paradigm, the optical transmission spectrum can be carved
up into a number of non-overlapping wavelength bands, each supporting a single
communication channel operating at whatever protocol or rate one desires (protocol
and bit-rate transparency). Thus, by allowing multiple independent channels to
coexist on a single fiber, we can make the most of the available optical infrastruc-
tures, with the corresponding challenges being the design and development of
appropriate network architectures, control-plane protocols, and algorithms that
make these connectivity resources available to cloud applications. As such network
control plane provides an advance reservation capability to the circuit, the
data-intensive applications can be guaranteed to achieve certain bandwidth and
QoS in specific time slots. This can be considered the most promising mechanism
to meet all the future data transfer demands from applications running on the cloud
through the provisioning of huge amounts of cheap bandwidth through dedicated
end-to-end connections fulfilling the proper QoS requirements.

132 F. Pamieri and S. Pardi

8.4 � Architecture and Implementation Details

The solution to all the above-mentioned issues will result in a flexible and evolu-
tionary architecture that supports cooperation between different entities (computing
systems/clusters, storage, scientific instruments, etc.) within the cloud, based on a
scalable framework for dynamic and transparent configuration and interconnection
of multiple types of resources for high-performance cloud-computing services over
globally distributed optical network systems. To achieve this, we have to abstract
and encapsulate the available network resources into manageable and dynamically
provisioned entities within the cloud in order to meet the complex demand patterns
of the applications and to optimize the overall network utilization. More precisely,
we need to conceive a new cloud architecture considering the network resources as
key resources that can be managed and controlled like any other resource by the
cloud middleware/distributed operating system services. In such architecture, the
cloud system is modeled by using a three-layer hierarchical schema:

The •	 infrastructure layer, providing a virtualized interface to hardware resources,
such as CPU, memory, connectivity/bandwidth, and storage, and aggregating
and allocating them on a totally distributed basis
The •	 platform layer including the components that implement the cloud basic
services and runtime environment, such as the cloud operating system kernel, a
distributed file system (DFS), cloud input/output (I/O) facilities, computing and
virtualization engine, network management, and interface modules
The •	 application layer hosting domain-specific application and realizing the
cloud service abstraction through specific interfaces

The interfaces provided at the infrastructure layer make the platform layer almost
totally independent from the underlying hardware resources, and thus ensure high
scalability and flexibility benefits to the whole cloud architecture. Accordingly, the
infrastructure layer can be implemented by using a public service such as Amazon
EC2/S3 [1,2] or another private-owned infrastructure or solution such as a comput-
ing cluster or a grid.

Analogous to the operating system that manages the complexity of an individual
machine, the COS handles the complexity at the platform layer and aggregates the
resources available in all the data centers participating in the cloud. In particular, it
runs applications on a highly unified, reliable, and efficient virtual infrastructure
made up of distributed components, automatically managing them to support
pre-defined service-level agreements (SLAs) in terms of availability, security, and
performance assurance for the applications. It also dynamically moves the applica-
tions with the same service-level expectations across on-premise or off-premise
sites within the clouds for the sake of highest operational efficiency.

A DFS platform provides a consistent view of the data seen by all the clients
named in a hierarchical name space among multiple naming/directory servers, and
ensures their distribution across the cloud to handle heavy loads and reliability in
case of failures.

1338  Enhanced Network Support for Scalable Computing Clouds

The I/O subsystem provides data-exchange services in the same infrastructure
or among different clouds by using several protocols and facilities. Such services
are implemented within the network control logic that has the role of collective
broker for network connectivity requirements, keeps track of the resources and
interfaces available on the cloud, and copes with all the necessary network opera-
tions by hiding the complexity of the resource-specific allocation tasks. These
functions are implemented in the cloud middleware platform by relying on infor-
mation models responsible for capturing structures and relationships of the
involved entities. To cope with the heterogeneity of the network infrastructure
resources, we propose a new technology-independent network resource abstrac-
tion: the Traffic Engineered end-to-end virtual circuit that can be used for virtual-
connection transport. Such virtual circuit mimics a direct point-to-point connection
or pipe with specific bandwidth and QoS features. The network control logic
handles each connectivity request; it then coordinates the setting up of the needed
tunnels between the nodes on the cloud hosting the requesting applications.
This schema guarantees access to dedicated circuits, which may be requested
on-demand or by advance reservation to deliver more reliable and predictable
network performance.

Finally, the user interface supports administrators and clients to monitor and
manage the cloud platform and the applications running on it through specific user-
friendly interfaces. It includes configuration, accounting, performance, and secu-
rity-management facilities. In this domain, many open-source technologies can be
considered. The web services technology is a good candidate to play a role in building
such user interface, which makes the cloud easily accessible through the network
by delivering desktop-like experience to the users (Fig. 8.1).

Fig. 8.1  The cloud-reference architecture

134 F. Pamieri and S. Pardi

8.4.1 � Traffic Management and Control Plane Facilities

In our proposed architectural framework, an application program running on a cloud
has the view of a virtualized communication infrastructure unifying all the needed
computational and storage resources into a common “virtual site” or “virtual net-
work” abstraction, and should be able to dynamically request some specific service
levels (bandwidth/QoS, protection, etc.) on it. The fulfilment of the above-mentioned
requests triggers the on-demand construction of one or more dedicated point-to-point
or multipoint “virtual” circuits or pseudo-wires between the cloud sites hosting the
application’s runtime resources, and is accomplished co-operatively by the network
devices on the end-to-end paths between these sites. The above-mentioned circuits
can either be dedicated layer-2 channels, realizing the abstractions of a transport
network behaving as a single virtual switching device, or traffic engineered paths
with guaranteed bandwidth, delay, etc. All the involved network resources have to
be defined in advance at the “virtual network” configuration time. Control-plane
protocols define the procedures for handling such traffic engineering operations,
i.e., immediate requests for connectivity at a guaranteed rate. The transparency and
adaptability features of cloud infrastructures make support for these operations
absolutely necessary in a suitable transport network, which may be a mesh of pri-
vate or public shared networks, owned and managed by some co-operating service
providers and/or enterprises. The underlying network must be as transparent as
possible with respect to the cloud infrastructure, so that all the necessary network
operations are almost totally hidden to the applications and/or Virtual Machines
running on it. Traffic management in our model should work on a pure “peer-
based” model based on MPLS/GMPLS [3,4] technology that introduces a circuit-
switching paradigm on top of the basic IP packet-switching framework. We
consider a network built on label switching routers (LSR), optical wavelength
switches, and communication links that may be under the administrative control of
several cooperating NSP, realizing a common transport infrastructure. The optical
devices implement an intelligent all-optical core where packets are routed through
the network without leaving the optical domain. The optical network and the sur-
rounding IP networks are independent of each other, and an edge LSR interacts
with its connected switching nodes only over a well-defined User-Network
Interface (UNI). A subset of the routers are known to be ingress and egress points
for the network traffic within the cloud and these are typically the customer edge
(CE) devices directly attached to the NSP’s point-of-presence locations or Provider
Edge (PE) devices. There are no requirements for CE devices in order to map
the logical connections to the remote sites – they have to be configured as if they
were connected to a single bridged network or local area network. Also, the NSP
edge nodes and the optical switches within the core do not have any information
related to the cloud, and only transfer the tagged packets or cross-connect optical
ports/wavelengths from one LSR to another in a transparent way. The key idea in
such architecture is to realize a strict separation between the network control and
forwarding planes. The space of all possible forwarding options in a network
domain is partitioned into “Forwarding Equivalence Classes” (FECs). The packets

1358  Enhanced Network Support for Scalable Computing Clouds

are labelled at the ingress depending on the FEC they belong to. Here, the FEC
concept clearly resembles that of a point-to-point or multipoint dedicated logical
connection or virtual circuit. Each of the intermediate nodes uses the label (or the
incoming transport wavelength in the optical core) of each incoming packet to
determine its next hop. Labels can be pushed, swapped, and popped by the LSRs
and a specific label distribution protocol (such as LDP [5] or RSVP [6]) is used for
label information exchange between all the nodes. All the network intelligence is
located in the edge nodes, where the virtual connection originates and terminates,
and where all the necessary tunnels are set up to connect to all the other NSP nodes.
The main advantage of such a circuit-switching paradigm is that it enables perfor-
mance isolation between traffic streams that belong to different virtual connections –
something that packet switching alone cannot guarantee. By performance isolation,
we mean that we can prevent the performance of a virtual connection from being
affected by a traffic stream belonging to another one. All the above-mentioned
facilities need pre-determined “conduits” or label switched paths (LSPs) to be
established to specific destinations. Traffic is steadily mapped onto them according
to the dynamic needs of the involved users and their capabilities. More precisely,
LSPs can be characterized by optional properties, such as the amount of bandwidth,
type of packet treatment, or class of service. The former parameter is used at a set-
up time in a traffic engineering capable network to select LSP routes with an
amount of available bandwidth sufficient to satisfy the LSP request. This attribute
can also be used for subsequent LSP route optimizations. On the other hand, the
class of service can be used to identify the MPLS packets that belong to the same
traffic aggregate and have to be forwarded according to the same behaviour. In this
way, the LSP can be regarded as a Differentiated Service Path. The LSPs can thus
be used to implement explicit virtual connections on the underlying transport net-
work, supporting precise reservations on a service-level basis and obeying traffic-
isolation constraints. Such virtual connections are long-lived ones, possibly lasting
for several months at a stretch. At the network control plane level, for each virtual
connection between two CE nodes, at least a couple of reserved LSPs must be set
up through the underlying network to carry a service-guaranteed traffic stream from
the ingress router to the egress one where the CE nodes are attached.

8.4.2 � Service Plane and Interfaces

In the proposed scenario, the network turns out to be a resource as important as
computation and/or storage. As such, the cloud operating system requires the same
level of control towards the subsets of well-defined amounts of network resources
for the entire execution of a specific task. A chief goal of this control is to turn the
network into a virtualized resource that can be acted upon and controlled by other
layers of software, realizing a service plane available to applications and virtual
machines. Such a service plane is typically concerned with dedicated end-to-end
optical channel/circuit allocation, optimization, monitoring, and restoration across the
network that becomes the fundamental architectural “glue” unifying all the distributed

136 F. Pamieri and S. Pardi

resources into a “virtual site” and “virtual computing system” abstraction, so that
they can be made available to the applications as if they were in the same Server
Farm/data center and LAN. The service plane must be designed to be extensible
from the ground up. It should allow adaptation of the above-mentioned control plane
interfaces and abstract their network view, or element set, into its service portfolio.
In other words, the network becomes a resource managed by the cloud as much as
computation or storage, and the service virtualization is layered upon the available
network control plane technology in the IP/optical environment.

8.4.2.1 � Providing Network Services to Cloud-Computing Infrastructures

When network connections are considered as resources to be managed and shared
within the cloud framework, one needs to exactly specify what is meant by network
resources, how to encapsulate them into the cloud-services paradigm, and how to man-
age these services. A specific cloud service is a self-contained, self-described application
that can be published, located, and invoked over a network. By this definition, capacities
offered by a network endpoint do not constitute a service offered by the cloud. Multiple
endpoints must co-operate to establish a network service for the cloud. By comparison,
other resources, such as storage capacity or processing capacity, can be offered by a
node without co-operation with other nodes. For this reason, we believe that a different
abstraction is required to model network resources as a cloud service.

8.4.2.2 � The Cloud Operating System–Network Interface

A natural choice for modeling this interface is the Web Service Resource Framework
(WSRF) [7] aiming at providing specialized web services enhanced for cloud users
and applications. Implementing each high-level system component as a stand-alone
web service has the following benefits: first, each web service exposes a well-
defined language-agnostic API in the form of a WSDL document containing both
operations that the service can perform and I/O data structures. Second, we can
leverage the existing web-service features such as WS Security policies for secure
communication between the components. The Interface’s WS service can advertise
a single multiprotocol endpoint for authenticating and consuming user requests,
while also translating the request to an internal protocol. Communication with the
top-level service interface may take place via SOAP/http eventually secured by SSL
and some authentication mechanisms, such as X509 or HMAC signatures. This can
be achieved through the introduction and utilization of pluggable request-handling
interfaces in the supporting web services stack software. All the offered web ser-
vice interfaces need to be stateless and persistent, where data is not retained among
invocations and services outlive their clients. The internal services must be uncon-
cerned with the details of the outward-facing interfaces utilized by users while
benefitting from enforcement of message-validation requirements. The network
control logic must support these basic service functions within the cloud middleware

1378  Enhanced Network Support for Scalable Computing Clouds

by relying on information models responsible for capturing structures and relation-
ships of the involved entities. Access to the optical transport network control plane
may be realized through an optical user-network interface (O-UNI) standardized by
the Optical Internetworking Forum (OIF) [8]. The optical network services can be
made available to the upper middleware layers through an O-UNI compliant pro-
grammatic interface library interfacing the client-side middleware services with the
underlying edge routers. Every interface function can be in turn mapped to a set of
UNI primitives for network resource setting. Each network resource or node has to
be described by a set of XML interface elements, and the main interface methods
should allow the management and monitoring of the available LSPs and relative
traffic and performance parameters. Thus, every connection created will be charac-
terized by the virtual channel or LSP (identified by the addresses engaged) that in
turn is characterized by a set of attributes (service class, bandwidth available and
utilized). In detail, the proposed abstractions, supporting the connectivity services,
concern:

The creation of a virtual point–to-point or multipoint network that transparently •	
allows the connection between its endpoints with specific performance attributes
(bandwidth, latency, and protection)
The deletion/release function that allows an existing virtual network to be •	
deleted and its resource released for further usage
The modification of a virtual point-to-point or multipoint network by adding or •	
removing some participants or changing its service-level requirements

8.5 � Proof of Concept Implementation
and Performance Analysis

We proved the main concepts beyond the presented model and analyzed its perfor-
mance by using a very simple cloud prototype testbed, implemented on the existing
Federico II University high-performance network and scientific computing infra-
structure. In particular, the infrastructure-layer services have been implemented on
top of the distributed grid infrastructure that unifies all the main computing and
storage resources belonging to the SCoPE (Italian acronym for high Performance,
Cooperative and distributed System for scientific Elaboration) project. Such grid
infrastructure is based on the gLite [9] middleware and spans several data centers
geographically distributed in the Naples urban area. Its connectivity is supported by
a metropolitan optical fiber network that offers high-performance communication
facilities to all the involved research sites.

8.5.1 � The Prototype Details

The architecture of the cloud prototype matches the three-layer paradigm presented
in the previous sections (see Fig. 8.2).

138 F. Pamieri and S. Pardi

The main technological choices underlying our prototype implementation are:

gLite at the infrastructure layer. Such solution realizes a resource-virtualization •	
facility based on the traditional gLite core and collective services, specifically
conceived for e-science applications. gLite provides computing and storage
facilities through a web services based interface by using the CREAM and SRM
protocols, and implements data-movement services, resource brokering, work-
load management, and accounting. The gLite middleware can be integrated with
other infrastructure management facilities, such as VM-based runtime environ-
ments (i.e. OpenNebula [10]) and map-and-reduce [11] services (i.e. Hadoop
[12]). For our testbed, we extended the gLite middleware by introducing the
support of some basic network control services and interfaces.
The platform layer is implemented by using the eyeOS [•	 13], a Cloud Operating
System. EyeOS offers Web 2.0 like tools, available through a flexible and pow-
erful Web Desktop interface for the creation of new cloud applications, simply
by using a meta-language based on PHP/AJAX. EyeOS manages user profiles
and interacts with the underlying infrastructure layer.
Finally, the application interface has been implemented through a portlet con-•	
tainer that guarantees the seamless integration of different technologies and
exposes the cloud prototype user interface, monitoring facilities, and Wiki
pages. The product of choice is LifeRay, an open-source solution based on a
Service Oriented Architecture (SOA) that supports Single Sign-On (SSO) for
simplifying user authentication and authorization tasks.

The above-mentioned software stack guaranteed the abstraction and virtualization
services needed at each layer of the cloud architecture, and offered simple and
effective mechanisms for creating new applications and making them available to
the final users throughout the cloud infrastructure.

8.5.1.1 � The Underlying Network Infrastructure

The physical transport infrastructure, on which our prototype is based (see Fig. 8.3),
is approximately 50-km long, consists of 156 single-mode fibers connecting, in a

Application

Platform

Infrastructure

Fig. 8.2  The prototype architecture

1398  Enhanced Network Support for Scalable Computing Clouds

multi-ring shape with multiple differentiated ways, four ring-to-ring interchange
and service aggregation centers strategically placed on the metro area, which real-
izes the main transport and access distribution infrastructure. The backbone is built
on a fully meshed core realized between four high-performance Cisco routers
(a 12410 GSR and three 7606 OSRs), each acting as an access aggregation point
(POP) in the metropolitan area. On the multi-ring backbone, we deployed an
MPLS-based control plane architecture capable of establishing, managing, and
tearing down bandwidth and QoS-guaranteed end-to-end connections.

8.5.1.2 � The Prototype Cloud Network Control Logic and its Services

The network control logic has been implemented within our prototype testbed, by
integrating a set of Perl scripts realizing some simple interface services at the gLite
middleware layer, with the eyeOS interface. Such simple kernel of network services
interacts with other cloud services/applications at different levels of the cloud stack,
and enables location-independent data transfer and replication, together with band-
width on demand and virtual-switch implementation through the user-interface
facilities. The basic functions provided are reserving, releasing, and querying or
modifying the status of end-to-end virtual circuits between different sites of the
underlying distributed computing infrastructure. They have been made available
through a web-service interface, in which every basic operation is characterized by
a set of user-layer attributes (i.e. service class, bandwidth, and traffic-flow identi-
fier) that in turn is implemented at the control-plane layer by a couple of unidirec-
tional traffic-engineered LSP tunnels, together with some flow-specific routing
policies. Every basic service function is in turn mapped to a set of Cisco CLI com-
mands for network resource configuration, submitted to the network elements
within the MPLS core using the Net::Telnet::Cisco standard Perl interface. Each
invocation of specific function triggers the execution of a Perl script using a dedicated
CLI session for the duration of its execution. When triggering the creation of pseudo-
wire connections between the nodes, the requiring application needs to supply detailed
information about all the physical nodes and ports involved to the network control
logic. These data can be obtained on each node through the Cisco CDP protocol
using a simple Perl interface agent (based on the Net::CDP standard class/module).

Fig. 8.3  The prototype network

140 F. Pamieri and S. Pardi

The interaction with the network control logic is realized by a new set of cloud
services created on top of eyeOS web-desktop. The authentication/authorization
process is based on x509 proxy certificates with the Virtual Organization Membership
Services (VOMS)-extension, in the gLite-style. A user with the proper privileges can
ask for a virtual circuit operation through the eyeOS network interface.

8.5.2 � Performance Evaluation and Results Discussion

In this section, we present some simple performance evaluation experiences done on
our Cloud prototype to show how an application working on large data volumes dis-
tributed in the different sites within the cloud can greatly benefit from the introduction
of the above-mentioned network control facilities in the cloud stack, and to demon-
strate the effectiveness of the implemented architecture in providing QoS or band-
width guarantees. To better emphasize the above-mentioned benefits and improvements
to application behaviour, we performed our tests under real-world extreme traffic load
conditions, by working between the Monte S. Angelo Campus site, actually the largest
data center in the SCoPE infrastructure, and the Medicine Campus site, currently
hosting the other largest storage repository available to the university’s research com-
munity. More precisely, the presented results have been obtained by analyzing the
throughput associated to the transfer of 1-GB datasets between two EMC2 Clarion
CX-3 storage systems located in the above-mentioned sites.

Both the involved storage area networks are connected to their respective access
switches through dedicated resource manager nodes equipped with 1 Gbps full-duplex
Ethernet interfaces. Here, for simplicity sake, we considered several sample-transfer ses-
sions moving more than 2 TB of experimental data. During the first data transfer, per-
formed on the cloud without any kind of network resource reservation, the underlying
routing protocol picks the best but most crowded route between the two sites (owing to
the strong utilization of the involved links in peak hours) through the main branch of the
metro ring, so that we were able transfer 500 GB of data in 4 h (average 30 s/file) with
an average throughput of 33 MB/s (about 270 Mbit/s) and a peak rate of 86 MB/s. We
also observed a standard deviation equal to 12.0 owing to the noise present on the link,
as it can be appreciated from the strong oscillation illustrated in the picture in Fig. 8.4.
During the second test, we created a virtual point-to-point network between the two
storage sites by reserving a 1-Gbps bandwidth channel to the above-mentioned data-
transfer operation. Such action triggered the creation of a pair of dynamic end-to-end
LSPs (one for each required direction) characterized with the required bandwidth on the
involved PE nodes. In the presence of background traffic saturating the main branch,
such LSPs were automatically re-routed through the secondary (and almost unused)
branch to support the required bandwidth commitment. In this case, we observed that
the whole 500-GB data transfer was completed in 1 h and 23 min (9.9 s/file) with an
average throughput of 101 MB/s and a peak of 106 MB/s. We also observed an improve-
ment in standard deviation achieving an acceptable value of 2.8 against the 12.5 of the
best-effort case. We also evidenced a 20-MB/s loss with respect to the theoretical

1418  Enhanced Network Support for Scalable Computing Clouds

achievable maximum bandwidth, due to the known TCP and Ethernet overhead and
limits. This simple test evidences how the above-mentioned facility can be effective in
optimizing the data-transfer performance within the cloud, and the results are more
impressive when expressed in graphical form, as presented in Fig. 8.5, showing the gain
achieved by concatenating a sequence of 300 file transfers in the best effort network
with the other 300 transfers on the virtual 1-Gbps point-to-point network.

Fig. 8.4  The best effort transfer behaviour

0
0

10

20

30

40

50

A
ve

ra
ge

 T
hr

ou
gh

ou
t (

M
B

/s
)

60

70

80

90

50 100 150 200 250

Trials
300 350 400 450 500

Fig. 8.5  The gain achieved through a virtual connection

0
0

20

40

60

80

100

120

100 200 300

Trials

B
an

dw
id

th
 A

ve
ra

ge
 M

B
/s

400 500 600

NoLSP
34 MB/s Average Value
Dev. Standard 12.5

With 1 Gbit/s LSP
101 MB/s Average Value
Dev. Standard 12.5

142 F. Pamieri and S. Pardi

We also examined the end-to-end connection stability by copying the same data
volumes (500 GB) between the SANs, both in the presence of a virtual connection and
without it. In the following graphs (Fig. 8.6), we have compared the average through-
put observed in the first best-effort transfer operation (where an average throughput of
300 Mbps is achieved) and when the same bandwidth is reserved across the cloud sites.
In both the sessions, we were able to transfer the whole 500 GB of data in
approximately the same time (about 4 h) with an average throughput of 34 MB/s
(about 272 Mbit/s versus the theoretical 300 Mbit/s), but with a standard deviation
equal to 1.13 against a value of 12.0 of the best-effort case.

This demonstrated the much higher stability of the virtual circuit arrangement
exhibiting a guaranteed bandwidth within a 10% range.

8.6 � Related Work

To the best of our knowledge, few experiences about network-empowered cloud
infrastructures can be found in the literature. One of the most interesting approaches
[14] focuses on the migration of virtual machines and proposes a scheduling model
to minimize the migration-related risks of network congestions with respect to
bandwidth-demand fluctuations. A more experimental approach is presented in
[15], where an effective large-scale cloud testbed called the Open Cloud Testbed
(OCT) is proposed. In contrast with other cloud testbeds spanning small geo-
graphic areas and communicating through commodity Internet services, the OCT is

Fig. 8.6  Connection-stability comparison

0
0

20

40

60

80

100

50T
hr

ou
gh

ou
t A

ve
ra

ge
 (

M
B

/s
)

100 150 200 250

Trials

300 350 400 450 500

0
0

20

40

60

80

100

50T
hr

ou
gh

ou
t A

ve
ra

ge
 (

M
B

/s
)

100 150 200 250

Trials

300 350 400 450 500

1438  Enhanced Network Support for Scalable Computing Clouds

a wide-area testbed based on four data centers that are connected with a high-
performance 10-Gbps network, based on a foundation of dedicated lightpaths.
However, such an infrastructure, even if empowered by a high-performance net-
work, does not provide dynamic bandwidth allocation mechanisms driven by the
application requirements, and its network-management facilities are limited to
basic monitoring. Other interesting issues regarding the benefits of a network-
aware approach can be found in [16], where the authors present the performance
improvements obtained through network resource engineering in running bioinfor-
matics application such as Lattice-Boltzmann simulations and DNA analysis. Other
examples of the introduction of a network-aware philosophy in high-performance
distributed computing systems are described in [17–21]. Finally, there is an active
open discussion about “End-to-end Network Service Level agreements (SLAs)”
within the EGEE project [22] exploring several strategies for advanced network-
services provision and analyzing the benefits of using specific SLAs for the most
demanding applications.

8.7 � Conclusions

We introduced a new network-centric cloud architecture in which the traditional
resource-management facilities can be extended with enhanced end-to-end con-
nectivity services that are totally under the control of the cloud control logic. Such
framework enables simple and affordable solutions that facilitate vertical and hori-
zontal communication, achieved through proper interfaces and software tools
between the existing network control plane and provisioning systems and the appli-
cations requiring dynamic provisioning of high bandwidth and QoS. Accordingly,
we proposed and developed a new service-oriented abstraction based on the existing
web services architecture and built on the WSRF framework,which introduces a
new network control layer between the cloud customers and the network infrastruc-
ture, decoupling the connection service provisioning from the underlying network
implementation. Such a control layer provides the necessary bridge between the
cloud and its data-transfer facilities so that the capabilities offered by the combina-
tion of the features of modern network and distributed computing systems greatly
enhance the ability to deliver cloud services according to specific SLAs and strict
QoS requirements.

References

	 1.	 Amazon: Amazon elastic compute cloud. http://aws.amazon.com/ec2/. Accessed Dec 2009
	 2.	 Amazon: Amazon simple storage service. http://aws.amazon.com/s3/. Accessed Dec 2009
	 3.	 Rosen E, Viswanathan A, Callon R (2001) Multiprotocol label switching architecture. IETF

RFC 3031
	 4.	 Mannie E (2004) Generalized multi-protocol label switching (GMPLS) architecture. IETF

RFC 3945
	 5.	 Jamoussi B et al (2002) Constraint-based LSP setup using LDP. IETF RFC 3212

144 F. Pamieri and S. Pardi

	 6.	 Berger L (2003) Generalized multi-protocol label switching signaling resource ReserVation
Protocol-Traffic Engineering (RSVP-TE) extensions. IETF RFC 3473

	 7.	 Czajkowski K, Ferguson DF, Foster I, Frey J, Graham S, Maguire T, Snelling D, Tuecke S
(2004) From open grid services infrastructure to WS-resource framework: refactoring & evo-
lution. http://www-106.ibm.com/ developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf.
Accessed Dec 2009

	 8.	 Rajagopalan B et al (ed) (2000) User Network Interface (UNI) 1.0 signaling specification.
OIF2000.125.3

	 9.	 gLite: Lightweight middleware for grid. http://glite.web.cern.ch/glite/. Accessed Dec 2009
	10.	 OpenNebula: The open source toolkit for cloud computing. http://www.opennebula.org/.

Accessed Dec 2009
	11.	 Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters.

Proceedings of 6th symposium on operating system design and implementation (OSDI), pp
137–150

	12.	 Hadoop: The Hadoop Project. http://hadoop.apache.org/core/. Accessed Dec 2009
	13.	 eyeOS: The open source cloud’s web desktop. http://eyeos.org/. Accessed Dec 2009
	14.	 Stage A, Setze T (2009) Network-aware migration control and scheduling of differentiated

virtual machine workloads, Proceedings of the ICSE workshop on software engineering chal-
lenges of cloud computing, IEEE Comsoc

	15.	 Grossman RL, Gu Y, Michal Sabala M, Bennet C, Seidman J, Mambretti J (2009) The open
cloud testbed: a wide area testbed for cloud computing utilizing high performance network
services. CoRR abs/0907.4810

	16.	 Coveneya PV, Giupponia G, Jhab S, Manosa S, MacLarenb J, Picklesc SM, Saksenaa RS,
Soddemannd T, Sutera JL, Thyveetila M, Zasadaa SJ (2009) Large scale computational science
on federated international grids: the role of switched optical networks. Future Gen Comput
Syst 26(1):99–110

	17.	 Hao F, Lakshman TV, Mukherjee S, Song H (2009) Enhancing dynamic cloud-based services
using network virtualization. Proceedings of VISA ‘09: the 1st ACM workshop on Virtualized
infrastructure systems and architectures, Barcelona, Spain

	18.	 Bradley S, Burstein F, Gibbard B, Katramatos D et al. (2006) Data sharing infrastructure for
peta-scale computing research. Proceedings of CHEP, Mumbai, India

	19.	 Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D (2008)
Eucalyptus: a technical report on an elastic utility computing architecture linking your pro-
grams to useful systems. UCSB CS Technical Report #2008–2010

	20.	 Palmieri F (2006) GMPLS-based service differentiation for scalable QoS support in all-optical
GRID applications, Elsevier. Future Gen Comp Syst 22(6):688–698

	21.	 Palmieri F (2009) Network-aware scheduling for real-time execution support in data-intensive
optical Grids. Future Gen Comp Syst 25(7):794–803

	22.	 The EGEE Project: Advanced Services: End-to-end Network Service Level agreements
(SLAs). http://technical.eu-egee.org/index.php?id=352. Accessed Dec 2009

145

Abstract  Cloud computing platforms such as Amazon EC2 provide customers
flexible, on-demand resources at low cost. However, while the existing offerings are
useful for providing basic computation and storage resources, they fail to consider
factors such as security, custom, and policy. So, many enterprises and research
institutes would not like to utilize those public Clouds. According to investigations on
real requirements from scientific computing users in China, the project YML-PC
has been started to build private Clouds and hybrid Clouds for them. In this paper,
we will focus on the first step of YML-PC to present a reference architecture based
on the workflow framework YML for building scientific private Clouds. Then,
some key technologies such as trust model, data persistence, and schedule mecha-
nisms in YML-PC are discussed. Finally, some experiments are carried out to
testify that the solution presented in this paper is more efficient.

9.1 � Introduction

Cloud computing, as a term for internet-based services, was launched by famous IT
enterprises (e.g. Google, IBM, Amazon, Microsoft, Yahoo, etc.). It promises to
provide on-demand computing power in the manner of services with quick imple-
mentation, little maintenance, and lower cost. Clouds aim at being dynamically
scalable and offer virtualized resources to end-users through the internet. Solutions
deployed in Clouds can be characterized as easy-to-use, pay-by-use, less time to
solution, and lower cost. Clouds can be divided into three types: public Clouds,
private Clouds, and hybrid Clouds. Generally speaking, public Clouds refer to
entities that can provide services to external parties, such as Amazon and Google.
Private Clouds are used to provide services to internal users who would not like to

L. Shang  (*)
MAP Team, Lifl, Laboratoire d’Informatique Fondamentale de Lille (LIFL),
University of Sciences and Technology of Lille, France
e-mail: ling.shang@lifl.fr

Chapter 9
YML-PC: A Reference Architecture
Based on Workflow for Building
Scientific Private Clouds

Ling Shang, Serge Petiton, Nahid Emad, and Xiaolin Yang

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_9, © Springer-Verlag London Limited 2010

146 L. Shang et al.

utilize public Clouds for some issues that span over security, custom, confidence,
policy, law, and so on. Hybrid Clouds share resources between public Clouds and
private Clouds through a secure network.

Scientific computing requires an ever-increasing number of computing resources
to deliver for growing sizes of problems in a reasonable time frame, and cloud
computing holds promise for the performance-hungry scientific community [1].
Several evaluations have shown that better performance can be achieved at lower
cost using Clouds and cloud technology than based on previous technologies. For
example, papers [2, 3] make an evaluation of cloud technology on public Clouds (e.g.
EC2). Papers [4, 5] evaluate cloud technology based on private Clouds (e.g. clusters
in internal research institute). Paper [6] shows the potential to utilize volunteer
computing resources to form Clouds. Papers [7–9] present methods to improve the
performance of a Desktop Grid platform. Paper [10] analyzes the cost-benefit of
cloud computing versus Desktop Grids. Papers [11–13] introduce some Clouds solu-
tions based on volunteer computing resources.

An investigation is made into requirements for building scientific computing
environments for non-large enterprises and research institutes in China. Those
issues can be summarized as follows: First, most of the enterprises and research
institutes have their computing environment, but they suffer from shortage of
computing resources. Second, they would not like to spend a lot of money to
expand their computing resources. On the other hand, they hope that they can
make full use of wasted CPU cycle of individual PCs in labs and offices. Third,
they need a high-level programming interface to decrease their costs (time,
money) in developing applications that suit computing environments. Last but
not least, they would like to utilize their own computing environments for
addressing the importance and security of their data. After all, these data are
bought from other corporates with high cost and they are required to keep those
data secret. To meet these requirements, a project has been started between the
University of Science and Technology of Lille, France, and Hohai University,
China. Its general goal is to build a private Cloud environment that can provide
end-users with a high-level programming interface, and users can utilize com-
puting resources they need without considering where these computing resources
come from (i.e. the layer of program interface is independent of the layer of
computing resources).

YML [14–16] is a large-scale workflow programming framework, developed
by PRiSM laboratories at the university of Versailles and Laboratoire
d’Informatique Fondamentale de Lille (LIFL, Grand Large Team, INRIA Futurs)
at the University of Science and Technology of Lille. The aim of YML is to pro-
vide users with an easy-to-use method to run parallel applications on different
distributed computing platforms. The framework can be divided into three parts:
end-users interface, YML frontend, and YML backend. End-users interface is
used to provide an easy-to-use and intuitive way to submit applications, and appli-
cations, can be developed using a workflow-based language, YvetteML. YML
frontend is the main part of YML, which includes compiler, scheduler, data
repository, abstract component, and implementation component. The role of this

1479  A Reference Architecture Based on Workflow for Building Scientific Private Clouds

part is to parse parallel programs, into executable tasks and schedule these tasks
to appropriate computing resources. YML backend is the layer to connect differ-
ent Grid and Desktop Grid middleware through different special interfaces, and
users can develop these interfaces very easily. The YML is a component-based
framework in which components can interact with each other through well-
defined interfaces and researchers can add/modify one or several interfaces for
other middleware to YML very easily.

Paper [18] presents a method of resource management in Clouds through a
grid middleware. Here, we will extend YML to build scientific private Clouds
for non-big enterprises and research institutes. We call this project “YML-PC.”
Three steps are needed to make this project a reality. The first step is to inte-
grate volunteer computing resources into dedicated computing resources
through YML and make them work in co-ordination. Volunteer computing
resources can be a supplement to dedicated computing resources and a volun-
teer computing resources-based platform has the ability to expand computing
resource pools dynamically by nature. If dedicated computing resources are not
enough for users, volunteer computing resources can be utilized to implement
their tasks. But users do not know whether their tasks are run on dedicated
computing resources or volunteer computing resources, and they need not
know. The key issue of this step is how to allocate tasks to different kinds of
computing resources more reasonably and make those computing resources
work with high efficiency. The second step is to develop an interface for
Hadoop and integrate it into YML. Then, some evaluations will be made on
cluster environment + Hadoop. The third step is to try to build a hybrid Clouds
environment through combining step one with step two. The solution is that
step one can stand for a kind of private Clouds and step two can be deployed
on public Clouds, then YML as a workflow-based framework can harness private
Clouds and public Clouds.

In this paper, our work focuses on the first step. To do that, our research-in-progress
on YML focuses on the following aspects:

Data flows. Added in the application file. Through adding this flow, data persis-•	
tence and data replication mechanisms can be realized in YML-PC. Also, it can
help to improve the efficiency of the platform greatly.
Monitor and Trust model. Introduced to monitor the available status of non-•	
dedicated computing resources and predict their future status. Also, a method to
evaluate expected execution time based on standard virtual machine is adopted.
Through this method, heterogeneous computing resources can be changed into
homogeneous computing resources and then can be evaluated. According to this
evaluation and prediction, tasks can be allocated to appropriate computing
resources.

The remainder of this paper is organized as follows: Section 2 is the general
introduction of YML. Section 3 describes the design and implementation of the YML-
based private Clouds in detail. In Section 4, some evaluations are made and some
related works are discussed. Section 5 gives conclusions and describes future work.

148 L. Shang et al.

9.2 � Overview of YML

YML is a workflow-based framework dedicated to execution of parallel applications
on various middleware. Now it can support two middlewares: OmniRPC [19] and
XtremWeb[20]. OmniRPC can harness dedicated computing resources in cluster
and grid environments, while XtremWeb can collect volunteer computing resources
in Desktop Grid. Condor is on the way to being integrated into YML. Figure 9.1
shows us the overview of YML.

There are four parts in the Fig. 9.1, which are CLIENT, Data Repository, YML,
and YML workers.

CLIENT provides the end-users an intuitive way to express parallel applications
by means of a workflow. The description language of YML is called YvetteML and
can express several execution structures of parallel programs, such as sequential
execution, parallel execution, and conditional branch and event notification/recep-
tion (event signals are used to control when an operation can be executed). A simple
example can be presented through Fig. 9.2. What we want to emphasize here is that
end-users just use YvetteML to describe the workflow and he/she must not know
how to program using special programming languages (e.g. Java, C, C++, Fortune,
MPI). The parallel program described using YvetteML can be run on different plat-
forms without any change. We will explain this point in the part of YML workers
in detail.

Fig. 9.1  Overview of YML framework [17]

DATA Repository

CLIENT

application of the client

binary
generator

middleware
specific backend

backend
scheduler

www

www

YML

YML WORKER

middlewares (yml workers)

YML
compiler

YML
scheduler

BACKENT-END Layer

component
generator

FRONT-END Layer

data repository server

execution catalog

resources informations

development catalog

1499  A Reference Architecture Based on Workflow for Building Scientific Private Clouds

Data Repository contains four parts, which are Development catalog, Resources
information, Execution catalog, and Data server. Development catalog has func-
tions (e.g. function A, B in Fig. 9.2.) developed using C or C++. These functions
can be reused in other applications. For example, application 1 and application 2
both need “function A” and if you develop “function A” for application 1, you can
reuse it in application 2 without any change. After “function A” in Development
catalog is registered in YML, “function A” will become the executable function in
the Execution catalog. Resources information is information about which comput-
ing nodes can be utilized. The information is dynamically changed according to the
availability of computing resources. As well known to us all, the key characteristic
of volunteer computing resources is volatility. So, accurate prediction of volunteer
computing resources is very important and it is also the key research point of this
paper. Data server is used to store data, and its transport model is based on server/
worker. So, adopting server/worker-based data transport model is another key
research point of this paper.

YML is the core of the “sandwich” architecture of YML framework. It can hide
the complexity and heterogeneity of the underlying computing platforms and pro-
vide a unique programming interface to end-users. YML has two layers, which are
Front-end and Back-end. Front-end can parse the pseudocode-based program in
CLIENT and invoke executable functions accordingly to form an executable graph.
According to this graph, YML scheduler will allocate tasks to Back-end scheduler.
Then, Back-end scheduler allocates those tasks to different computing resources
according to Resources information. Back-end provides different interfaces to
different middleware.

Fig. 9.2  Sketch of high-level program interface

A

B B B B

C

D D D

E

Sequential

A

//

Parallel

B

End Parallel

//

C

//

Parallel

D

End Parallel

//

E

End Sequential

150 L. Shang et al.

YML workers is the interface layer for middleware. Different middleware can be
used to harness different kinds of computing resources. For example, XtremWeb
can be used to collect volunteer computing resources and OmniRPC can harness
dedicated computing resources such as clusters and Grids. Here, what we want to
emphasize is that whatever kinds of middleware are used to harness computing
resources, the program in CLIENT can be run without any change.

9.3 � Design and Implementation of YML-PC

9.3.1 � Concept Stack of Cloud Platform

This section presents a detailed design for how to build the environment of cloud
computing based on previous work from papers [21–24]. As shown in Fig. 9.3,
generally speaking, cloud computing can have four main layers. The base is the
layer of “computing resources” and above this layer, “Operating system” and “Grid
middleware” can be used to harness those different kinds of computing resources.

Fig. 9.3  Concept stack of cloud platform

Cluster computingSuper computer

Desktop GridGrid

Cloud middleware backend

Core of Cloud middleware

Cloud middleware frontend Third
Party

Service

S
O

A

S
O

C

Social network… RSS, Blog, Mobile Service, HPC Application
layer

Cloud
Middleware

layer

Grid
Middleware

&
OS

Computing
Resources

pool

Easy-to-use Interface for End users

Business Model

cluster

VM

Cloud tool

1519  A Reference Architecture Based on Workflow for Building Scientific Private Clouds

Then, “cloud middleware” layer can help users compose applications without con-
sidering the underlying infrastructure; this layer hides different interfaces from
different platforms/systems/middleware and provides a uniform, high-level abstrac-
tion and easy-to-use interface for end-users. The top layer is “application layer” and
cloud platform will provide different interfaces according to different requirements.
Business model helps to support “pay-by-use” model, and users can get the best
services within their budget through “bidding mechanism.”
Next, detailed explanation will be made on those layers one by one:

Computing Resource pool: this layer consists of different kinds of computing •	
resources, which can be clusters, supercomputer, large data center, volunteer
computing resources, and some devices. It aims at providing end-users with
on-demand computing power.
Grid middleware and OS: the role of this layer is to harness all kinds of computing •	
resources in the computing resource pool. Some virtual machines can be generated
through virtual technology based on cluster (perhaps also based on volunteer
computing resources).
Cloud middleware layer: in the cloud platform, cloud middleware can be •	
divided into three parts according to their roles. Cloud middleware backend
aims to monitor all kinds of computing resources and encapsulate those het-
erogeneous computing resources into homogeneous computing resources.
Cloud middleware frontend is used to parse application programs into execut-
able subtasks. Cloud platform always provides end-users with higher-level
abstract interfaces. Through parsing the application program, this layer can
generate a file in which some necessary services (executable functions, com-
puting resources, third-party service library) are listed. The core of cloud
middleware includes a “matchmaker factory” in which appropriate matches
can be made based on business models between tasks and computing resources
according to their requirements and properties. Then, scheduler allocates those
“executable functions” and “third-party services” to appropriate computing
resources.
Application layer: this layer is generated according to real requirements by •	
end-users based on SOA. And SOA can make sure that all the interfaces from
different service providers are common and easy to invoke.
Business model: this model can support a pay-by-use model to end-users. It can •	
also help end-users get the best services within their budget.
End-user interface: The interface must be a high-level abstraction and easy to •	
use. It is very helpful for nonexpert computer users to utilize Cloud platform.

9.3.2 � Design of YML-PC

The detailed design of YML-PC is made based on a concept stack of cloud platform
(see Fig. 9.4). As mentioned earlier, the development on YML-PC can be divided
into three steps. The components with dashed border will be developed in the second

152 L. Shang et al.

step. In this paper, we are focussed on the first step. So, the detailed description will
also focus on the design and implementation of first step of YML-PC. YML-PC is
designed to build private Clouds for scientific computing based on workflow. Some
features of YML-PC can be summarized as:

YML-PC can harness two kinds of computing resources at the same time and •	
this can help to improve computing power greatly through integrating volun-
teer computing resources. At the same time, no extra cost is needed to do
that and volunteer computing resources can also help YML-PC to scale in a
dynamic way.
YML-PC shields the heterogeneity of program interfaces of underlying middleware/•	
system/platform and provides a high-level abstraction, unique interface for end-
users.
YML-PC can make full use of different kinds of computing resources according •	
to their properties. To improve the efficiency of YML-PC, prescheduling and
“data persistence” mechanisms are introduced into YML-PC.

Computing resource pool:  The computing resource pool of YML-PC consists of
two different kinds of computing resources: dedicated computing resources (serv-
ers or clusters) and non-dedicated computing resources (PCs). As well known to us
all, a cluster is too expensive to scale up for non-big research institutes and enter-
prises. At the same time, there are a lot of PCs in which a lot of CPU cycles are
wasted. So, it is appealing (from the viewpoint of both economy and feasibility) to
harness these two kinds of computing resources together. Computing resource pool
with a lot of PCs has features like being low cost, and scalabile by nature; these
features are key points of Clouds.

Fig. 9.4  Reference architecture of YML-PC

1539  A Reference Architecture Based on Workflow for Building Scientific Private Clouds

OS:  Operating system is the base for installing other software. Now YML-PC and
OmniRPC (used to harness dedicated computing resources) only support Linux OS.
XtremWeb, used to collect volunteer computing resources, can support Windows OS
and Linux OS.

Grid middleware:  The construction of a computing resource pool in YML-PC is
based on state-of-the-art technology: Grid and Desktop Grid technology. For YML-PC,
we utilize gird middleware OmniRPC to harness cluster-based computing resources
and Desktop Grid middleware XtremWeb to manage volunteer computing resources.
Also, we can utilize these two middleware at the same time to form a computing
resource pool consisting of two kinds of computing resources. As well known to us all,
traditional scientific computing mostly runs based on cluster or supercomputer and it
is necessary to make full use of this kind of computing resource. At the same time, the
power of volunteer computing is huge and it has been proved by existing volunteer
platforms such as Seti@home. It is very meaningful to make volunteer computing
resources be the supplement/extension of traditional computing resources.

Application layer and Interface:  The main design goal of YML-PC is for sci-
entific computing and numerical computing. So, to make scientific computing more
easy, a pseudocode-based high-level interface is provided to end-users.

YML frontend, YML backend and the core of YML will be described in the next
section.

9.3.3 � Core Design and Implementation of YML-PC

Fig. 9.5 will show us the core design and implementation of YML-PC. We will
explain these components in Fig. 9.5 one by one.

YML frontend: This provides end-users with an easy-to-use interface and allows
them to focus only on the design of the algorithm. Users need not take low-level
software/hardware into consideration when they develop their application pro-
grams. For the program interface of YML-PC, we still adopt the interface of YML.
For those “reusable services” (functions described in Fig. 9.2), two ways exist the
first is that users can develop those “reusable services” by themselves or with com-
puter engineers; the second way is to invoke those functions from a common library
(e.g. LAPACK, BLAS; we also call these “third-party services”). Here, what we
want to emphasize is that both the pseudocode-based program and those functions
developed are reusable and both are platform-independent and system-independent.
System independence means that users need not know what kinds of operating
system/middleware are utilized. Platform independence means that code can be run
on any platform (cluster, grid, Desktop Grid) without any change. That is, these
codes developed by users can be reused without caring about the middleware,
system, and platform. You can use OmniRPC on a grid/cluster platform or
XtremWeb on a Desktop Grid platform or both, but users’ code can be reused with-
out change.

154 L. Shang et al.

The core of YML: Three components are included in this layer: YML register,
YML compiler, and YML scheduler.

YML register is used to register reusable services and third-party services. Once
registered, these services can be invoked by YML scheduler automatically.

YML compiler is composed of a set of transformation stages that lead to the
creation of an application file from pseudocode-based program. The application file
consists of a series of events and operations. Events are in charge of sequences of
operations. In other words, which operation can be executed in parallel/sequence is
decided by the events table. Operations refer to those services registered by YML
register. One important work made in this paper is that a data flow table is gener-
ated in the application file. Through the data flow table, data dependence between
operations can be found (see “data flow table” in Fig. 9.6). As well known to us all,
these data dependencies determine the execution (in parallel/sequence) of different
operations. According to these data dependencies, prescheduling mechanisms
can be realized (see column “node” in “IP address table” of Fig. 9.6). Then, col-
laborating the “IP address table” (in Fig. 9.6), data persistence and data replication
mechanisms can be realized. The general idea of this part of work can be described
using Fig. 9.6.

YML scheduler is a just-in-time scheduler. It is in charge of allocating the
executable YML services to appropriate computing resources shielded by

Fig. 9.5  Core part of YML-PC

worker_n
XtremWeb

worker_…
OmniRPC

Third Party
Service

End users

Pseudo-codeReusable service

YML Register
YML Compiler

Application
file

YML service

YML scheduler Trust Model

Monitor
worker_1
OmniRPC

worker_2
XtremWeb

Data Server

Frontend Core Backend

Data Manager

Worker Coordinator

1559  A Reference Architecture Based on Workflow for Building Scientific Private Clouds

YML back-end layer. YML scheduler is always executing two main operations
sequentially. First, it checks for tasks ready for execution. This is done each time a
new event is introduced and leads to allocating tasks to the YML back-end. The
second operation is to monitor those tasks currently being executed. Once tasks
have started to execute, the scheduler regularly checks whether these tasks have
changed to the finished state. The scheduler will push new tasks with its input data
set and related YML services to an underlying computing node when the node’s
state is completion or unexpected error.

To make the process presented above a reality, two parts of this work are in
mentioned this paper. The first is to introduce monitoring and a prediction model
for volunteer computing resources. It is well known that volatility is the key char-
acteristic of volunteer computing resources and if we do not know any regularity
of volunteer computing resources, the problem with data dependence between
operations means that it cannot run on a Desktop Grid platform. The reason is
that frequent task migration will render the program incomplete forever. We call
this a “deadlock of tasks.” To avoid this situation, we introduce a monitor and pre-
diction model TM-DG [25]. TM-DG is used to predict the probability of availabil-
ity of computing nodes in the Desktop Grid during a certain time slot. The time slot
depends on users’ daily behaviors. For example, the availability of computing
nodes in the lab has relation to students’ school timetable. If students go to classes,
computers in the lab can be utilized for scientific computing. So the choice of time
slot is related to time slots of classes. It is because 2 h is needed for each class that
the time slot in [25] is set as 2 h. TM-DG collects two bodies of independent evi-
dence: (1) percentage of completion of the allocated task, and (2) an active probe
by a special test node, based on the time slot. Considering the “recommendation
evidence” from other users, Dempster-Shafer’s theory [26] is used to combine these
bodies of evidence to get the degree of node trustworthiness. The result of TM-DG
can be expressed by a four-tuple <I, W, H, m(T)>, in which I represents the identity
of computation node, W represents the day of the week, H represents a time inter-
val in a day, and m represents the probability of node availability. The four-tuple

Fig. 9.6  General idea of “Data Persistence” in YML-PC

156 L. Shang et al.

<node I, Monday, 1, 0.6> represents that the time slot is from 0 to 2 a.m. on Monday,
and the probability of successful execution on node I during this time slot is 0.6. So
in this paper, monitor component in YML-backend and schedule component in
Core of YML are based on the time slot.

The second part involves making full use of computing resources, so evaluation
of capability of heterogeneous computing nodes has to be made. So, a standard
virtual machine (VM) is proposed in this paper. The standard VM can be set in
advance. For example, the VM is set through a series of parameters (Ps, Ms, Ns,
Hs), in which Ps stands for CPU power of VM (2.0 MHz CPU), Ms represents
memory of VM (1 G Memory), Ns means network bandwidth of VM (1G), and Hs
stands for disk storage space required (10 G). Users can adapt the number of param-
eters according to real situation. A real computing node ‘Rm’ can be described as (Pr,
Mr, Nr, Hr). The capacity (Crm) of ‘Rm’ can be presented as follows: Crm= a1 * Pr/
Ps + a2 * Mr/Ms + a3 * Nr/Ns + a4 * Hr/Hs, in which a1 + a2 + a3 + a4 = 1. The
value of ax (x = 1, 2, 3, 4) can be set according to different influences on final
results from different parameters in real situations. We can set an appropriate value
to ax (x = 1…n) based on historic information. Through the VM, expected execu-
tion times of tasks on a computing node can be estimated.

Scheduler can choose appropriate computing nodes according to predictions of
availability of computing resources (from TM-DG) and time needed to execute a
task on this node (from VM). Scheduler will get the detail time and form the sched-
uler table and then schedule tasks to appropriate computing nodes. The YML
scheduler mechanism can be described using Fig. 9.7. When a fault is generated,
the task will be rescheduled. Future research about fault tolerance in YML-PC will

Fig. 9.7  Description of YML scheduler

1579  A Reference Architecture Based on Workflow for Building Scientific Private Clouds

focus on: (1) allocating the same task to three or more volunteer computing nodes;
(2) preemptive scheduling based on multi-queue scheduling mechanisms.

YML backend:  YML backend encapsulates different underlying middleware and
provides a consistent executable environment to tasks from the layer “core of
YML.” Concurrently, it permits to utilize one or several middleware through a
specific interface for each middleware. The back-end layer consists of three parts
named Monitor, worker coordinator, and data manager. In general, YML backend
sends requests for executing a task on a computing node and if the task finishes, it
also notifies the scheduler that the task is terminated successfully. Data manager
is a component for managing all data exchanges between nodes and data server.
This component provides two services: distributing appropriate data to workers
and retrieving the final results. Worker coordinator maintains a list of active
requests and a list of finished requests. The status can change dynamically accord-
ing to the status of computing nodes. It will allocate those tasks from YML sched-
uler to appropriate computing nodes in computing resource pools. Monitor
component is used to monitor the status of computing nodes. The monitoring
mechanism is based on users’ daily behavior, which is adopted to predict the
available time of computing resources and make prediction for data migration.

9.4 � Primary Experiments on YML-PC

In this section, three kinds of primary experiments (emulations) are made to show
that: (1) the computing resource pool can be scaled very easily; (2) great improve-
ments on platform efficiency can be made through emulating the data persistence;
(3) great improvements on platform efficiency can be made through emulating
appropriate task distribution between different virtual organizations.

Here, inter-iterative parallel-based block-based Gauss-Jordan algorithm [27, 28]
is used. According to the algorithm, q2 is the number of block-counts of matrix. The
number of total tasks the algorithm will generate is q3. All these experiments are
based on YML+OmniRPC, YML+XtremWeb, YML+OmniRPC/XtremWeb, and
Grid 5,000 platform [29]. In our experiments, the computational resources can be
described as follows (Table 9.1):

Table 9.1  Parts of computing resources in Grid’5000 platform

Site Cluster Nodes CPU/memory

Nancy Grelon 120 2 × Inter xeon, 1.6 GHz/2 GB
Rennes Paravent   99 2 × AMD opteron, 2 GHz/2 GB
Lyon Sagittaire   70 2 × AMD opteron, 2.4 GHz/2 GB
Bordeaux Bordereau   93 2 × AMD opteron, 2.6 GHz/2 GB

158 L. Shang et al.

9.4.1 � YML-PC Can Be Scaled Up Very Easily

In this experiment, we set the block-size of submatrix to 1,500 * 1,500, and the
middleware is YML+Xtremweb. The reason is that XtremWeb can be easily scaled
up for its “pull model” based task allocation mechanism. “R-B” represents that
the computing resource pool has ten computing nodes, while “R-A” implies that
the computing resources have scaled up to 20 computing nodes. Scale up occurs
during the process of program execution.

Figure 9.8 shows that when the block-count is less than 32, there is little influ-
ence on the elapsed time whether computing resource pool scales up or not. But
when the block-count is more than 32, scalability of computing resource pool has
an important influence on the elapsed time. The reason stems from the algorithm
itself. When the block-count is small, tasks generated are few; ten computing
resources can be enough for generated tasks. So, the influence on the elapsed time is
small. With the increase in block-count of matrix, the generated tasks increase
greatly. More computing resources are needed. So, the influence on elapsed time
becomes more obvious. In a word, from Fig. 9.8, we can conclude that, whether
the block count is small or large, scalability of a computing pool can improve the
efficiency of the platform. At the same time, this experiment testifies that YML-PC
has the ability to scale.

Fig. 9.8  Feature of scalability of YML-PC

1599  A Reference Architecture Based on Workflow for Building Scientific Private Clouds

9.4.2 � Data Persistence in YML-PC

The efficiency of YML-PC can be improved with the help of data persistence
technology. In this experiment, we set block-size of submatrix as 1,500 * 1,500.
The middleware is YML+OmniRPC. YML in Fig. 9.9 represents that the platform
does not support data persistence, while YML+DP stands for the YML-PC sup-
porting data persistence.

Figure 9.9 shows that data persistence is very important for scientific computing
especially for scientific computing with substantial data. It can save a lot of time
and thus improve the efficiency of the platform. With increase in block-counts of
matrix, more tasks are generated and therefore a lot of data transfers between data
server and workers are generated. If we take data persistence technology in cloud
computing platform, less communication overhead is generated and the efficiency
of cloud platform can be improved.

9.4.3 � Schedule Mechanism in YML-PC

Appropriate selection of computing resources based on trust model in YML-PC
is very important. In this experiment, we set block-size as 1,500 * 1,500, and
the middleware is YML+Xtremweb. ‘No fault’ in Fig. 9.10 represents the no

Fig. 9.9  Data persistence in YML-PC

160 L. Shang et al.

faults happen on the computing nodes. In other words, the trust model is totally
correct. ‘10% faults’ stands for 10% of computing nodes in cloud platform fail
during the process of program execution. In other words, the accurate rate of
trust model is 90%. ‘20% faults’ stands for 20% of computing nodes in cloud
platform failing during program execution. In other words, the accurate rate of trust
model is 80%.

Figure 9.10 tells us that choosing appropriate computing resources to execute
tasks is very important. Improper match-making between computing resources and
tasks will decrease efficiency greatly. So, monitoring the computing resources in
cloud computing is very important and we had better find the regularity behind its
appearance through monitoring. Trust model in paper [25] can be utilized in cloud
platform and it can be improved by adopting a better behavior model to describe
users’ behavior regularity.

9.5 � Conclusion and Future Work

Cloud computing has gained great success for search engines, social e-networks,
e-mail, and e-commercial. Amazon can provide different levels of computing
resources to users by the way of pay-by-use. Many research institutes, such as the
University of Berkeley, Delft University of Technology, and so on, have made

Fig. 9.10  Schedule mechanism in YML-PC

2
0

1000

2000

3000

E
la

ps
ed

 T
im

e

4000

5000

6000

3 42.5 3.5 4.5
q

5 5.5 6 76.5

No fault
10% fault
20% fault

1619  A Reference Architecture Based on Workflow for Building Scientific Private Clouds

evaluations on Amazon cloud platform. At the same time, Kondo et al try to
evaluate the cost-benefits of public Clouds and Desktop Grid platform and
conclude that Desktop Grid platform is promising and can be the base of cloud
platform. So, based on the research mentioned above and real situation of non-big
enterprises and research institutes in China, this paper extended the YML framework
and presented YML-PC, which is a workflow-based framework for building scien-
tific private Clouds. The project YML-PC will be divided into three steps: (1) Build
private Clouds based on YML through harnessing dedicated computing resources
and volunteer computing resources and make them work together with high effi-
ciency. (2) Extend YML to support Hadoop and run Hadoop on cluster-based vir-
tual machines. (3) Combining step 1 and step 2, build a hybrid Cloud based on
YML. This paper focused on step 1. To improve the efficiency of YML-PC, “trust
model” and “data persistence mechanism” are introduced in this paper. Simulations
demonstrate that our idea is appropriate for building YML-PC.

Future work will focus on developing components to make YML-PC a reality.
Then, more users’ behavior models will be researched to improve the accuracy of
prediction on available “time slot” of volunteer computing nodes. Fault-tolerant-based
schedule mechanism is another key issue of our future work. A new idea, which is to
deploy virtual tool (Xen, VMware for example) on volunteer computing resources and
form several virtual machines on volunteer computing node, is also to be evaluated.

References

	 1.	 Ostermann S et al Early cloud computing evaluation. http://www.pds.ewi.tudelft.nl/_iosup/
	 2.	 Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A,

Stoica I, Zaharia M (2009, Feb 10) Above the clouds: a Berkeley view of cloud computing.
Technical Report, University of California, Berkley, USA

	 3.	 Garfinkel SL (Aug 2007) An evaluation of Amazon’s grid computing services: EC2, S3 and
SQS. Technical Report TR-08-07, Harvard University

	 4.	 de Assuncao MD, di Costanzo A, Buyya R (2009) Evaluating the cost-benefit of using cloud
computing to extend the capacity of clusters. HPDC ‘09, ACM, pp 141–150

	 5.	 Ibrahim S, Jin H, Lu L, Qi L, Wu S, Shi X (2009) Evaluating MapReduce on virtual machines:
The Hadoop case. CloudCom 2009, pp 519–528

	 6.	 David P (2006) Anderson, Gilles Fedak: the computational and storage potential of volunteer
computing. CCGRID 2006, pp 73–80

	 7.	 Heien EM, Anderson DP (2009) Computing low latency batches with unreliable workers in
volunteer computing environments. J Grid Comput 7(4):501–518

	 8.	 Javadi B, Kondo D, Vincent JM, Anderson DP (Sept 2009) Mining for statistical models of
availability in large scale distributed systems: an empirical study of SETI@home. 17th IEEE/
ACM MASCOTS 2009, London, UK

	 9.	 Ma X, Vazhkudai SS, Zhang Z (December 2009) Improving data availability for better access
performance: a study on caching scientific data on distributed desktop workstations. J Grid
Comput 7(4):419–438

	10.	 Kondo D, Javadi B, Malecot P, Cappello F, Anderson DP (2009) Cost-benefit analysis of
Cloud Computing versus desktop grids. ipdps, pp 1–12

	11.	 Andrzejak A, Kondo D, Anderson DP (2010) Exploiting non-dedicated resources for cloud
computing. In the 12th IEEE/IFIP (NOMS 2010), Osaka, Japan, 19–23 April 2010

162 L. Shang et al.

	12.	 Domingues P, Araujo F, Silva L (2009) Evaluating the performance and intrusiveness of
virtual machines for desktop grid computing, IPDPS, 23–29 May 2009, pp 1–8

	13.	 Vincenzo D (2009) Cunsolo, Salvatore Distefano, Antonio Puliafito, Marco Scarpa: Cloud@
Home: bridging the gap between volunteer and cloud computing. ICIC (1):423–432

	14.	 Delannoy O, Emad N, Petiton SG (2006) Workflow global computing with YML. In: The 7th
IEEE/ACM international conference on grid computing, pp 25–32

	15.	 Delannoy O (Sept 2008) YML: a scientific workflow for high performance computing. Ph.D.
thesis, Versailles

	16.	 Delannoy O, Petiton S (2004) A peer to peer computing framework: design and performance
evaluation of YML. In: third international workshop on HeterPar 2004, IEEE Computer
Society Press, pp 362–369

	17.	 Choy L, Delannoy O, Emad N, Petiton SG (2009) Federation and abstraction of heteroge-
neous global computing platforms with the YML framework, cisis, pp 451–456. In: The
international conference on complex, intelligent and software intensive systems, 2009

	18.	 Caron E, Desprez F, Loureiro D, Muresan A (2009) Cloud computing resource management
through a grid middleware: a case study with DIET and eucalyptus. Cloud, pp 151–154

	19.	 Sato M, Boku T, Takahashi D (2003) OmniRPC: a Grid RPC system for parallel programming
in cluster and grid environment. In: the 3rd IEEE international symposium on cluster computing
and the grid, pp 206–213

	20.	 Germain C, eri VN¢, Fedak G, Cappello F (2000) Xtremweb: building an experimental platform
for global computing. In: Buyya R, Baker M (eds) GRID, ser. lecture notes in Computer
Science, vol 1971. Springer, Heidelberg, pp 91–101

	21.	Wang L, Tao J, Kunze M, Castellanos AC, Kramer D, Karl W (2008) Scientific cloud
computing: early definition and experience. In the 10th IEEE international conference on
HPCC, pp 825–830

	22.	 Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree
compared. In Grid computing environments workshop, pp 1–10

	23.	Vecchiola C, Pandey S, Buyya R (2009) High-performance cloud computing: a view of
scientific applications. In the 10th international symposium on pervasive systems, algorithms
and networks (I-SPAN 2009), Kaohsiung, Taiwan, December 2009

	24.	Jha S, Merzky A, Fox G (June 2009) Using clouds to provide grids with higher levels
of abstraction and explicit support for usage modes. Concurr Comput Pract Exper 21(8):
1087–1108

	25.	Shang L, Wang Z, Zhou X, Huang X, Cheng Y (2007) Tm-dg: a trust model based on
computer users’ daily behavior for desktop grid platform. In CompFrame ’07: proceedings of
the 2007 symposium on component and framework technology in high-performance and
scientific computing, ACM, New York, USA, pp 59–66

	26.	 Smets P (1990) The transferable belief model and other interpretations of Dempster-Shafer’s
model. In the proceedings of the sixth annual conference on uncertainty in artificial intelli-
gence, pp 375–384, 27–29 July 1990

	27.	 Shang L, Wang Z, Petiton SG (2008) Solution of large scale matrix inversion on cluster and
grid. In proceedings of the 2008 seventh international conference on grid and cooperative
computing (GCC), 24–26 October 2008, pp 33–40

	28.	 Shang L, Petiton S, Hugues M (2009) A new parallel paradigm for block-based Gauss-Jordan
algorithm (gcc). In the eighth international conference on grid and cooperative computing,
pp 193–200

	29.	 Cappello F et al (2005) Grid’5000: a large scale and highly reconfigurable grid experimental
testbed. In the 6th IEEE/ACM international conference on grid computing, pp 99–106

163

Abstract  Since the appearance of distributed computing technology, there has
been a significant effort in designing and building the infrastructure needed to
tackle the challenges raised by complex scientific applications that require massive
computational resources. This increases the awareness to harness the power and
flexibility of Clouds that have recently emerged as an alternative to data centers
or private clusters. We describe in this chapter an efficient high-level Grid and
Cloud framework that allows a smooth transition from clusters and Grids to Clouds.
The main lever is the ability to move application infrastructure-specific information away
from the code and manage them in a deployment file. An application can thus easily
run on a cluster, a grid, or a cloud, or any mix of them without modification.

10.1 � Introduction

Traditionally, HPC relied on supercomputers, clusters, or more recently, computing
grids. With the rise of cloud computing and effective technical solutions, questions
such as “is cloud computing ready for HPC” or “does a computing cloud constitute
a relevant reservoir of resources for parallel computing” are around. This chapter
gives some concrete answers to such questions. Offering a suitable middleware
and associated programming environment to HPC users willing to take advantage
of cloud computing is also a concern that we address in this chapter. One natural
solution is to extend a grid computing middleware in such a way that it becomes able
to harness cloud computing resources. A consequence is that we end up with a
middleware that is able to unify resource acquisition and usage of grid and Cloud
resources. This middleware was specially designed to cope with HPC computation
and communication requirements, but its usage is not restricted to this kind of
application.

B. Amedro (*)
OASIS Research Team, INRIA Sophia Antipolis, 2004 route des lucioles – BP 93,
06902 Sophia-Antipolis, France
e-mail: brian.amedro@sophia.inria.fr

Chapter 10
An Efficient Framework for Running
Applications on Clusters, Grids, and Clouds

Brian Amedro, Françoise Baude, Denis Caromel, Christian Delbé,
Imen Filali, Fabrice Huet, Elton Mathias, and Oleg Smirnov

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_10, © Springer-Verlag London Limited 2010

164 B. Amedro et al.

This chapter explores in detail the relevance of using hybrid grid/Cloud envi-
ronments and the technical challenges that such mixing raises at the middleware
level. In particular, this chapter provides and analyzes performance results that we
obtained on Amazon Elastic Cloud computing (EC2) running some of the NAS paral-
lel benchmarks. Then, we provide some insight into two complementary and rel-
evant concepts: Cloud bursting and seeding: (1) Cloud bursting is relevant whenever
the amount of available resources on a cluster or grid is not sufficient to face a
required level of computing power, and hence must be augmented with some Cloud
resources, be it in a static and anticipated way or dynamically in an on-demand way;
and (2) Cloud seeding is relevant whenever some specific kinds of resources are not
available within the computing cloud, and hence must be acquired from outside.

The remainder of this chapter is organized as follows: Section 2 presents some
existing Cloud frameworks and our position in relation to them. Section 3 gives
some benchmarks and proposes solutions to deploy applications in a Cloud, through
the proposed framework. Section 4 details the application deployment in a unified
environment mixing grids, cluster, and Clouds. Section 5 deals with the deployment
process under Cloud bursting and Cloud seeding scenarios. Lastly, Section 6
concludes this chapter and outlines future directions.

10.2 � Related Work

10.2.1 � General View of Cloud Computing frameworks

Cloud services are mainly divided into three service delivery models: Software as a
Service (SaaS), for example, Google Mail; Platform as a Service (PaaS), for example,
Google AppEngine; and, Infrastructure as a Service(IaaS), for example, Amazon EC2.
As the work presented in this chapter is strongly related to the IaaS model, in this section,
we only focus on this category of service. IaaS providers aim to offer resources to
users in a pay-as-you-go manner. A key provider of such a service is Amazon through
its Elastic Cloud Computing (EC2) and Simple Storage Service (S3).

Some services or tools have been proposed to ease the use of Clouds or enhance
their functionalities. enStratus[6] provides a set of tools for managing Cloud infra-
structure and handling the “confidence” questions about moving an application into
a Cloud. The user does not need to change a line of code for enStratus. Scalr[11] is
a hosting environment for Amazon EC2. It provides services such as load balancing,
fault tolerance, and self-scaling. Vertebra [12] is a Cloud computing framework
for the orchestration of complex processes. It takes into consideration security,
fault tolerance, and portability aspects. The OpenNebula Toolkit [2] is a virtual
infrastructure engine that allows a dynamic deployment and reallocation of
virtual machines. It leverages existing virtualization platforms to come up
with a new virtualization layer between the service and the physical infrastructure.
It supports private, public, and hybrid Cloud deployment models. Nimbus [1] is a
set of open source tools that provide an IaaS Cloud computing solution. It allows

16510  An Efficient Framework for Running Applications on Clusters, Grids, and Clouds

users to lease remote resources by deploying virtual machines on those resources.
Using the Nimbus Cloud, the requested resources can be dynamically adjusted as a
function of the application needs.

10.2.2 � Cloud Computing Middleware

In order to run applications on a Cloud, one needs a flexible middleware that eases
the development and the deployment process. GridGain [8] provides a middleware
that aims to develop and run applications on both public and private Clouds without
any changes in the application code. It is also possible to write dedicated applications
based on the map/reduce programming model. Although GridGain provides mecha-
nism to seamlessly deploy applications on a grid or a Cloud, it does not support the
deployment of the infrastructure itself. It does, however, provide protocols to dis-
cover running GridGain nodes and organize them into topologies (Local Grid,
Global Grid, etc.) to run applications on only a subset of all nodes.

Elastic Grid [7] infrastructure provides dynamic allocation, deployment, and
management of Java applications through the Cloud. It also offers a Cloud virtuali
zation layer that abstracts specific Cloud computing provider technology to isolate
applications from specific implementations.

10.3 � Deploying Applications in the Cloud

In the rest of our study, we will focus on the Amazon EC2 Web Service. Initially, we
seek to determine the performance that can be expected. Then, we propose solutions
to facilitate the deployment of applications in this context and to enable the usage of
hybrid grid/Cloud environments. To reach this goal, we will use the ProActive Parallel
Suite [3]. This framework is composed of three parts: (1) ProActive Programming
offers a Java API for parallel and distributed computing, (2) ProActive Resource
Manager gathers heterogeneous computing resources (parallel machines, clouds,
grids, etc.) into an unified access mechanism (further details are given in Sections 3
and 5.1). ProActive Scheduler runs any kind of tasks (native, Java, Matlab, etc.) on
a set of nodes acquired by the resource manager.

10.3.1 � Benchmarking the Cloud

In order to assess the worthiness of using Amazon EC2 cloud as an HPC platform,
we have deployed a series of benchmarks well known in the world of HPC, the MPI
NAS Parallel Benchmarks. We have launched them on four different architectures,
described in Table 10.1: a private cluster and three types of Amazon EC2 instances.
To provide consistent and predictable CPU capacity, Amazon describes the CPU

166 B. Amedro et al.

capacity of its instances in terms of an EC2 Compute Unit, and claims that it is the
equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron.

The chart presented in Fig. 10.1 shows that the Small and the Medium instances
share the same throughput and latency, describing Moderate EC2 I/O performance,
while the XLarge instance reflects High EC2 I/O performance. When compared
with the Gigabit Ethernet connectivity provided by our own private cluster, there is
a large gap, especially for latency.

Figure 10.2 shows the performance (Mflops) of three of the NAS Parallel
Benchmarks on each architecture by varying the number of processes. Results
average ten runs, and variation does not exceed 6%. Up to 32 processes, we run
one process per machine; and then we increase the number of processes per
machine.

EP is an embarrassingly parallel problem that involves almost no communication •	
between the processes. It is a strong test for pure computational speed. This test
clearly shows the speed difference between all the instances. The XL instance is

Table 10.1  Deployment architectures

Private cluster

Processors 2 QuadCore Opteron 2356 (2.3 GHz)/64 bits
Memory 32 GB
Hard drive 2 × 73 GB SAS 15,000 rpm
I/O Performance Gigabit Ethernet

Small High-CPU medium High-CPU XLarge
EC2 compute units 1/32 bits 5 (2 × 2.5)/32-bits 20 (8 × 2.5)/64 bits
Memory 1.7 GB 1.7 GB 7 GB
Hard drive 160 GB 350 GB 1690 GB
I/O Performance Moderate Moderate High

Fig. 10.1  I/O performance comparison between a private cluster and EC2 instances

16710  An Efficient Framework for Running Applications on Clusters, Grids, and Clouds

roughly equivalent to our private architecture (eight cores at 2.3 GHz), whereas
the medium instance runs at the same rate, but with only two cores. Similarly, we
see that the small instance is about 2.5–3 times slower than the others.
CG computes a conjugate gradient involving a large number of small messages, •	
and is a strong test for communication performance. It confirms the results
shown in Fig. 10.1. Amazon EC2 performance is well below what we get with
our private cluster.
FT is a Fourier transformation benchmark. It is a test for both computation and •	
communication speed involving large data transfers. With such a problem, the
gap between our private architecture with medium and XL instances narrows.

As shown by the previous experiments, EC2 does not offer good performance for
communication-intensive applications when compared with a local cluster. However,
CPU-intensive application do not present a significant performance hit. When dealing
with a complex application mixing communications and computations, it might be
interesting to have a part on a Cloud and another on a cluster, depending on the
application characteristics and the possibility to decompose the application in such
a way. This, however, makes deploying such application more complex.

We now present different mechanisms that simplify the execution of applications
over heterogeneous environments.

10.3.2 � The ProActive GCM Deployment

The ProActive middleware provides an abstract descriptor-based deployment
model and framework [4], giving users the capability to deploy an application on
different platforms without changing the source code. The idea behind the
ProActive GCM Deployment is to perform the discovery of resources, creation of
remote processes, and data-handling externally to the application, completely

Fig. 10.2  NAS parallel benchmarks

168 B. Amedro et al.

separating the business code and deployment. In addition to these activities, the
definition of the deployment can also encompass security, tunneling of communica-
tions, fault tolerance, and support of portable file transfer operations.

The whole deployment process (Fig. 10.3) and environment configuration is
defined by means of XML descriptors that depict the application requirements and
deployment process. The deployment of ProActive/GCM applications depends on
two types of descriptors:

GCM Application Descriptors (GCMA): the GCMA descriptors define •	
application-related properties, such as localization of libraries, file transfer,
application parameters, and nonfunctional services (logging, security, check-
point, and fault tolerance). GCMA descriptors expose the resulting physical
environment as a logical network of virtual nodes (VNs) that are used by appli-
cations as an abstract representation of computing nodes. The GCMA also
defines with or multiple resource providers.
GCM Deployment Descriptors (GCMD): the GCMD descriptors define access •	
protocols to reach the resources (e.g. SSH, RSH, GSISSH, etc.), acquisition
protocols and tools which are required to access the resources (e.g. Amazon
EC2, PBS, LSF, Sun Grid Engine, OAR, etc.), creation protocols that have a
relation with how to launch processes (e.g. SSH, OAR, gLite, Globus), and
communication protocols (e.g. RMI, RMISSH, HTTP, SOAP, etc.).

The advantages of this model are clear: on one side, if the users want to add a new
resource provider (e.g. a private cluster, production grid, or Cloud), the application
code does not change and a single line is enough to add the resource provider to the
application descriptor (GCMA). On the other side, the definition of the deployment
process happens just once for each resource and can be reused for different
applications.

Application Descriptor (GCMA)

Application/ADL

Application Definition

Application Properties
Resources

Requirements
Resources Providers

Access Protocols
Resource Acquisition

Protocols
Creation Protocols

Infrastructure Definition

Deployment Descriptor (GCMD)

VN

Fig. 10.3  GCM descriptor based deployment model

16910  An Efficient Framework for Running Applications on Clusters, Grids, and Clouds

10.3.3 � Technical Solutions for Deployment over Heterogeneous
Infrastructures

In the best possible scenario, all the machines involved in one computation are
externally accessible through a public IP without any network restriction. In practice,
this rarely occurs and machines are usually isolated by firewall and NAT.
Hence, we must explore more sophisticated strategies to make the communication
possible among processes located in different domains.

10.3.3.1 � Virtual Private Network (VPN)

A Virtual Private Network (VPN) is an overlay network built on top of an existing
larger one. It is often installed to provide a secure extension of a private network
into an insecure environment such as the Internet. Thus, communication between
nodes is tunneled through the underlying network, bypassing firewalls.

In order to expose a private network to the Internet to allow some external
machines to connect, a VPN Gateway, which will be the entry point of the network,
must be configured. This gateway will be a part of the private network, but also has
access to the Internet. Then, each client machine wishing to join the VPN will
connect to the gateway. Regarding firewalls, client and gateway must be defiltered
for both input and output VPN traffic.

A VPN can thus offer a way to add external resources to an IaaS, or add IaaS
resources to a private infrastructure.

10.3.3.2 � Amazon Virtual Private Cloud (VPC)

Amazon Virtual Private Cloud (VPC) service provides a private subnetwork within
the Amazon Cloud. All EC2 nodes, composing this Amazon VPC, are isolated and
can only be reached through a VPN connection from a private network. This allows
seamless extension of an existing infrastructure and EC2 resources can be managed
as private ones.

This service allows extending existing security and management policies of a
private IT infrastructure to the VPC. By doing so, it allows applications to be
seamlessly executed in multi-domain environments.

10.3.3.3 � Message Forwarding and Tunneling

The ProActive middleware also offers a solution to address network restrictions such
as firewalls and NAT, which is built-in and lightweight, based on SSH. This solu-
tion also provides a seamless integration of forwarding and tunneling, but at the
application level (i.e. no need to configure routing at the OS and network levels).

170 B. Amedro et al.

It only requires a configuration of entry points of each involved domain and uses
communication protocols such as SSH.

Figure 10.4 depicts a scenario where a single application runs over a set of nodes
distributed in Amazon EC2 and Grid50001. In this scenario, all the nodes located in
Amazon EC2 offer inbound and outbound communication, but nodes located on
Grid5000 are isolated from the external network. ProActive, however, enables the
usage of these resources as if every node is accessible by every other node by for-
warding incoming and outgoing messages through the Grid5000 gateway.

In a more protected environment, nodes might be isolated on both sides. The
ProActive built-in tunneling/forwarding can be configured through a double-for-
warding mechanism to handle such a situation. In any case, applications remain
unchanged and the execution in different scenarios only requires the modification
of configuration files associated with the ProActive Runtime. The communication
process may involve a multi-protocol approach.

10.3.4 � Conclusion and Motivation for Mixing

We have seen that the deployment of an application in a heterogeneous environment
can be simplified with tools such as the ProActive GCM Deployment. Technical
solutions such as VPN and SSH tunneling are used to manage the characteristics of
a network while securing connections. We have also seen that an IaaS, such as
Amazon EC2, offers a range of instances with features and performance that can
match user needs.

Thus, we can consider setting up different usage strategies to mix resources with
different goals. Strategies could be geared to a full transition phase towards full
cloud outsourcing of computing, an optimization of costs by fitting the choice of
computing resources to the needs of the application, or by temporarily extending an
infrastructure to meet a special need.

EC2 computing
 instances

Grid5000
gateway

Computing
nodes

INTERNET

Firewall Grid5000Amazon EC2

RMISSH / HTTP / SOAP
Communications

RMI Communications

Fig. 10.4  Tunneling and forwarding communications on a heterogeneous Cloud-grid environment

1 Grid5000 is a French national Grid distributed over nine sites for a total of about 5,000 cores

17110  An Efficient Framework for Running Applications on Clusters, Grids, and Clouds

10.4 � Moving HPC Applications from Grids to Clouds

It is not yet clear how much impact Clouds will have on HPC in the future. In fact,
it is very unlikely that highly optimized clusters will be replaced by Cloud resources
in a near future. Considering that most enterprises and public institutes that require
them already have in-house HPC resources, which could provide processing power at
lower costs, the notion of private Clouds or a mix between Clouds and cluster/grids
resources seems more cost-effective to solve the problem of providing resources.

Scientific applications require sophisticated middleware because they usually
present complex multi-point interactions and strong processing and network require-
ments, which necessitate performance. Porting such applications to heterogeneous
environments increases the importance of middleware support.

In this section, we present a versatile GCM/ProActive-based lightweight frame-
work that supports distributed and parallel scientific applications, so that porting of
legacy applications is possible and easy for any kind of distributed computing envi-
ronment or even a mixture of them. To illustrate this, we also present performance
results obtained with a scientific PDE-based application in different contexts, includ-
ing an experimental Grid, a public Cloud, and the mixture of these infrastructures.

10.4.1 � HPC on Heterogeneous Multi-Domain Platforms

From the development point of view, the usage of resources spread across multi-
domain platforms as if it were a single infrastructure requires an integrated middle-
ware. Such middleware should provide users with clear abstractions to develop
applications that could be easily adapted to be deployed with different resource
providers, despite different underlying characteristics of resources.

In the next section, we present in more detail a component-based integrating
middleware, which emphasizes a clear separation between application development
and the execution platform. This middleware eases the transition from clusters to
grids and Clouds by providing seamless deployment and multi-protocol point-to-
point and multi-point communication in multi-domain environments.

10.4.2 � The Hierarchical SPMD Concept and Multi-level
Partitioning of Numerical Meshes

The traditional way of designing domain decomposition-based simulations is to adopt
an SPMD technique combining mesh-partitioning and the message-passing program-
ming model. The hierarchical SPMD is an evolution of the traditional flat SPMD
parallel programming paradigm toward a heterogeneous hierarchical approach.
The hierarchical SPMD concept consists in assigning hierarchical identifiers to
processes and treating collective communications in a topology-aware manner.

172 B. Amedro et al.

Heterogeneity in network and resources is a challenging issue for domain
decomposition based scientific applications. The main reason comes from the fact that
these applications rely upon a bulk synchronous iterative approach and applications
loop at the pace of the slowest process. The hierarchical network topology and
computing power heterogeneity must therefore be considered in the mesh-partitioning
and communication process.

We propose a multi-level partitioning approach to balance load among processors
and optimize the communication process. The multi-level partitioner is capable of
taking into account the characteristics of the resources (CPU power and amount of
memory) and their topology to partition a global mesh in a way such that each
process presents an equivalent processing time, yet minimizing communication
through slower links [9]. The different levels defining the physical hierarchy are
mapped into the communication process, which is configured depending on the
effective location of communicating processes and the available communication
protocols. The runtime also takes topology into account to stage the communication
operations so that communication over slower networks (e.g. Internet) is avoided.

10.4.3 � The GCM/ProActive-Based Lightweight Framework

The GCM/ProActive-based lightweight framework takes the form of a component-
based infrastructure that offers support to multi-protocol communication. This
infrastructure is composed according to the hierarchy of resources and gives the
applications a view of a unique global computing infrastructure, despite the
localization and access restrictions of resources.

Figure 10.5 shows an example of such composition, which reflects a single global
application deployed upon a resources set onto two separate but interconnected admin-
istrative domains. On the left, we run a standalone MPI application on a Cloud (e.g. a
set of Amazon EC2 instances) and on the right, another standalone MPI application
runs over a multi-cluster based grid (e.g. the Grid5000). Each of the MPI processes
is wrapped by a GCM primitive component that is connected to the external

Router 1Router 0

p1:0 p1:2

p1:1
p0:0

p0:1

MxN Interface

Proxy Component Router Component

Fig. 10.5  Typical GCM/ProActive based multidomain runtime support for HPC

17310  An Efficient Framework for Running Applications on Clusters, Grids, and Clouds

router component representing the next level up in the infrastructure. Owing to the
hierarchical composition and the routing interfaces associated with higher levels, all
the nodes are logically connected, even if indirectly, to every other in the multi-domain.
Hence, the independent MPI executions are coupled to form a single parallel application
along the Hierarchical SPMD concept.

Collective communications profit from the topology, enabling them to be staged
and parallelized. Besides, and whenever possible, for optimization purposes we can
create on-demand direct bindings to perform point-to-point communications, thus
bypassing the hierarchy.

10.4.4 � Performance Evaluation

We evaluate the component-based framework and the hierarchical SPMD
model through a nontrivial simulation of electromagnetic-wave propagation in
three-space dimensions. This simulation is based on a finite element method
working on arbitrarily unstructured tetrahedral meshes for solving a system of
Maxwell equations.

From the computational point of view, the execution is characterized by two types
of operations: purely local operations on the tetrahedra for computing integral values
and a calculation involving neighbor subdomains, which involves a gather-compute-
scatter sequence. Formulations are described in more detail in [5].

In [9], we highlighted performance improvements for applications developed
along the Hierarchical SPMD concept when compared with pure “flat” MPI implemen-
tations including grid-aware ones (as Grid-MPI). The experimental results we present
here focus on the comparison among three scenarios: a multi-cluster grid, Amazon
EC2, and a multi-domain environment that couple both setups.

The experiments we present here were conducted in one cluster (grelon, located
in Nancy, France) of the Grid5000 testbed and the Amazon EC2 platform with two
instance sizes: Small instances and High-CPU Extra Large instances. Grid5000
resources present Dual Core Intel Xeon 5110 (1.6 GHz) with 2 GB of memory and
Gigabit Ethernet interconnection. Small Amazon EC2 instances represent one com-
pute unit with 1 GB of memory, and High-CPU Extra Large represent 20 compute
units (eight virtual cores with 2.5 EC2 Compute Units each) with 7 GB of memory.
The software involved in these experiments are Java Sun SDK v1.6.0_07, ProActive
v3.91, and GridMPI v2.1.1.

Figure 10.6 presents the overall execution times and MFlops/s obtained in the
different scenarios. With the application being network- and CPU-intensive, both
CPU and network affect the overall performance. On average, Small Amazon EC2
instances present a performance four times smaller than one using the standard
cluster of Grid5000. High-CPU Extra Large instances present a better CPU perfor-
mance than Grid5000 machines, but provide a slower network interconnection
which results in a comparable global performance. A mix of Grid5000 resources
and Small Amazon EC2 does not perform well when compared with single-site

174 B. Amedro et al.

execution over Grid5000; even with the balance of load by the partitioner, processes
running on EC2 presented lower performance. Using both Grid5000 resources and
Extra Large EC2 instances has proved to be more advantageous, presenting, on
average, only 15% of overhead for such inter-domain execution when compared
with the average of the best single domain ones. This is mainly due to high-latency
communication and message tunneling, but this overhead could be further softened
because of the possibility of adding extra resources to/from the grid/Cloud.

From a cost-performance point of view, previous performance evaluations of
Amazon EC2 [10] showed that MFlops obtained per dollar spent decreases expo-
nentially with increasing computing cores, and the cost for solving a linear system
increases exponentially with the problem size. Our results indicate the same when
using Cloud resources exclusively. Mixing resources, however, seems to be more
feasible since a trade-off between performance and cost can be reached by the
inclusion of in-house resources in computation.

10.5 � Dynamic Mixing of Clusters, Grids, and Clouds

As we have seen, mixing Cloud and private resources can provide performance
close to that of a larger private cluster. However, doing so in a static way can lead
to a waste of resources if an application does not need the computing power during
its complete lifetime. We will now present a tool that enables the dynamic use of
Cloud resources.

10.5.1 � The ProActive Resource Manager

The ProActive Resource Manager is a software for resource aggregation across the
network, developed as a ProActive application. It delivers compute units represented

Fig. 10.6  Performance over Grid5000, Amazon EC2, and resource mix

17510  An Efficient Framework for Running Applications on Clusters, Grids, and Clouds

by ProActive nodes (Java Virtual Machines running the ProActive Runtime) to a
scheduler that is in charge of handling a task flow and distributing tasks or acces-
sible resources. Owing to the deployment framework, presented in the Section 3.2,
it can retrieve computing nodes using different standards such as SSH, LSF, OAR,
gLite, EC2, etc. Its main functions are:

Deployment, acquisition, and release of ProActive nodes to/from an underlying •	
infrastructure
Supplying ProActive Scheduler with nodes for task executions, based on •	
required properties
Maintaining and monitoring the list of resources and managing their states•	

Resource Manager is aimed at abstracting the nature of a dynamic infrastructure
and simplifying effective utilization of multiple computing resources, enabling their
exploitation from different providers within a single application. In order to achieve
this goal, the Resource Manager is split into multiple components.

The core is responsible for handling all requests from clients and delegating
them to other components. Once the request for getting new nodes for computation
is received, the core “redirects it to a selection manager.” This component finds
appropriate nodes in a pool of available nodes based on criteria provided by clients,
such as a specific architecture or a specific library.

The pool of nodes is formed by one or several node aggregators. Each aggregator
(node source) is in charge of node acquisition, deployment, and monitoring from a
dedicated infrastructure. It also has a policy defining conditions and rules of acquir-
ing/releasing nodes. For example, a time slot policy will acquire nodes only for a
specified period of time.

All platforms supported by GCMD are automatically supported by the ProActive
Resource Manager. When exploiting an existing infrastructure, the Resource
Manager takes into account the fact that it could be utilized by local users, and
provides fair resource utilization. For instance, Microsoft Compute Cluster Server
has its own scheduler and the ProActive deployment process has to go through it
instead of contacting cluster nodes directly. This behavior makes possible the
coexistence of ProActive Resource Manager with others without breaking their
integrity.

As we mentioned earlier, the node source is a combination of infrastructure and
a policy representing a set of rules driving the deployment/release process. Among
several such predefined policies, two have to be mentioned. The first addresses a
common scenario when resources are available for a limited time. The second is a
balancing policy – the policy that holds the number of nodes depending on the
user’s needs. One such balancing policy is implemented by the Proactive Resource
Manager, which acquires new nodes dynamically when the scheduler is over-
loaded and releases them as soon as there is no more activity in the scheduler.

Using node sources as building blocks helps to describe all resources at your
disposal and the way they are used. Pluggable and extensible policies and infra-
structures make it possible to define any kind of dynamic resource aggregation
scenarios. One of such scenario is Cloud bursting.

176 B. Amedro et al.

10.5.2 � Cloud Bursting: Managing Spike Demand

Companies or research institutes can have a private cluster or use Grids to perform
their daily computations. However, the provisioning of these resources is often
done based on average usage for cost management reasons. When a sudden increase
in computation arises, it is possible to offload some of them to a Cloud. This is
often referred to as Cloud bursting.

Figure 10.7 illustrates a Cloud bursting scenario. In our example, we have an
existing local network that is composed of a ProActive Scheduler with a Resource
Manager. This resource manager handles computing resources such as desktop
machines or clusters. In our figure, these are referred to as local computing nodes.

A common kind of application for a scheduler is a bag of independent tasks
(no communication between the tasks). The scheduler will retrieve a set of free
computing nodes through the resource manager to run pending tasks. This local
network is protected from Internet with a firewall that filters connections.

When the scheduler experiences an uncommon load, the resource manager can
acquire new computing nodes from Amazon EC2. This decision is based on a
scheduling loading policy, which takes into account the current load of the sched-
uler and the Service Level Agreement provided. These parameters are directly set
in the resource manager administrator interface. However, when offloading tasks to
the Cloud, we have to pay attention to the boot delay that implies a waiting time of
few minutes between a node request and its availability for the scheduler.

The Resource Manager is capable of bypassing firewalls and private networks
by any of the approaches presented in Section 3.3.3.

10.5.3 � Cloud Seeding: Dealing with Heterogeneous Hardware
and Private Data

In some cases, a distributed application, composed of dependent tasks, can perform
a vast majority of its tasks on a Cloud, while running some of them on a local

Amazon EC2
Local network

EC2 computing
instances

ProActive
Scheduler &

Resource Manager

Local computing
nodes INTERNET

HTTP Connections

RMI Connections

Firewalls

Fig. 10.7  Example of a Cloud bursting scenario

17710  An Efficient Framework for Running Applications on Clusters, Grids, and Clouds

infrastructure in order to have access to computing resources with a specific configu-
ration such as GPU equipment. This type of requirement can also happen in cases
where some tasks use software protected by a license, and use some private data or
algorithms which should never get out to an untrusted environment such as a Cloud.

Cloud Seeding aims at providing a solution to such problems by extending the
capabilities of a Cloud with specific external resources.

Figure 10.8 shows a simple Cloud seeding example. In this scenario, most parts
of the application are hosted in the Cloud. The ProActive Scheduler and the
Resource Manager are hosted on an Amazon EC2 instance, as well as the comput-
ing nodes that are used by the scheduler. However, some tasks need a particular
resource configuration in order to be executed, such as a GPU processor. The
resource manager can handle, in addition to the Amazon EC2 nodes, a set of spe-
cial nodes from the customer network gathered in a seed subnet.

As seen in Section 3.3, multiple technical solutions can be used to build such a con-
figuration. In our example, we used a VPN-based solution. To enable the scheduler and
the resource manager to communicate with these special nodes, we gather them in a seed
subnet that hosts a VPN gateway and connects the scheduler and the resource manager
to this VPN gateway. However, this type of configuration does not allow Amazon EC2
instances to communicate directly with these special nodes. If we want to permit such
communication, one solution is for each Amazon EC2 instance to create a VPN connec-
tion with the VPN gateway. Another solution is to build an Amazon VPC, as described
in Section 3.3.2, to connect the seed and the VPC subnets together, thus creating a virtual
network authorizing communication between any nodes in this network.

10.6 � Conclusion

In this paper, we have evaluated the benefits of Cloud computing for scientific
applications. Although the performance can be similar to a dedicated cluster for
computationally-intensive code, it drops when running communication-intensive
code. This observation motivates the need for mixing Cloud and traditional computing
platforms. Hybrid platforms require mechanisms adapted to gather resources,
deploy applications, and ensure efficient communications.

Amazon EC2 network Customer network

Seed subnet

Special nodes

VPN
Gateway INTERNET

EC2 compute
instances

ProActive
Scheduler &

Resource Manager

VPN Connection

Firewalls

Fig. 10.8  Example of a simple Cloud seeding scenario

178 B. Amedro et al.

Although a low-level solution such as VPN may be useful, these solutions are limited
because they hide the heterogeneity and prevent the adaptation of the deployment and
applications to the environment. Using ProActive and the ProActive/GCM deployment
allows specifying how resources are acquired and how the communication should be
performed (through simple protocols or message tunneling and forwarding).

We have shown that these mechanisms are powerful enough to build a modular
grid/Cloud middleware to support scientific domain-decomposition applications.
We illustrated this through adaptating a complex communication- and network-
intensive HPC application to run efficiently over a mix of Cloud resources and
dedicated ones, without much overhead. Finally, we have also shown how ProActive
Resource Manager enables dynamic mixing of Cloud and grid platforms, allowing
both Cloud bursting and Cloud seeding within a single framework. These mecha-
nisms also offer a solution to smoothly migrating applications from clusters and
grids to Clouds.

Experiments presented in this paper were carried out using the Grid’5000
experimental testbed, developed under the INRIA ALADDIN development
action with support from CNRS, RENATER, and several French Universities, as
well as other funding bodies (see https://www.grid5000.fr). The authors would
also like to thank Amazon Web Services and the PacaGrid CPER for providing
computing resources.

References

	 1.	 Nimbus toolkit. http://workspace.globus.org/
	 2.	 Opennebula project. http://www.opennebula.org/
	 3.	 Proactive parallel suite. http://proactive.inria.fr.
	 4.	 Baude F, Caromel D, Mestre L, Huet F, Vayssière J (2002) Interactive and descriptor-based

deployment of object-oriented grid applications. Proceedings of the 11th IEEE international
symposium on high performance distributed computing

	 5.	 Bernacki M, Lanteri S, Piperno S (2006) Time-domain parallel simulation of heterogeneous
wave propagation on unstructured grids using explicit non-diffusive, discontinuous Galerkin
methods. J Comp Acoustics 14(1):57–81

	 6.	 enStratus. The enstratus framework for amazon ec2, http://www.enstratus.com/
	 7.	 E. Grid. Elastic grid. http://www.elastic-grid.com/
	 8.	 GridGain. Grid grain: The open cloud platform. http://www.gridgain.com/
	 9.	 Mathias E, Cavé V, Lanteri S, Baude F (2009) Grid-enabling spmd applications through

hierarchical partitioning and a component-based runtime. In: Proceedings of the 15th
international euro-par conference on parallel processing (Euro-Par ’09), Springer-Verlag,
Berlin, Heidelberg, pp 691–703

	10.	 Napper J, Bientinesi P (2009) Can cloud computing reach the top500? In: Proceedings of the
combined workshops on UnConventional high performance computing workshop plus
memory access workshop (UCHPC-MAW ’09), ACM, New York, USA, pp 17–20

	11.	 Scalr. The scalr framework for cloud computing, http://www.scalr.net/
	12.	Vertebra. Easy to manage framework for orchestrating complex processes in the cloud.

http://www.engineyard.com/vertebra.

179

Abstract  From its start of using supercomputers, scientific computing constantly
evolved to the next levels such as cluster computing, meta-computing, or computational
Grids. Today, Cloud Computing is emerging as the paradigm for the next genera-
tion of large-scale scientific computing, eliminating the need for hosting expensive
computing hardware. Scientists still have their Grid environments in place and can
benefit from extending them using leased Cloud resources whenever needed. This
paradigm shift opens new problems that need to be analyzed, such as integration of
this new resource class into existing environments, applications on the resources,
and security. The virtualization overheads for deployment and starting of a virtual
machine image are new factors, which will need to be considered when choosing
scheduling mechanisms. In this chapter, we investigate the usability of compute
Clouds to extend a Grid workflow middleware and show on a real implementation
that this can speed up executions of scientific workflows.

11.1 � Introduction

In the last decade, Grid computing gained became popular in the field of scientific
computing through the idea of distributed resource sharing among institutions and
scientists. Scientific computing is traditionally a high-utilization workload, with
production Grids often running at over 80% utilization [1] (generating high and
often unpredictable latencies), and with smaller national Grids offering a rather
limited amount of high-performance resources. Running large-scale simulations in
such overloaded Grid environments often becomes latency-bound or suffers from
well-known Grid reliability problems [2].

S. Ostermann (*)
Institute of Computer Science, University of Innsbruck, Technikerstra§e 21a,
6020, Innsbruck, Austria
e-mail: simon@dps.uibk.ac

Chapter 11
Resource Management for Hybrid Grid
and Cloud Computing

Simon Ostermann, Radu Prodan, and Thomas Fahringer

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_11, © Springer-Verlag London Limited 2010

180 S. Ostermann et al.

Today, a new research direction, coined by the term Cloud computing, proposes
an alternative that could prove attractive to scientific computing scientists because of
four main advantages. First, Clouds promote the concept of leasing remote resources
rather than buying hardware, which frees institutions from permanent maintenance
costs and eliminates the burden of hardware deprecation following Moore’s law.
Second, Clouds eliminate the physical overhead costs of adding new hardware, such
as compute nodes to clusters or supercomputers and the financial burden of perma-
nent over-provisioning of occasionally needed resources. Through “scaling-by-credit-
card,” Clouds promise to immediately scale up or down an infrastructure according
to the temporal needs in a cost-effective fashion. Third, the concept of hardware vir-
tualization can represent a significant breakthrough for the automatic and scalable
deployment of complex scientific software, and can also significantly improve the
shared resource utilization. Fourth, the provisioning of resources through business
relationships pushes specialized data center companies to offer reliable services,
which existing Grid infrastructures fail to deliver.

Despite the existence of several integrated environments for transparent pro-
gramming and high-performance use of Grid infrastructures for scientific appli-
cations [3], there are no results yet published in the community that report on
extending them to enjoy the benefits offered by Cloud computing. While there
are several early efforts that investigate the appropriateness of Clouds for sci-
entific computing, they are either limited to simulations [4], do not address the
highly successful workflow paradigm [5], or do not attempt to extend Grids
with Clouds as a hybrid-combined platform for scientific computing.

In this chapter we extend a Grid workflow application development and comput-
ing environment to harness resources leased by Cloud computing providers. Our
goal is to provide an infrastructure that allows the execution of workflows on con-
ventional Grid resources which can be supplemented on-demand with additional
Cloud resources, if necessary. We concentrate our presentation on the extensions
we brought to the resource management service to consider Cloud resources, com-
prising new Cloud management, software (image) deployment, and security com-
ponents. We present experimental results using a real-world application in the
Austrian Grid environment, extended with an academic Cloud constructed using
Eucalyptus middleware [6] and Xen virtualization technology [7].

The chapter continues in Section 2 with a background on the ASKALON Grid
environment and a short introduction to several Cloud computing terms. Section 3
presents the architecture of the Grid resource management service enhanced for
Cloud computing, which is evaluated in Section 4 for a real application executed in
a real Grid environment enhanced with a Cloud testbed. Section 5 compares our
approach with the most relevant related work, and Section 6 concludes the chapter.

11.2 � Background

While there are several workflow execution middlewares for Grid computing [3],
none is known to support the new type of Cloud infrastructure.

18111  Resource Management for Hybrid Grid and Cloud Computing

11.2.1 � ASKALON

ASKALON [8] is a Grid application development and computing environment
developed at the University of Innsbruck with the goal of simplifying the devel-
opment and optimization of applications that can harness the power of Grid and
Cloud (see Section 2.2) computing. Figure 11.1 shows the main components of
ASKALON. The user composes workflow applications at a high level of abstrac-
tion using an UML graphical modeling tool. Workflows are specified as a
directed graph of activity types representing an abstract semantic description of
the computation, such as a Gaussian elimination algorithm, a Fast Fourier
Transform, or an N-body simulation. The activity types are interconnected in a
workflow through control-flow and data-flow dependencies. The abstract work-
flow representation is given in an XML form (AGWL [9]) to the ASKALON
middleware services for transparent execution onto the Grid. This task is mainly
accomplished by a fault-tolerant enactment engine, together with a scheduling
service in charge of computing optimized mappings of workflow activities onto
the available Grid resources.

To achieve this task, the scheduler employs a resource management service that
consists of two main components: GridARM for discovery and brokerage of hard-
ware resources by interfacing with a Grid information service [10], and GLARE for
registration and provisioning of software resources. An important component of
GLARE is the automatic provisioning of activity deployments on remote Grid sites,
which are properly configured installations of the legacy software and services
implementing the activity types. Once an activity deployment has been installed, we
say that the remote resource has been provisioned, and can be used by the scheduler
and enactment engine for the workflow execution. This execution can be monitored
using graphical tools [11] or via the engine’s event system.

Clouds
Amazon EC2

Execution
Engine

Scheduler
Resource
Manager

UML Workflow Composition Runtime Middleware Services

Clouds
Amazon EC2

Execution
Engine

Scheduler
Resource
Manager

Manage
Instances

Schedule jobs

GRAM job
submission

EC2 API

SSH job
submission

Eucalyptus

Fig. 11.1  Simplified ASKALON architecture extended for computational clouds

182 S. Ostermann et al.

11.2.2 � Cloud Computing

The term Cloud computing is being increasingly used for provisioning various ser-
vices through the Internet, which are billed like utilities.

From a scientific point of view, the most popular interpretation of Cloud com-
puting is Infrastructure as a Service (IaaS), which provides generic means for host-
ing and provisioning access to raw computing infrastructure and its operating
software. IaaS are typically provided by data centers renting modern hardware
facilities to customers that only pay for what they use, which frees them from the
burden of hardware maintenance and deprecation. IaaS is characterized by the con-
cept of resource virtualization, which allows customers to deploy and run their own
guest operating system on top of the virtualization software (e.g. [7]) offered by the
provider. Virtualization in IaaS is also a key step toward distributed, automatic, and
scalable deployment, installation, and maintenance of software.

To deploy a guest operating system showing to the user another abstract and
higher-level emulated platform, the user creates a virtual machine image, in short
image. In order to use a Cloud resource, the user needs to copy and boot an image
on top, called virtual machine instance, in short instance. After an instance has been
started on a Cloud resource [12], we say that the resource has been provisioned and
can be used. If a resource is no longer necessary, it must be released such that the
user no longer pays for its use.

Commercial Cloud providers typically offer customers a selection of resource
classes or instance types with different characteristics including CPU type, number
of cores, memory, hard disk, and I/O performance.

11.3 � Resource Management Architecture

To enable the ASKALON Grid environment use Cloud resources from different
providers, we extended the resource management service to three new components:
Cloud management (see Section 3.1), image catalog (see Section 3.2), and security
mechanisms (see Section 3.3).

Whenever the high-performance Grid resources are exhausted, the ASKALON
scheduler has the option of supplementing them with additional ones leased from
Cloud providers to complete the workflow faster. A limit for the maximum num-
ber of leased resources that are requested is set for each cloud in their credential
properties. This limit helps to save money and stay within the resource limits given
by the cloud provider. EC2 allows the users to request up to 20 instances on a
normal account, while bigger resource requests require contacting Amazon. Our
Eucalyptus-based private cloud (dps.cloud) offers 12 cores and any further requests
can not be served, so the limit for resource requests was set to 12. When a deploy-
ment request for a new Cloud resource arrives from the scheduler, the resource
manager arranges its provisioning by performing the following steps (see
Fig.11.2):

18311  Resource Management for Hybrid Grid and Cloud Computing

1.	Retrieves a signed request for a certain number of activity deployments needed
to complete the workflow.

2.	The security component checks the credential of the request, and which Clouds
are available for the requesting user (see Section 3.3).

3.	The image catalog component retrieves the predefined registered images for the
accessible Clouds (see Section 3.2).

4.	The images are checked to see whether they include the requested activity deploy-
ment or if they have the capability to auto-deploy.

5.	The instances are started using the Cloud management component, and the image
boot process is monitored until a (SSH) control connection is possible to the new
instance. If the instance does not contain the requested activity deployment, an
optional auto-deployment process using GLARE takes place.

6.	A new entry is created in GridARM with all information required by the new
instance, such as identifier, IP address, and number of CPUs.

7.	All the activity deployments contained in the booted image are registered in
GLARE.

8.	 The resource manager replies to the scheduler with the new deployments for the
requested activity types.

Resource Manager

Cloud

Request #

deployments

for Activity Type

Reply
with

newly
ava

ila
ble

deploym
ents

GridARM GLARE

Image
Catalogue

Cloud
Management

EC2

Eucalyptus
Nimbus

Start Instance

Register software
for Instance

Register
Instance

Security Check available clouds
with deployment

1

2 3

4

7
6

8

5

E
C

2
A

P
I

Fig. 11.2  The cloud-enhanced resource management architecture

184 S. Ostermann et al.

11.3.1 � Cloud Management

In terms of functionality, the Cloud-enabled resource manager extends the Grid
resource manager with two new runtime functions: the request for new deploy-
ments for a specific activity type and the release of a resource after its use ended.
The Cloud management component is responsible for provisioning, releasing, and
checking the status of an instance.

Figure 11.3 shows a generic instance state transition diagram, which we con-
structed by analyzing the instance states in different Cloud implementations
[12,13]. Upon a request for additional resources, the Cloud management compo-
nent selects the resources (instance types) with the best price/performance1 ratio,
matching the request to which it transfers an image containing the required activity
deployments, or enabled with auto-deployment functionality (state starting). In the
running state, the image is booted, while in the accessible state, the instance is
ready to be used. In the resizing phase, the underlying hardware is reconfigured, for
example by adding more cores or memory, while in the restarting phase, the image
is rebooted, for example, upon a kernel change. The release of an image upon shut
down is signaled by the terminated state. The failed state indicates any error that
automatically releases the resource.

Upon a resource release, the instance and all the deployments registered are
removed from GridARM and GLARE. However, if there are pending requests for
an existing instance containing the required deployments, the resource manager can
optimize the provisioning by reusing the same instance for the next user if they
share the same Cloud credential (or if other trust mechanisms allow it).

Starting

Running
Shutting

down
Accessible

TerminatedFailed

Restarting

Requested

Resizing

Fig. 11.3  Cloud instance state transition diagram

1 Using the Linpack benchmark results for the different Cloud instance types, as shown in
Table 11.6.

18511  Resource Management for Hybrid Grid and Cloud Computing

The Cloud manager also maintains a registry of the available resource classes (or
instance types) offered by different Cloud providers containing the number of
cores, the amount of memory and hard disk, I/O performance, and cost per unit of
computation. For example, Table 11.1 contains the resource class information
offered by four Cloud providers, which need to be entered by the resource manager
admin in the Cloud management registry due to the lack of a corresponding API.

Today, different commercial and academic Clouds provide different interfaces to
their services, as no official standard has yet been defined. We are using, in the
Cloud management component, the Amazon API [16] defined by EC2, which is
also implemented by Eucalyptus [6] and Nimbus (previously known as Globus
Workspaces [17]) and used for building “academic Clouds.” To support more
Clouds, plug-ins to other interfaces or use of metacloud software [18] is required.
Table 11.2 shows an overview of Cloud providers that are currently offering API
access to provision and release their resources, and which could therefore be inte-
grated into an automatic resource management system. This overview also shows
the difference in the available hardware configurations of the selected providers.
There is also a wide range of Cloud providers that do not offer an API to control
the instances and therefore are not listed.

11.3.2 � Image Catalog

Each Cloud infrastructure provides a different set of images offered by the provider
or defined by the users, which need to be organized in order to be of use. For
example, the Amazon EC2 API provides built-in functionality to retrieve the list of

Table 11.1  Characteristics of the resource classes offered by four selected clouds as of December
2009

Cloud Name
Cores
(ECUs)

RAM
[GB]

Arch.
[bit] I/O Perf.

Disk
[GB]

Cost
[$/h]

Amazon EC2 m1.small 1 (1) 1.7 32 Medium 160 0.085
m1.large 2 (4) 7.5 64 High 850 0.34
m1.xlarge 4 (8) 15.0 64 High 1,690 0.68
c1.medium 2 (5) 1.7 32 Medium 350 0.17
c1.xlarge 8 (20) 7.0 64 High 1,690 0.68
m2.2xlarge 4 (13) 34.2 64 High 850 1.2
m2.4xlarge 8 (26) 68.4 64 High 1,690 2.4

GoGrid GG.small 1 1.0 32 – 60 0.19
GG.large 1 1.0 64 – 60 0.19
GG.xlarge 3 4.0 64 – 240 0.76

ElasticHosts[14] EH.small 1 1.0 32 – 30 £0.042
EH.large 1 4.0 64 – 30 £0.09

Mosso[15] Mosso.small 4 1.0 64 – 40 0.06
Mosso.large 4 4.0 64 – 160 0.24

186 S. Ostermann et al.

available images, while other providers only offer plain text HTML pages listing
their offers. A few providers even have the lists of possible images hidden in their
instance start API documentation. The information about the images provided by
different Cloud providers is in all cases limited to simple string names, and lacks
additional semantic descriptions of image characteristics, such as the supported
architecture, operating system type, embedded software deployments, or support
for auto-deployment functionality. The task of the image catalog is to systemati-
cally organize this missing information, which is registered manually by the
resource manager administrator.

Figure11.4 shows the hierarchical image catalog structure where each provider has an
assigned set of images, and for each image, there is a list of embedded activity deploy-
ments, or which can be automatically deployed. Custom images with embedded deploy-
ments have reduced the provisioning overhead, as the deployment part is skipped.

Images are currently not interoperable between Cloud providers that generate a
large image catalog that needs to be managed. As Table 11.2 demonstrates, the
variety of offers between different providers is high. For example, Amazon EC2 has
by far the most images available, also due to the fact that users can upload their
custom or modified images and make them available to the community. At the other
extreme, Agathon [19] only provides one standard instance for its users. The bus
size of the different images may create additional problems with the activity
deployments on the started instances. For example, Amazon EC2 only offers 32-bit
architectures on their two cheapest instance types, while the others are 64 bit.

11.3.3 � Security

Security is a critical topic in Cloud computing with applications running and producing
confidential data on remote unknown resources that need to be protected. Several

Table 11.2  Feature summary of selected cloud providers supporting automatic resource management
as of December 2009

Property/
provider

Agathon
[19]

Amazon
EC2 [12]

FlexiScale
[20] GoGrid [13] dps.cloud

Bus size
operating
system

64 32, 64 32, 64 32, 64 64
Linux Linux Linux Linux Linux

Windows Windows Windows
Number of images 1 4105 5 14 3

1 (Windows) 3 (Windows) 11 (Windows)
Hardware configs 32 5 40 5 3
Auth. service Login

password
X.509

certificate
Login

password
Key, MD5

signature
X.509

certificate
Auth. instance Login

password
RSA keypair Login

password
Login password RSA keypair

Middleware AppLogic
[21]

Proprietary Proprietary Proprietary Eucalyptus
[6]

18711  Resource Management for Hybrid Grid and Cloud Computing

issues need to be addressed, such as authentication to the Cloud services and the
started instances, as well as securing user credit card information. Authentication is
supported by existing providers either through a key pair and certificate mechanism
or by using login and password combinations (see Table 11.2).2

One can distinguish between two types of credentials in Cloud environments:

•	 User credential is a persistent credential associated with a credit card number
used for provisioning and releasing Cloud resources.

•	 Instance credential is a temporary credential used for manipulating an instance
through the SSH protocol.

As these credentials are issued separately by the providers, users will have dif-
ferent credentials for each Cloud infrastructure, in addition to their Grid Security
Infrastructure (GSI) certificate. The resource manager needs to manage these cre-
dentials in a safe manner, while granting secure access to the deployed Cloud
resources to the other services and application.

The security mechanism of the resource manager is based on GSI proxy delega-
tion credentials, which we extended with two secured repositories for Cloud access:

A •	 MyCloud repository that similar to a MyProxy repository [22], stores copies of
the user credentials which can only be accessed by authenticating with a GSI
credential associated with it.
A •	 MyInstance repository for storing temporary instance credentials generated
for each started instance.

The detailed security procedure upon an image deployment request is as follows
(see Fig.11.5):

Deploy
ments

ImagesCloud
providers

EC2

Eucalyptus

Open Nebular

...

FC5.2 image

MPI enabled

...

FC5.2

TinyLinux

...

WIEN2K

Povray

EchoDate

Blender

...

Fig. 11.4  The image catalogue hierarchical architecture

2 Some Cloud providers [19] require the configuration of virtual private networks (VLAN) to
authenticate with the Cloud that requires the automatic creation of SSH tunnels using port
forwarding; we plan to explore this in future work.

188 S. Ostermann et al.

1.	 A GSI-authenticated request for a new image deployment is received.
2.	 The security component checks in the MyCloud repository for the Clouds for

which the user has valid credentials.
3.	 A new credential is generated for the new instance that needs to be started. In

case multiple images need to be started, the same instance credential can be used
to reduce the credential generation overhead (about 6–10 s in our experiments,
including the communication overhead).

4.	 The new instance credentials are stored in the MyImage repository, which will
only be accessible to the enactment engine service for job execution after proper
GSI authentication.

5.	 A start instance request is sent to the Cloud using the newly generated instance
credential.

6.	 When an instance is released, the resource manager deletes the corresponding
credential from the MyInstance repository.

11.4 � Evaluation

We extended the ASKALON enactment engine to consider our Cloud extensions
by transferring files and submitting jobs to Cloud resources using the SCP/SSH
provider of the Java CoG kit [23]. Some technical problems with these providers of
the CoG kit required us to change the source code and create a custom build of the
library to allow seamless and functional integration into the existing system.

For our experiments, we selected a scientific workflow application called
Wien2k [24], which is a program package for performing electronic structure
calculations of solids using density functional theory based on the full-potential
(linearized) augmented plane-wave ((L)APW) and local orbital (lo) method. The
Wien2k Grid workflow splits the computation into several course-grain activities,

Security

MyCloud

MyInstance

GSIdeploymentrequest

1 request and
release

functions

2

generate Keypair,
start instance

3, 5

Clouds
Management

4 store private Key

Fig. 11.5  Combined
grid-cloud security
architecture

18911  Resource Management for Hybrid Grid and Cloud Computing

the work distribution being achieved by two parallel loops (second and fourth)
consisting of a large number of independent activities calculated in parallel.

The number of sequential loops is statically unknown. We have chosen a prob-
lem case (called atype) that we solved using 193 and 376 parallel activities, and a
problem size of 7.0, 8.0, and 9.0, which represents the number of planewaves that
is equal to the size of the eigenvalue problem (i.e. the size of the matrix to be diago-
nalized) referenced as problem complexity in this work.

Figure 11.6 shows on the left the UML representation of the workflow that can be
executed with ASKALON, and on the right, a concrete execution directed acyclic
graph (DAG) showing one iteration of the while loop and four parallel activities in
the parallel sections. The workflow size is determined at runtime as the parallelism is
calculated by the first activity, and the last activity generates the result, which helps
decide if the main loop is executed again or the result reaches the specified criteria.

We executed the workflow on a distributed testbed summarized in Table 11.3,
consisting of four heterogeneous Austrian Grid sites [25] and 12 virtual CPUs from
an “academic Cloud” called dps.cloud built using the Eucalyptus middleware [6]
and the XEN virtualization mechanism [7]. We configured the dps.cloud resource
classes to use one core, while multi-core configurations were prohibited by a bug in
the Eucalyptus software (planned to be fixed in the next released). We fixed the

<<ParallelFor>> pforLAPW1 lapw1Index=1:first/kpoints:1

<<Activity>>

second

<<ParallelFor>> pforLAPW2 lapw2TOTIndex=1:first/kpoints:1

<<Activity>>

fourth

<<Activity>>

first

<<Activity>>

third

<<Activity>>
last

true

false first

secondsecond second second

third

last

fourthfourth fourth fourth

Fig. 11.6  The Wien2k workflow in UML (left) and DAG (right) representation

190 S. Ostermann et al.

machine size of each Grid site to 12 cores to eliminate the variability in the resource
availability and make the results across different experiments comparable.

We used a just-in-time scheduling mechanism that tries to map each activity onto
the fastest available Grid resource. Once the Grid becomes full (because the size of
the workflow parallel loops is larger than the total number of cores in the testbed), the
scheduler starts requesting additional Cloud resources for executing, in parallel, the
remaining workflow activities. Once these additional resources are available, they
will be used to link Grid resources with different job submission methods.

Our goal was to compare the workflow execution for different problem sizes on
the four Grid sites, with the execution using the same Grid environment supple-
mented by additional Cloud resources from dps.cloud. We executed each workflow
instance five times and reported the average values obtained. The runtime variabil-
ity in the Austrian Grid was less than 5%, because the testbed was idle during our
experiments and each CPU was dedicated to running its activity with no external
load or other queuing overheads.

Table11.4 shows the workflow execution times for 376 and 193 parallel activities
in six different configurations. The small, medium, and big configuration values
represent a problem size parameter that influences the execution time of the parallel
activities. The improvement in using Cloud resources when compared with using
only the four Grid sites increases from a small 1.08 speedup for short workflows
with 14-min execution time, to a good 1.67 speedup for large workflows with
93-min execution time. The results show that a small and rather short workflow does
not benefit much from the Cloud resources due to the high ratio between the smaller

Table 11.3  Overview of resources used from the grid and the private cloud for workflow
execution

Grid site Location Cores used CPU type GHz Mem/core

karwendel Innsbruck 12 Opteron 2.4 1,024 mb
altix1.uibk Innsbruck 12 Itanium 1.4 1,024 mb
altix1.jku Linz 12 Itanium 1.4 1,024 mb
hydra.gup Linz 12 Itanium 1.6 1,024 mb
dps.cloud Innsbruck 12 Opteron 2.2 1,024 mb

Table 11.4  Wien2K execution time and cost analysis on the Austrian grid with and without cloud
resources for different number of parallel activities and problem sizes

Parallel
activities

Problem
complexity

Grid
execution

Grid +
cloud
execution

Speedup
using
Cloud

Used
instances

Paid
instances $/T $/

minHours $ Hours $

193 Small (7.0) 874.66 803.66 1.09 2.7 0.54 12 2.04 1.72
193 Medium (8.0) 1,915.41 1218.09 1.57 4.1 0.82 12 2.04 0.18
193 Big (9.0) 3,670.18 2193.79 1.67 7.3 1.46 12 2.04 0.08
376 Small (7.0) 1,458.92 1275.31 1.14 4.3 0.86 12 2.04 0.67
376 Medium (8.0) 2,687.85 2020.17 1.33 6.7 1.34 12 2.04 0.18
376 Big (9.0) 5,599.67 4228.90 1.32 14.1 2.81 24 4.08 0.17

19111  Resource Management for Hybrid Grid and Cloud Computing

computation and the high provisioning and data transfer overheads. The main
bottleneck when using Cloud resources is that the provisioned single core instances
use separate file systems that require separate file transfers to start the computation.
In contrast, Grid sites are usually parallel machines that share one file system across
a larger number of cores, which significantly decreases the data transfer overheads.
Nevertheless, for large problem sizes, the Cloud resources can help to significantly
shorten the workflow completion time in case Grids become overloaded.

Table 11.5 gives further details on the file transfer overheads and the distribution of
activity instances between the pure Grid and the combined Grid-Cloud execution. The
file transfer overhead can be reduced by increasing the size of a resource class (i.e.
number of cores underneath one instance, which share a file system and the input files
for execution), which may result in a lower resource allocation efficiency as the resource
allocation granularity increases. We plan to investigate this tradeoff in future work.

 To understand and quantify the benefit and the potential costs of using com-
mercial Clouds for similar experiments (without running the Wien2k workflows
once again because of cost reasons), we executed the LINPACK benchmark [26]
that measures the GFlop sustained performance of the resource classes offered by
three Cloud providers: Amazon EC2, GoGrid (GG), and our academic dps.cloud
(see Table 11.1). We configured LINPACK to use the GotoBLAS linear algebra
library (one of the fastest implementations on Opteron processors in our experi-
ence) and MPI Chameleon [27] for instances with multiple cores. Table 11.6
summarizes the results that show the m1.large EC2 instance as being the closest to
the dps.cloud, assuming that the two cores are used separately, which indicates an
approximate realistic cost of $0.20 per core hour. The best sustained performance
is offered by GG; however, it has extremely large resource provisioning latencies

Table 11.5  Grid versus cloud file transfer and activity instance distribution
to grid and cloud resources [t]

Parallel
activities

File transfers Activities run

Total To grid To cloud Total On cloud

376 2,013 1,544 469 (23%) 759 209 (28%)
193 1,127 778 349 (31%) 389 107 (28%)

Table 11.6  Average LINPACK sustained performance and resource provisioning latency results
of various resource classes (see Table 11.1)

Instance
dps.
cloud m1.smallm1.large m1.xl c1.medium c1.xl GG.1gig GG.4gig

Linpack
(GFlops)

4.40 1.96 7.15 11.38 3.91 51.58 8.81 28.14

Number of cores 1 1 2 4 2 8 1 3
GFlops per core 4.40 1.96 3.58 2.845 1.955 6.44 8.81 9.38
Speedup to dps 1 0.45 1.63 2.58 0.88 11.72 2.00 6.40
Cost [$ per hour] 0 (0.17) 0.085 0.34 0.68 0.17 0.68 0.18 0.72
Provisioning time

[s]
312 83 92 65 66 66 558 1,878

192 S. Ostermann et al.

(see next paragraph). The c1.xlarge (c1.xl) resource class provides the best per-core
sustained performance from the Amazon EC2 instances; however, it aggregates
eight cores and therefore has an increased cost per hour.

We also measured the resource provisioning time in the three Clouds, that is, the
time elapsed from when resources are requested until they are accessible (see
Fig. 11.3). The dps.cloud has an average provisioning time of about 5 min because of
the slower hard-drive available. Amazon EC2 is the fastest and needs about 74 s, while
GG is surprisingly slow and needs 20 min on an average. The dps.cloud provisioning
time could be improved through faster storage hardware, while future versions of
Eucalyptus also promise an improvement in image management and caching.

A characteristic of all Clouds that we surveyed is that they charge the resource
consumption based on hourly billing increments, and not based on 1s billing incre-
ments, as assumed by the simulations performed in two recent related works [4,5].
Table 11.4 shows that for our relatively short workflows below 2 h, there can be a
significant difference between the hourly and the 1s billing increment policies. This
ratio is decreasing with the growing problem size from 4.4 for the smallest work-
flow to 1.64 for the largest workflow.

Finally, we define a new metric called $ per unit of saved time ($/T) as the ratio
between the time gained by using Cloud resources and total cost of these resources.
The results show that the medium and big workflows are the most convenient to be
scaled on additional Cloud resources and cost between $0.08 and $0.18 per saved
minute, while the small workflows exhibit high costs of up to $1.72 per minute
because of the hourly billing increments.

11.5 � Related Work

Deelman et al. [4] analyzed the cost of Cloud storage for an image mosaic work-
flow and a possible on-demand calculation of the results. The work is based on an
Amazon EC2 and S3 simulation rather than the real execution. The computation
cost model is based on 1s billing increment and the storage cost model on a byte-
per-second billing increment, in contrast to the real Cloud providers that are
charged based on hourly, gigabyte-per-month billing increments.

Assuncao et al. [5] described an approach of extending a local cluster with Cloud
resources using two schedulers, one for the cluster and one for the Cloud, applying
different strategies. The possible benefit of not violating deadlines and achieving
higher cluster throughput is analyzed. The system concentrates on clusters and does
not extend its scope to Grids or multiple Cloud providers. Their results are generated
using simulation and do not take the real speed of Cloud resources into account.

Gropp et al. [28] check the usability of Cloud computing for scientific applica-
tions using several benchmarks, and shows that Cloud computing can be useful to
scientific computing in general.

Yigitbasi et al. [29], present a framework to analyze the performance of Clouds
and the results encourage the usability of Clouds for loosely-coupled jobs such as
in workflows.

19311  Resource Management for Hybrid Grid and Cloud Computing

11.6 � Conclusions and Future Work

In this chapter, we extended a Grid workflow development and computing environ-
ment to use on-demand Cloud resources in Grid environments offering a limited
amount of high-performance resources. We presented extensions to the resource-
management architecture to consider Cloud resources comprising three new com-
ponents: Cloud management for automatic image management, image catalog for
management of software deployments, and security for authenticating with multiple
Cloud providers. We presented experimental results of using a real-world applica-
tion in the Austrian Grid environment, extended with an academic Cloud. Our
results demonstrate that workflows with large problem sizes can significantly ben-
efit from being executed in a combined Grid and Cloud environment. Similarly, the
cost of using Cloud resources is more convenient for large workflows due to the
hourly billing increment policies applied.

Our environment currently supports providers offering Amazon EC2-compliant
interfaces, which we plan to extend for other Cloud providers. We also plan to
investigate more sophisticated multi-criteria scheduling strategies, such as the
effect of the resource class granularity (i.e. number of underlying cores) on the
execution time, resource allocation efficiency, and the overall cost. In addition, we
also intend to use the Cloud simulation framework presented in [30] for validating
various scheduling and optimization strategies at a larger scale.

References

	 1.	 Iosup A, Dumitrescu C, Epema D, Li H, Wolters L (2006) How are real grids used? The analy-
sis of four grid traces and its implications. In international conference on grid computing,
IEEE Computer Society, pp 262–269

	 2.	 Costa GD, Dikaiakos MD, Orlando S (2007) Analyzing the workload of the south-east federa-
tion of the egee grid infrastructure, CoreGRID Technical Report, Tech. Rep. TR-0063, 2007

	 3.	 Yu J, Buyya R (2005) A taxonomy of scientific workflow systems for grid computing. ACM
SIGMOD Rec 34(3):44–49

	 4.	 Deelman E, Singh G, Livny M, Berriman JB, Good J (2008) The cost of doing science on the
cloud: the montage example. In proceedings of the ACM/IEEE conference on high perfor-
mance computing, SC 2008. IEEE/ACM, Austin, Texas, USA, p 50

	 5.	 Assuncao ACM, Buyya R (2009) Evaluating the cost-benefit of using cloud computing to
extend the capacity of clusters. In: Kranzlmüller D, Bode A, Hegering H.-G, Casanova H,
Gerndt M (eds) 11th IEEE international conference on high performance computing and com-
munications (HPCC 2009), ACM

	 6.	 Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D (2008)
Eucalyptus: a technical report on an elastic utility computing architecture linking your programs
to useful systems. UCSB Computer Science Technical Report, Tech. Rep. 2008–10, 2008

	 7.	 Chisnal D (2007) The definitive guide to the Xen hypervisor. Prentice-Hall, New Jersey
	 8.	 Fahringer T, Prodan R, Duan R, Nerieri F, Podlipnig S, Qin J, Siddiqui M, Truong HL,

Villazón A, Wieczorek M (2005, November 13–14) Askalon: a grid application development
and computing environment. In proceedings of the 6th IEEE/ACM international conference
on grid computing (GRID 2005). IEEE, Seattle, Washington DC, pp 122–131

194 S. Ostermann et al.

	 9.	 Fahringer T, Qin J, Hainzer S (2005) Specification of grid workflow applications with agwl:
an abstract grid workflow language. In CCGRID. IEEE Computer Society, pp 676–685

	10.	 Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001) Grid information services for
distributed resource sharing. In 10th international symposium on high performance distributed
computing. IEEE Computer Society Press

	11.	 Ostermann S, Plankensteiner K, Prodan R, Fahringer T, Iosup A (2008) “Workflow monitoring
and analysis tool for ASKALON”, in Grid and Services Evolution. Barcelona, Spain, pp 73–86

	12.	 Amazon (2009) Elastic compute cloud (EC2). http://aws.amazon.com/ec2/. Accessed January
2009

	13.	 GoGrid (2009) Cloud hosting: Instant windows and linux cloud servers. http://www.gogrid.
com/. Accessed January 2009

	14.	 “Elastichosts: Cloud hosting and cloud computing that’s flexible and easy to use. http://www.
elastichosts.com/

	15.	 Mosso (2009) The cloud, cloud computing, cloud hosting, cloud services @ mosso. http://
www.mosso.com/. Accessed January 2009

	16.	 Amazon Inc. (2009) Amazon ec2 api. http://developer.amazonwebservices.com/connect/
kbcategory.jspa?categoryID=87. Accessed April 2009

	17.	 Keahey K, Freeman T, Lauret J, Olson D (2007) Virtual workspaces for scientific applica-
tions. In Scientific discovery through advanced computing. Boston, MA

	18.	 Buyya R, Yeo CS, Venugopal S (2008, 25–27 Sept) Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing utilities. In 10th IEEE international
conference on high performance computing and communications (HPCC 2008). IEEE,
Dalian, China, pp 5–13

	19.	 Agathon Group (2009) https://www.agathongroup.com/. Accessed January 2009
	20.	 FlexiScale (2009) Utility computing on demand. http://flexiscale.com/. Accessed January 2009
	21.	 3tera (2009) Applogic - grid operating system for web applications. http://www.3tera.com/

AppLogic/. Accessed January 2009
	22.	 Novotny J, Tuecke S, Welch V (2001) An online credential repository for the Grid: MyProxy.

In proceedings of the tenth international symposium on high performance distributed comput-
ing (HPDC-10), IEEE Computer Society Press

	23.	 von Laszewski G, Foster I, Gawor J (2000) CoG kits: a bridge between commodity distributed
computing and high-performance grids. In Java Grande Conference. ACM Press, pp 97–106

	24.	 Blaha P, Schwarz K, Luitz J (2001) WIEN2k, a full potential linearized augmented plane wave
package for calculating crystal properties. TU Wien ISBN 3-9501031-1-2, 2001

	25.	 Volkert J (2006, July 6–9) Austrian grid: Overview on the project with focus on parallel appli-
cations. In 5th international symposium on parallel and distributed computing (ISPDC 2006).
IEEE Computer Society, Timisoara, Romania, p 14

	26.	 Dongarra JJ, Luszczek P, Petitet A (2003) The LINPACK benchmark: past, present and future.
Concurr Comput Prac Exp 15(9):803–820

	27.	 Gropp W, Lusk E, Ashton D, Buntinas D, Butler R, Chan A, Ross R, Thakur R, Toonen B
(2005) Mpich2 user’s guide, version 1.0.3, Mathematics and computer science division,
Argonne national laboratory. Technical Report. http://www-unix.mcs.anl.gov/mpi/mpich/

	28.	 Rehr JJ, Gardner JP, Prange M, Svec L, Vila F (2009) Scientific computing in the cloud.
Computing Research Repository vol. abs/0901.0029, 2009

	29.	 Yigitbasi N, Iosup A, Ostermann S, Epema D (2009) C-meter: A framework for performance
analysis of computing clouds. In International Workshop on Cloud Computing (Cloud 2009)

	30.	 Calheiros RN, Ranjan R, Rose CAFD, Buyya R (2009) Cloudsim: a novel framework for
modeling and simulation of cloud computing infrastructures and services. Computing
Research Repository, vol. abs/0903.2525, 2009

195

Abstract  Clouds have evolved as the next-generation platform that facilitates
creation of wide-area on-demand renting of computing or storage services for
hosting application services that experience highly variable workloads and requires
high availability and performance. Interconnecting Cloud computing system
components (servers, virtual machines (VMs), application services) through peer-
to-peer routing and information dissemination structure are essential to avoid the
problems of provisioning efficiency bottleneck and single point of failure that are
predominantly associated with traditional centralized or hierarchical approaches.
These limitations can be overcome by connecting Cloud system components using
a structured peer-to-peer network model (such as distributed hash tables (DHTs)).
DHTs offer deterministic information/query routing and discovery with close to
logarithmic bounds as regards network message complexity. By maintaining a
small routing state of O (log n) per VM, a DHT structure can guarantee determin-
istic look-ups in a completely decentralized and distributed manner.

This chapter presents: (i) a layered peer-to-peer Cloud provisioning architecture;
(ii) a summary of the current state-of-the-art in Cloud provisioning with particular
emphasis on service discovery and load-balancing; (iii) a classification of the exist-
ing peer-to-peer network management model with focus on extending the DHTs for
indexing and managing complex provisioning information; and (iv) the design and
implementation of novel, extensible software fabric (Cloud peer) that combines
public/private clouds, overlay networking, and structured peer-to-peer indexing
techniques for supporting scalable and self-managing service discovery and load-
balancing in Cloud computing environments. Finally, an experimental evaluation is
presented that demonstrates the feasibility of building next-generation Cloud
provisioning systems based on peer-to-peer network management and information

R. Ranjan (*)
SA Project, CRC Smart Services, Service Oriented Computing Research Group,
School of Computer Science and Engineering, University of New South Wales, Australia
e-mail: rajivr@cse.unsw.edu.au

Chapter 12
Peer-to-Peer Cloud Provisioning: Service
Discovery and Load-Balancing

Rajiv Ranjan, Liang Zhao, Xiaomin Wu, Anna Liu, Andres Quiroz,
and Manish Parashar

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_12, © Springer-Verlag London Limited 2010

196 R. Ranjan et al.

dissemination models. The experimental test-bed has been deployed on a public
cloud computing platform, Amazon EC2, which demonstrates the effectiveness of
the proposed peer-to-peer Cloud provisioning software fabric.

12.1 � Introduction

Cloud computing [1–3] has emerged as the next-generation platform for hosting
business and scientific applications. It offers infrastructure, platform, and software
as services that are made available as on-demand and subscription-based services
in a pay-as-you-go model to users. These services are, respectively, referred to as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). Adoption of Cloud computing platforms [4–9] as an application
provisioning environment has the following critical benefits: (i) software enter-
prises and startups with innovative ideas for new Internet services are no longer
required to make large capital outlays in the hardware and software infrastructures
to deploy their services or human expense to operate it; (ii) government agencies
and financial organizations can use Cloud services as an effective means for cost
cutting by leasing their IT service hosting and maintenance from external cloud
providers; (iii) organizations can more cost-effectively manage peak-load by using
the cloud, rather than planning and building for peak load, and having under-utilized
servers sitting there idle during off peak time; and (iv) failures due to natural disasters
or regular system maintenance/outage may be managed more gracefully as services
may be more transparently managed and migrated to other available cloud resources,
hence enabling improved service-level agreement (SLA).

The process of deploying application services on publically accessible clouds
(such as Amazon EC2 [8]) that expose their capabilities as a network of virtualized
services (hardware, storage, database) is known as Cloud provisioning. The Cloud
provisioning process consists of two key steps [10]: (i) VM provisioning, involving
instantiation of one or more VMs on physical servers hosted within public or pri-
vate Cloud computing environments – the selection of a physical server for hosting
VMs in a cloud is based on a number of mapping requirements including available
memory, storage space, and proximity of the parent cloud; and (ii) application ser-
vice provisioning, with mapping and scheduling of requests to the services that are
hosted within a VM or on a set of VMs. In this chapter, we mainly focus on the
second step, which involves dynamically distributing the incoming requests among
the services in a load-balanced and decentralized manner, given a set of VMs that
are hosting different types of application services.

Cloud provisioning from a business services point of view involves deriving
cloud-based application component deployments driven by expected performance
(Quality of Service (QoS)). Clouds offer an unprecedented pool of software and
hardware resources, which gives businesses a unique ability to handle the temporal
variation in their service demands through dynamic provisioning or deprovisioning

19712  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

of capabilities. Whenever there is a variation in temporal and spatial locality of
workload such as number of concurrent users, total users, and load conditions, each
application component must dynamically scale (application service elasticity) to
offer good quality of experience to users, and maintain an optimal usage of cloud
resources. Cloud-enabling any class of application service would require develop-
ing models for service placement, computation, communication, and storage, with
emphasis on important scalability requirements.

Currently, one of the prominent Cloud service providers Amazon EC2 offers
two services, namely CloudWatch [11] and Elastic Load Balancer [12].
Fundamentally, CloudWatch and Elastic Load Balancer are centralized web ser-
vices that can be associated with numerous EC2 instances. However, centralized
approaches have several critical design limitations including: (i) single point of
failure; (ii) lack of scalability; (iii) high network communication cost at links
leading to the service; (iv) requirement of high computational power to serve a
large number of resource look-up and updated queries on the server running the
central service.

As Clouds become ready for mainstream acceptance, scalability [13] of services
will come under more severe scrutiny due to the increasing number of online ser-
vices in the Cloud, and massive numbers of global users. To overcome the afore-
mentioned limitations, fundamental Cloud services for discovery, monitoring, and
load-balancing should be decentralized by nature and different service components
(VM instances and application elements) must interact to adaptively maintain and
achieve the desired system wide connectivity and behaviour.

The rest of this chapter is organized as follows: First, a layered approach to
architecting peer-to-peer Cloud provisioning system is presented. This is followed
by some survey results on Cloud provisioning capabilities in leading commercial
public clouds. The finer details related to architecting peer-to-peer Cloud service
discovery and load-balancing techniques over DHT overlay is then presented, fol-
lowed by a discussion of the design and implementation of peer-to-peer Cloud
provisioning (Cloud peer) software fabric. Lastly, we present the analysis and
experimental results of the peer-to-peer Cloud provisioning implementation across
a public Cloud (Amazon EC2) environment (Table 12.1).

Table 12.1  Summary of provisioning capabilities exposed by public Cloud platforms

Cloud platforms Load balancing Provisioning Autoscaling

Amazon Elastic
Compute Cloud

√ √ √

Eucalyptus √ √ ×
Microsoft Windows

Azure
√ √ √

(Fixed templates so far) (Manually at the moment)
Google App Engine √ √ √
GoGrid Cloud

Hosting
√ √ √

(Programmatic way only)

198 R. Ranjan et al.

12.2 � Layered Peer-to-Peer Cloud Provisioning Architecture

This section presents information on various architectural elements that form the
basis for peer-to-peer Cloud provisioning architecture. It also presents an overview
of the applications that would benefit from the architecture, which envisages a host-
ing infrastructure consisting of multiple geographically distributed private and
public clouds owned by one or more service providers. Figure 12.1 shows the lay-
ered design of the peer-to-peer Cloud provisioning architecture. Physical Cloud
servers, along with core middleware capabilities, form the basis for delivering IaaS.
The user-level middleware aims at providing PaaS capabilities. The top layer
focuses on application services (SaaS) by making use of services provided by the
lower layers. PaaS/SaaS services are often developed and provided by third-party
service providers, who are different from IaaS providers.

Cloud Applications (SaaS): Popular Cloud applications include Business to
Business (B2B) applications, traditional eCommerce type of applications, enter-
prise business applications such as CRM and ERP, social computing such as
Facebook and MySpace, and compute, data intensive applications and content
delivery networks (CDNs). These applications have radically different application
characteristics and workload profiles, and hence, to cope with the variation in tem-
poral and spatial locality of service request, the application services must be sup-
ported by a Cloud provisioning infrastructure that dynamically scales the deployed

Core Services
Layer (PaaS)

Infrastructure
Layer (IaaS)

Programming
Layer (SaaS)

Virtual Machine (VM), Local Resource Manager (SGE, PBS)

Scheduling, Fault-Management, Monitoring, Alloca�on, Security

Cloud programming: run�me environments and tools
MapReduce, Hadoop, Workflow, Web 2.0 Interfaces, Mashups

Peer-to-Peer Rou�ng Overlay (DHT)

Data organiza�on techniques, Replica�on, Load balancing

Selec�on, Discovery, Co-ordina�on, Messaging

Cloud applica�ons: B2B Processes, CDNs, Social Compu�ng, e-Research

Cloud Peer

Apps Composition Environments

Microso� Amazon Google

Public Clouds Private Clouds

Peer-to-Peer Features

S
elf-M

an
ag

em
en

t

Fig. 12.1  A layered peer-to-peer Cloud provisioning architecture

19912  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

services in order to achieve good performance, optimal resource usage, and hence
offer quality experience to its end-users.

Development Framework Layer: This layer includes the software frameworks
such as Web 2.0 Interfaces (Ajax, IBM Workplace, and Visual Studio.net Azure
plug-in) that help developers in creating rich, cost-effective, user-interfaces for
browser-based applications. The layer also provides the data-intensive, parallel pro-
gramming environments (such as MapReduce, Hadoop, Dryad) and composition
tools that ease the creation, deployment, and execution of applications in Clouds.

Core Services Layer (PaaS): This layer implements the platform-level ser-
vices that provide run-time environment-enabling Cloud computing capabilities
to application services built using User-Level Middleware. Core services at this
layer include scheduling, fault-management, monitoring, dynamic SLA manage-
ment, accounting, billing, and pricing. Further, the services at this layer must
be able to provide support for decentralized co-ordinated interaction, scalable
selection, and messaging between distributed Cloud components. Some of the
existing services operating at this layer are Amazon EC2’s CloudWatch and
Load-balancer service, Google App Engine, Microsoft Azure’s fabric controller,
and Aneka [14].

To be able to provide support for decentralized service discovery [15] and load-
balancing between cloud components (VM instances, application services), novel
distributed hash table (DHT)-based PaaS layer services, techniques, and algorithms
need to be developed at this layer for supporting complex interactions with guaran-
tees on dynamic management. In Fig. 12.1, this component of PaaS layer is shown
as Cloud peer service. Architecting Cloud services based on decentralized network
models or overlays (such as DHTs) is significant since DHTs are highly scalable,
can gracefully adapt to the dynamic system expansion (new host/VM/service
instantiation) or contraction (host/VM/service instance destruction) and outage,
and are not susceptible to single point of failure in massive scale, internetworked
private and public cloud environments.

Infrastructure Layer (IaaS): The computing power in Cloud computing environ-
ments is supplied by a collection of data centers that are typically installed with
many thousands of servers. At the IaaS layer, there exist massive physical servers
(storage servers and application servers) that power the data centers. These servers
are transparently managed by the higher-level virtualization services and toolkits
that allow sharing of their capacity among virtual instances of servers. These virtual
machines (VMs) are isolated from each other, which aids in achieving fault-tolerant
behaviour and the isolation of security contexts.

Another trend in Cloud usage is combination of private clouds with public
clouds, in order to attend unexpected or periodic peaks in local demand without
investing in acquiring new equipment for the local infrastructure. Resources from
the data center may be either available for public in general (public clouds) or may
be restricted to users belonging to the organization that owns the data center (pri-
vate clouds). It is also possible to have hybrid models, in which resources are leased
from the public cloud whenever the private cloud cannot cope with the incoming
demand.

200 R. Ranjan et al.

12.3 � Current State-of-the-Art and Practice in Cloud
Provisioning

Key players in public Cloud computing, including Amazon, Microsoft, Google App
Engine, Eucalyptus [16], and GoGrid, offer a variety of prepackaged services for
monitoring, managing, and provisioning resources. However, the techniques imple-
mented in each of these Clouds vary.

The three Amazon Web Services (AWS), Elastic Load Balancer [12], Auto
Scaling [17], and CloudWatch [11], together expose functionalities that are required
for undertaking provisioning of application services on Amazon EC2. Elastic Load
Balancer service automatically provisions incoming application workload across
available Amazon EC2 instances. Auto-scaling service can be used to dynamically
scale-in or scale-out the number of Amazon EC2 instances for handling changes in
service demand patterns. And finally, the CloudWatch service can be integrated
with the above services for strategic decision-making based on collected real-time
information.

Eucalyptus is an open source Cloud computing platform. It is composed of three
controllers. Among the controllers, the cluster controller is a key component to
application service provisioning and load balancing. Each cluster controller is
hosted on the head node of a cluster to interconnect outer public networks and inner
private networks together. By monitoring the state information of instances in the
pool of server controllers, the cluster controller can select the available service/
server for provisioning incoming requests. However, when compared with AWS,
Eucalyptus still lacks some of the critical functionalities, such as autoscaling for
built-in provisioner.

Fundamentally, Windows Azure Fabric has a weave-like structure, which is
composed of nodes (servers and load balancers), and edges (power, Ethernet, and
serial communications). The fabric controller manages a service node through a
built-in service, the Azure fabric controller agent, which runs in the background
tracking the state of the server and reporting these metrics to the controller. If a fault
state is reported, the controller can manage a reboot of the server or a migration of
services from the current server to other healthy servers. Moreover, the controller
also supports service provisioning by matching the services/VMs that meet the
required demands.

GoGrid Cloud Hosting offers developers F5 Load Balancers [18] for distributing
application service traffic across servers, as long as IPs and specific ports of these
servers are attached. The load balancer provides the Round Robin algorithm and
Least Connect algorithm for routing application service requests. Also, the load
balancer is able to sense a crash of the server, redirecting further requests to other
available servers. But currently, GoGrid Cloud Hosting only gives developers pro-
grammatic APIs to implement their custom autoscaling service.

Unlike other Cloud platforms, Google App Engine offers developers a scalable
platform in which applications can run, rather than providing access directly to a
customized virtual machine. Therefore, access to the underlying operating system

20112  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

is restricted in App Engine. Load-balancing strategies, service provisioning, and
autoscaling are all automatically managed by the system behind the scenes.

In addition, no single Cloud infrastructure provider has its data centers at all pos-
sible locations throughout the world. As a result, Cloud application service (SaaS)
providers will have difficulty in meeting QoS expectations for all their users. Hence,
they would like to logically construct hybrid Cloud infrastructures (mixing multiple
public and private clouds) to provide better support for their specific user needs. This
kind of requirement often arises in enterprises with global operations and applications
such as Internet service, media hosting, and Web 2.0 applications. This necessitates
building technologies and algorithms for seamless integration of Cloud infrastructure
service providers for provisioning of services across different Cloud providers.

12.4 � Cloud Service Discovery and Load-Balancing Using
DHT Overlay

12.4.1 � Distributed Hash Tables

Structured systems such as DHTs offer deterministic query search results within
logarithmic bounds on network message complexity. Peers in DHTs such as Chord,
CAN, Pastry, and Tapestry maintain an index for O (log n) peers where n is the total
number of peers in the system. Inherent to the design of a DHT are the following
issues [19]: (i) generation of node-ids and object-ids, called keys, using crypto-
graphic/randomizing hash functions such as SHA-1 [19–22] – the objects and nodes
are mapped on the overlay network depending on their key value and each node is
assigned responsibility for managing a small number of objects; (ii) building up
routing information (routing tables) at various nodes in the network – each node
maintains the network location information of a few other nodes in the network;
and (iii) an efficient look-up query resolution scheme.

Whenever a node in the overlay receives a look-up request, it must be able to
resolve it within acceptable bounds such as in O (log n) routing hops. This is
achieved by routing the look-up request to the nodes in the network that are most
likely to store the information about the desired object. Such probable nodes are
identified by using the routing table entries. Though at the core various DHTs
(Chord, CAN, Pastry, and Tapestry, etc.) are similar, still there exist substantial dif-
ferences in the actual implementation of algorithms including the overlay network
construction (network graph structure), routing table maintenance, and node join/
leave handling. The performance metrics for evaluating a DHT include fault-toler-
ance, load-balancing, efficiency of look-ups and inserts, and proximity awareness
[23]. In Table 12.2, we present the comparative analysis of Chord, Pastry, CAN,
and Tapestry based on basic performance and organization parameters.
Comprehensive details about the performance of some common DHTs under churn
can be found in [24].

202 R. Ranjan et al.

Ta
bl

e
12

.2
 

Su
m

m
ar

y
of

 c
om

pl
ex

ity
 o

f
di

st
ri

bu
te

d
ha

sh
 ta

bl
e

ov
er

la
ys

D
H

T
 s

ys
te

m
O

ve
rl

ay
 s

tr
uc

tu
re

L
oo

k-
up

 p
ro

to
co

l
N

et
w

or
k

pa
ra

m
et

er
s

R
ou

tin
g

ta
bl

e
si

ze
R

ou
tin

g
co

m
pl

ex
ity

Jo
in

/
le

av
e

ov
er

he
ad

C
ho

rd
C

ir
cu

la
r

id
en

tif
ie

r
sp

ac
e

M
at

ch
in

g
ke

y
an

d
se

rv
er

-i
d

n
=

nu
m

be
r

of
 s

er
ve

rs
O

 (
lo

g
n)

O
 (

lo
g

n)
O

 (
(l

og
 n

)2)

Pa
st

ry
Pl

ax
to

n
st

yl
e

m
es

h
M

at
ch

in
g

ke
y

an
d

pr
ef

ix

in
 s

er
ve

r-
id

n
=

nu
m

be
r

of
 s

er
ve

rs

in
 th

e
ne

tw
or

k,

b=
 b

as
e

of
 th

e
id

en
tif

ie
r

O
 (

lo
g b

n)
O

 (
b

lo
g b

n)
 +

 b
O

 (
lo

g
n)

C
A

N
M

ul
tid

im
en

si
on

al
 s

pa
ce

K
ey

, v
al

ue
 p

ai
r

m
ap

 to
 a

po

in
t i

n
sp

ac
e

n
=

nu
m

be
r

of
 s

er
ve

rs

in
 th

e
ne

tw
or

k,

 d
 =

 d
im

en
si

on
s

O
 (

2
d)

O
 (

d
n1/

d)
O

 (
2

d)

Ta
pe

st
ry

Pl
ax

to
n

st
yl

e
m

es
h

M
at

ch
in

g
su

ff
ix

 in

se
rv

er
-i

d
n

=
nu

m
be

r
of

 s
er

ve
rs

in

 th
e

ne
tw

or
k,

b

=
 b

as
e

of
 th

e
id

en
tif

ie
r

O
 (

lo
g b

n)
O

 (
b

lo
g b

n)
 +

 b
O

 (
lo

g
n)

20312  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

Other classes of structured peer-to-peer systems such as Mercury [25] do not
apply randomizing hash functions for organizing data items and nodes. The
Mercury system organizes nodes into a circular overlay and places data contigu-
ously on this ring. As Mercury does not apply hash functions, data partitioning
among nodes is not uniform. Hence, it requires an explicit load-balancing scheme.
In recent developments, new-generation P2P systems have evolved to combine both
unstructured and structured P2P networks. We refer to this class of systems as
hybrid. Structella [26] is one such P2P system that replaces the random graph
model of an unstructured overlay (Gnutella) with a structured overlay, while still
adopting the search and content placement mechanism of unstructured overlays to
support complex queries. Other hybrid P2P design includes Kelips [27] and its vari-
ants. Nodes in Kelips overlay periodically gossip to discover new members of the
network, and during this process nodes may also learn about other nodes as a result
of look-up communication. Other variants of Kelips allow routing table entries to
store information for every other node in the system. However, this approach is
based on the assumption that the system experiences low churn rate [24]. Gossiping
and one-hop routing approach has been used for maintaining the routing overlay in
the work [28].

12.4.2 � Designing Complex Services over DHTs

Limitations of Basic DHT Implementations and Query Types: Traditionally, DHTs
have been efficient for single-dimensional queries such as “finding all resources
that match the given attribute value.” Since Cloud computing IaaS and PaaS level
services such as servers, VMs, enterprise computers (private cloud resources), stor-
age devices, and databases are identified by more than one attribute, a search query
for these services is always multidimensional. These search dimensions or attri-
butes can include service type, processor speed, architecture, installed operating
system, available memory, and network bandwidth.

Based on recent information published by Amazon EC2 CloudWatch service,
each Amazon Machine Image (AMI) instance has seven performance metrics (see
Table 12.3) and four dimensions (see Table 12.4) associated with it. Additionally,
these AMIs can host different application service types, including web hosting,

Table 12.3  Performance metrics associated with an Amazon EC2 AMI instance

CPU
Utilization

Network
Incoming
Traffic

Network
Outgoing
Traffic

Disk Write
Operations

Disk Read
Operations

Disk
Write
Bytes

Disk
Read
Bytes

Table 12.4  Performance dimensions associated with an Amazon EC2 AMI instance

Image ID Autoscaling group name Instance ID Instance type

204 R. Ranjan et al.

social networking, content-delivery, and high-performance computing, that have
varying request invocation, access, and distribution patterns. The type of application
services hosted by an AMI instance is dependent on the business needs and scien-
tific experiments. In these cases, a Cloud service discovery query (which can be
issued by provisioning software) will combine the aforementioned attributes related
to AMI instances and application service types and therefore can have the following
semantics:

Cloud Service Type = “web hosting” && Host CPU Utilization < “50%” && Instance
OSType = “WinSrv2003” && Host Processor Cores > “1” && Host Processors Speed >
“1.5 GHz” && Host Cloud Location = “Europe”

On the other hand, VM instances deployed on the Cloud hosts needs to publish their
information so that provisioning software can search and discover them. VM
instances update their software and hardware configuration and the deployed
services’ availability status by sending update query to the DHT overlay. An update
query has the following semantics:

Cloud Service Type = “web hosting” && Host CPU Utilization = “30%” && Instance
OSType = “WinSrv2003” && Host Processor Cores = “2” && Host Processors Speed
= “1.5 GHz” && Host Cloud Location = “Europe”

Extending DHTs to support indexing and matching of multidimensional range (ser-
vice discovery query) or point (update query) queries, to index all resources whose
attribute value overlaps a given search space, is a complex problem. Multidimensional
range queries are based on ranges of values for attributes rather than on specific
values. Compared to single-dimensional queries, resolving multidimensional que-
ries is far more complicated, as there is no obvious total ordering of the points in the
attribute space. Further, the query interval has varying size, aspect ratio, and position
such as a window query. The main challenges involved in enabling multidimensional
queries in a DHT overlay include designing efficient service attribute data: (i) distri-
bution or indexing techniques; and (ii) query routing techniques.

Data Indexing Techniques for Mapping Multidimensional Range and Point
Queries: A data indexing technique partitions the multidimensional attribute
space over the set of VMs in a DHT network. Efficiency of the distribution
mechanism directly governs how the query processing load is distributed among
the Cloud peers. A good distribution mechanism should possess the following
characteristics [29]: (i) locality: data points nearby in the attribute space should
be mapped to the same Cloud peer, hence limiting the distributed lookup com-
plexity; (ii) load balance: the number of data points indexed by each Cloud peer
should be approximately the same to ensure uniform distribution of query pro-
cessing; (iii) minimal metadata: prior information required for mapping the attri-
bute space to the overlay space should be minimal; and (iv) minimal management
overhead: during VM instantiation and destruction operation, update policies
such as the transfer of data points to a newly joined Cloud peer should cause
minimal network traffic. Note that the assumption here is that every VM instance
hosts a Cloud peer service, which is responsible for managing activities related
to overlay network.

20512  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

There are different kinds of database indices [30] that can handle mapping of
multidimensional objects such as the space filling curves (SFCs) (including the
Hilbert curves, Z-curves), k-d tree, MX-CIF Quad tree, and R*-tree in a DHT over-
lay. In literature, these indices are referred to as spatial indices [31]. Spatial indices
are well suited for handling the complexity of multidimensional queries. Although
some spatial indices can have issues as regards to routing load-balance in case of a
skewed attribute/data set, all the spatial indices are generally scalable in terms of
the number of hops traversed and messages generated while searching and routing
multidimensional/spatial service discovery and update queries. However, there are
different tradeoffs involved with each of the spatial indices, but basically they can
all support scalability and Cloud service discovery. Some spatial index would per-
form optimally in one scenario but the performance could degrade if the attribute/
data distribution changed significantly.

Routing Techniques for Handling Multidimensional Queries in DHT Overlay:
DHTs guarantee deterministic query look-up with logarithmic bounds on network
message cost for single-dimensional queries. However, Cloud’s service discovery
and update query are multidimensional (as discussed in previous sections). Hence,
the existing DHT routing techniques need to be augmented in order to efficiently
resolve multidimensional queries. Various data structures that we discussed in the
previous section effectively create a logical multidimensional index space over a
DHT overlay. A look-up operation involves searching for an index or set of indexes
in a multidimensional space. However, the exact query routing path in the multidi-
mensional logical space is directly governed by the data distribution mechanism
(i.e. based on the data structure that maintains the indexes). In this context, various
approaches have proposed different routing/indexing heuristics.

Efficient query routing algorithms should exhibit the following characteristics
[29]: (i) routing load balance: every peer in the network should route forward/route
approximately the same number of query messages; and (ii) low routing state per
Cloud peer: each Cloud peer should maintain a small number of routing links hence
limiting new Cloud peer (VM) join and Cloud peer (VM) state update cost. In the
current peer-to-peer literature, multidimensional data distribution mechanisms
based on the following structures have been proposed: (i) space filling curves; and
(ii) tree-based structures. Resolving multidimensional queries over a DHT overlay
that utilizes SFCs for data distribution consists of two basic steps [10]: (i) mapping
the multidimensional query onto the set of relevant clusters of SFC-based index
space; and (ii) routing the message to all VMs that fall under the computed SFC-
based index space. On the other hand, routing multidimensional query in a DHT
overlay that employs tree-based structures for data distribution requires routing to
start from the root. However, the root VM presents a single point of failure and load
imbalance. To overcome this, the authors introduced the concept of fundamental
minimum level. This means that all the query processing and the data storage
should start at that minimal level of the tree rather than at the root. There are a
number of techniques available for distributed routing in multidimensional space.
The performance of techniques varies depending on the distribution of data in the
multidimensional space, and VM in the underlying DHT overlay.

206 R. Ranjan et al.

12.5 � Cloud Peer Software Fabric: Design and Implementation

The Cloud peer implements services for enabling decentralized and distributed
discovery supporting status look-ups and updates across the internetworked Cloud
computing systems, enabling inter-application service co-ordinated provisioning for
optimizing load-balancing and tackling the distributed service contention problem.
The dotted box in Fig. 12.1 shows the layered design of Cloud peer service over
DHT based self-organizing routing structure. The services built on the DHT routing
structure extends (both algorithmically and programmatically) the fundamental
properties related to DHTs including deterministic look-up, scalable routing, and
decentralized network management. The Cloud peer service is divided into a number
of sublayers (see Fig. 12.1): (i) higher level services for discovery, co-ordination,
and messaging; (ii) low level distributed indexing and data organization techniques,
replication algorithms, and query load-balancing techniques; (iii) DHT-based self-
organizing routing structure. A Cloud peer undertakes the following critical tasks
that are important for proper functioning of DHT-based provisioning overlay.

12.5.1 � Overlay Construction

The overlay construction refers to how Cloud peers are logically connected over the
physical network. The software implementation utilizes (the open source implemen-
tation of Pastry DHT known as the FreePastry) Pastry [32] as the basis for creation of
Cloud peer overlay. A Pastry overlay interconnects the Cloud peer services based on
a ring topology. Inherent to the construction of a Pastry overlay are the following
issues: (i) Generation of Cloud peer is and query (discovery, update) ids, called keys,
using cryptographic/randomizing hash functions such as SHA-1. These IDs are
generated from 160-bit unique identifier space. The ID is used to indicate a Cloud
peer’s position in a circular ID space, which ranges from 0 to 2160 − 1. The queries
and Cloud peers are mapped on the overlay network depending on their key values.
Each Cloud peer is assigned responsibility for managing a small number of queries;
and (ii) building up routing information (leaf set, routing table, and neighborhood
set) at various Cloud peers in the network. Given the Key K, the Pastry routing
algorithm can find the Cloud peer responsible for this key in O (log

b
 n) messages,

where b is the base and n is the number of Cloud Peers in the network.
Each Cloud peer in the Pastry overlay maintains a routing table, leaf set, and

neighborhood set. These tables are constructed when a Cloud peer joins the overlay,
and it is periodically updated to take into account any new joins, leaves, or failures.
Each entry in the routing table contains the IP address of one of the potentially
many Cloud peers whose id have the appropriate prefix; in practice, a Cloud peer
is chosen, which is close to the current peer, according to the proximity metric.
Figure 12.2 shows a hypothetical Pastry overlay with keys and Cloud peers distributed
on the circular ring based on their cryptographically generated IDs.

20712  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

12.5.2 � Multidimensional Query Indexing

To support multidimensional query indexing (Cloud service type, Host utilization,
Instance OS type, Host Cloud location, Host Processor speed) over Pastry overlay,
a Cloud peer implements a distributed indexing technique [33], which is a variant
of peer-to-peer MX-CIF Quad tree [34] data structure. The distributed index builds
a multidimensional attribute space based on the Cloud service attributes, where
each attribute represents a single dimension. An example of a two-dimensional
attribute space that indexes service attributes including speed and CPU type is
shown in Fig. 12.2. The first step in initializing the distributed index is the process
called minimum division (f

min
). This process divides the Cartesian space into mul-

tiple index cells when the multidimensional distributed index is first created. As a
result of this process, the attribute space resembles a grid-like structure consisting
of multiple index cells. The cells resulting from this process remain constant
throughout the life of the indexing domain and serve as entry points for subsequent
service discovery and update query mapping. The number of cells produced at the
minimum division level is always equal to (f

min
)dim, where dim is dimensionality of

the attribute space. Every Cloud peer in the network has basic information about
the attribute space co-ordinate values, dimensions, and minimum division level.
Cloud peers can obtain this information (cells at minimum division level, control
points) in a configuration file from the bootstrap peer. Each index cell at f

min
 is

uniquely identified by its centroid, termed as the control point. In Fig. 12.2,
f

min
 = 1, dim = 2. The Pastry overlay hashing method (DHash (co-ordinates)) is used

to map these control points so that the responsibility for an index cell is associated
with a Cloud peer in the overlay. For example in Fig. 12.2, DHash(x

1
, y

1
) = k10 is

the location of the control point A (x
1
,y

1
) on the overlay, which is managed by

Cloud peer 12.

12.5.3 � Multidimensional Query Routing

This action involves the identification of the index cells at minimum division level
f

min
 in the attribute space to map a service discovery and update query. For a mapping

service discovery query, the mapping strategy depends on whether it is a multidi-
mensional point query (equality constraints on all search attribute values) or multi-
dimensional range query. For a multidimensional point service discovery query, the
mapping is straightforward since every point is mapped to only one cell in the
attribute space. For a multidimensional range query, mapping is not always singular
because a range look-up can cross more than one index cell. To avoid mapping a
multidimensional service discovery query to all the cells that it crosses (which can
create many unnecessary duplicates), a mapping strategy based on diagonal hyper-
plane of the attribute space is utilized. This mapping involves feeding the service
discovery query’s spatial dimensions into a mapping function, IMap(query).

208 R. Ranjan et al.

This function returns the IDs of index cells to which given query can be mapped
(refer to step 7 in Fig. 12.2). Distributed hashing (DHash(cells)) is performed on
these IDs (which returns keys for Pastry overlay) to identify the current Cloud peers
responsible for managing the given keys. A Cloud peer service uses the index
cell(s) currently assigned to it and a set of known base index cells obtained at the
initialization as the candidate index cells. Similarly, mapping of the update query
also involves the identification of the cell in the attribute space using the same
algorithm. An update query is always associated with an event region [35] and all
cells that fall fully or partially within the event region would be selected to receive
the corresponding objects. The calculation of an event region is also based on the
diagonal hyperplane of the attribute space. Giving in-depth information here is out
of the scope for this chapter; however, the readers who would like to have more
information can refer the paper [15, 30, 33] that describes the index in detail.

Fig. 12.2  A pictorial representation of Pastry (DHT) overlay construction, multidimensional data
indexing, and routing: (1) a service hosted within a VM publishes an update query; (2) Cloud peer
8 computes the index cell, C(x

3
,y

3
), to which the update query maps by using mapping function

IMap(query); (3) next, distributed hashing function, DHash(x
3
, y

3
), is applied on the cell’s co-ordinate

values, which yields an overlay key, K14; (4) Cloud peer 8 based on its routing table entry for-
wards the request to peer 12; (5) similarly, peer 12 on the overlay forwards the request to Cloud
peer 14; (6) a provisioning service submits a service discovery query; (7) Cloud peer 2 computes
the index cell, C(x

1
, y

1
), to which the service discovery query maps; (8) DHash(x

1
, y

1
) is applied

that yields an overlay key, K10; (9) Cloud peer 2 based on its routing table entry forwards the
mapping request to peer 12

Leaf Set
01 00 01

Cloud Peer 14

Attribute Space

B

A

Cloud Peer 0

Cloud Peer 2

Cloud Peer 12
Cloud Peer 8

Leaf Set
01 00 01

Leaf Set
00 00 11

9

8

6

1

2

3

7

5K14

K10
K9

K1

K4

4

Routing Table
10 10 11
..

Routing Table
10 10 11
..

Routing Table
10 10 11
..

Neighbourhood
Set

11 10 11

Neighbourhood
Set

10 10 11

Neighbourhood
Set

10 10 11

After applying Pastry
hashing function: DHash(string)
on the coordinates (x3,y3)
 DHash(x3, y3)=K14

 Service discovery query
1 Ghz > Speed > 2 Ghz & location = US
stored with the control point C having
coordinates (x1,y1)

 update query
Speed = 2 Ghz & location = US
stored with the control point C
having coordinates (x3,y3)

After applying Pastry
hashing function: DHash(string)
on the coordinates (x1,y1)
 DHash(x1, y1)=K10

DHash(x1, y1)=K10

Host Cloud Location (y)

IMap(update query)

A (x1, y1) B (x2, y2)

D (x4, y4)

C (x3, y3)

Diagonal Hyperplane

Discovery
Query

Speed (x)

put (K10)

put (K14)

IMAP(discovery query)

20912  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

12.5.4 � Designing Decentralized and Co-ordinated
Load-Balancing Mechanism

A co-ordinated provisioning of requests between virtual machine instances deployed
in Clouds is critical, as it prevents the service provisioners from congesting the
particular set of VMs and network links, which arises due to lack of complete
global knowledge. In addition, it significantly improves the Cloud user Quality of
Service (QoS) satisfaction in terms of response time. The Cloud peer service in
conjunction with the Pastry overlay and multidimensional indexing technique is
able to perform a decentralized and co-ordinated balancing of service provisioning
requests among the set of available VMs. The description of the actual load-balancing
mechanism follows next.

As mentioned in previous section, both service discovery query (issued by
service provisioner) and update query (published by VMs or Services hosted
within VMs) are spatially hashed to an index cell i in the multidimensional attri-
bute space. In Fig. 12.3, a service discovery query for provisioning request P1 is
mapped to an index cell with control point value A, while for P2, P3, and P4, the
responsible cell has control point value C. Note that these service discovery que-
ries are posted by service provisioners. In Fig. 12.3, a provisioning service inserts
a service discovery query with Cloud peer p, which is mapped to index cell i. The
index cell i is spatially hashed through IMap(query) function to an Cloud peer s.
In this case, Cloud peer s is responsible for co-ordinating the provisioning of
services among all the service discovery queries that are currently mapped to the
cell i. Subsequently, VM u issues a resource ticket (see Fig. 12.3) that falls under
a region of the attribute space currently required by the provisioning requests P3
and P4. Next, the Cloud peer s has to decide which of the requests (either P3 or
P4 or both) is allowed to claim the update query published by VM u. The load-
balancing decision is based on the principle that it should not lead to over-provi-
sioning of service(s) hosted within VM u. This mechanism leads to co-ordinated
load-balancing across VMs in Clouds and aids in achieving system-wide objec-
tive function.

The examples in Table 12.5 are service discovery queries that are stored with
a Cloud peer service at time T = 700 s. Essentially, the queries in the list arrived
at a time £700 and waited for a suitable update query that could meet their pro-
visioning requirements (software, hardware, service type, location). Table 12.6
depicts an update query that arrived at T = 700. Following the update query
arrival, the Cloud peer service undertakes a procedure that allocates the available
service capacity with VM (that published the update query) among the list of
matching service discovery queries. Based on the updating VM’s attribute speci-
fication, only service discovery query 3 matches. Following this, the Cloud
peer notifies the provisioning services that posted the query 3. Note that queries
1 and 2 have to wait for the arrival of update queries that can match their
requirements.

210 R. Ranjan et al.

Table 12.5  Service discovery query stored with a Cloud Peer service at time T

Time
Discovery
query ID Service type Speed (GHz) Cores Location

300 Query 1 Web hosting >2 1 USA
400 Query 2 Scientific simulation >2 1 Singapore
500 Query 3 Credit card authenticator >2.4 1 Europe

Fig. 12.3  Co-ordinated provisioning across VM instances: multidimensional service provisioning
requests {P1, P2, P3, P4}, index cell control points {A, B, C, D}, multidimensional update queries
{l, s}, and some of the spatial hashing to the Pastry overlay, i.e. the multidimensional (spatial) coor-
dinate values of a cell’s control point is used as the Pastry key. For this figure, f

min
 =2, dim = 2

2-dimensional attribute space

VM s

VM p

Pastry Overlay

Update Query Coordinator
for index cell i

Index cell i

A

C D

B

Update query l

Service discovery
query

DHash (index cell i)

Service discovery query p

Update query u

Update query s

Service discovery
query l

P2

P3

VM u

Cloud Peer

VM l

P2

P3
P1

P4

Diagonal
Hyperplane

Update query s

P5

Cloud Peer

Cloud Peer

Cloud Peer

21112  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

12.6 � Experiments and Evaluation

In this section, we evaluate the performance of the proposed peer-to-peer Cloud
provisioning concept by creating a service and VM pool that consists of multiple
virtual machines that are hosted within the Amazon EC2 infrastructure. We assume
unsaturated server availability for these experiments, so that enough capacity can
always be allocated to a VM for any service request. Next, we describe the various
details related to Cloud peer (peer-to-peer network, multidimensional index struc-
ture, and network configuration parameters), PaaS layer provisioning software, and
application characteristics related to this experimental evaluation.

12.6.1 � Cloud Peer Details

A Cloud peer service operates at PaaS layer and handles activities related to decentral-
ized query (discovery and update) routing, management, and matching. Additionally,
it also implements the higher-level services such as publish/subscribe-based
co-ordinated interactions and service selections. Every VM instance, which is deployed
on a Cloud platform, hosts a Cloud peer service (see Figs. 12.2 and 12.3) that loosely
glues it to the overlay. Next follows the details related to Cloud peer configuration.

FreePastry1 Network Configuration: Both Cloud Peers’ nodeIDs and discovery/
update queries’ IDs are randomly generated from and uniformly distributed in the
160-bit Pastry identifier space. Every Cloud peer service is configured to buffer a
maximum of 1,000 messages at a given instance of time. The buffer size is chosen
to be sufficiently large such that the FreePastry does not drop any messages.
Other network parameters are configured to the default values as given in the file
freepastry.params. This file is provided with the FreePastry distribution.

Multidimensional Index Configuration: The minimum division f
min

 of logical mul-
tidimensional index is set to 3, while the maximum height f

max
 of the distributed index

tree is constrained to 3. In other words, the division of the multidimensional attribute
space is not allowed beyond f

min
 for simplicity. The index space has provision for

defining service discovery and update queries that specify the VM characteristics in
four dimensions including number of application service type being hosted, number
of processing cores available on the server hosting the VM, hardware architecture of
the processor(s), and their processing speed. The aforementioned multidimensional
index configuration results into 81(34) index cells at f

min
 level.

Table 12.6  Update query published with a Cloud Peer service at time T

Time VM ID Service type Speed (GHz) Processors Type

700 VM 2 Credit card authenticator 2.7 One
(available)

Europe

1 An open source pastry DHT implementation. http://freepastry.rice.edu/FreePastry

212 R. Ranjan et al.

Service Discovery and Update Query’s Multidimensional Extent: Update queries,
which are posted by VM instances, express equality constraints on service, installed
software environments, and hardware configuration attribute values (e.g. =).

12.6.2 � Aneka: PaaS Layer Application Provisioning
and Management Service

At PaaS layer, we utilize the Aneka [14] software framework that handles activities
related to application element scheduling, execution, and management. Aneka is a
.NET-based service-oriented platform for constructing Cloud computing environ-
ments. To create a Cloud application provisioning system using Aneka, a developer
or application scientist needs to start an instance of the configurable Aneka con-
tainer hosting required services on each selected VM.

Services of Aneka can be clearly characterized into two distinct spaces:
(i) Application Provisioner, a service that implements the functionality that
accepts application workload from Cloud users, performs dynamic discovery of
application management services via the Cloud peer service, dispatches workload
to application management service, monitors the progress of their execution, and
collects the output data, which returned back to the Cloud users. An Application
Provisioner need not be hosted within a VM, it only needs to know the end-point
address (such as web service address) of a random Cloud peer service in the overlay
to which it can connect and submit its service discovery query; and (ii) Application
Management Service, a service, hosted within a VM, which is responsible for han-
dling execution and management of submitted application workloads. An applica-
tion management service sits within a VM and updates its usage status, software,
and hardware configurations by sending update queries to the overlay. One or more
instance of application management service can be connected in a single-level
hierarchy to be controlled by a root-level Aneka Management Co-ordinator. This
kind of service integration is aimed at making application programming flexible,
efficient, and scalable.

12.6.3 � Test Application

The PaaS layer software service, Aneka, supports composition and execution of
application programs that are composed using different service models to be
executed within the same software environment. The experimental evaluation in
this chapter considers execution of applications programmed using a multithreaded
programming model. The Thread programming model [14] defines an application
as a collection of one or more independent work units. This model can be suc-
cessfully utilized to compose and program embarrassingly-parallel programs
(parameter sweep applications). The Thread model fits better for implementing and

21312  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

architecting new applications and algorithms on Cloud infrastructures since it gives
finer degree of control and flexibility as regards to runtime control.

To demonstrate the feasibility of architecting Cloud provisioning services based on
peer-to-peer network models, we consider composition and execution of Mandelbrot
Set computation. Mathematically, the Mandelbrot set is an ordered collection of points
in the complex plane, the boundary of which forms a fractal. The Application
Provisioner service implements and cloud enables the Mandelbrot fractal calculation
using a multithreaded programming model. The application submission interface
allows the user to configure a number of horizontal and vertical partitions into which
the fractal computation can be divided. The number of independent thread units cre-
ated is equal to the horizontal x vertical partitions. For evaluations, we vary the values
for horizontal and vertical parameters over the interval 5 × 5, 10 × 10, and 15 × 15.
This configuration results in observation points.

12.6.4 � Deployment of Test Services on Amazon EC2 Platform

To test the feasibility of the aforementioned services with regard to the provisioning
of application services on Amazon EC2 cloud platform, we created Amazon
Machine Images (AMIs) packaged with a Cloud peer, Application Management, and
Aneka Management Co-ordinator services. The image that hosts the Aneka
Management Co-ordinator is equipped with Microsoft Windows Server 2003 R2
Datacenter edition, Microsoft SQL Server 2005 Express, and Internet Information
Services 6, while the AMI hosts only the Management Service and has Microsoft
Windows Server 2003 R2 Datacenter system installed. For every AMI, we installed
only the essential software including mandatory Cloud peer service, which is hosted
within a Tomcat 6.0.10, Axis2 1.2 container. Cloud peer is exposed to the provision-
ing and management services through WS* interfaces. Later, we built our custom-
ized Amazon Machine Images from the two instances, creating and starting up more
management co-ordinator and application management services by using customized
images. We configured three management co-ordinators and nine management ser-
vices. The management service is divided into groups of three that connect with a
single co-ordinator resulting in a hierarchical structure. The management co-ordinator
services communicate and internetwork through the Cloud peer fabric service.
Figure 12.4 shows the pictorial representation of the experiment setup.

12.7 � Results and Discussions

To measure the performance of peer-to-peer Cloud provisioning technique in
regard to response time, co-ordination delay, and Pastry overlay network message
complexity, we consider simultaneous provisioning of test applications at Application
Provisioner A and B (see Table 12.7). The response time for an application is
calculated by subtracting the output arrival time of the last thread in the submission

214 R. Ranjan et al.

list from the time at which the application is submitted. The metric co-ordination
delay sums up the latencies for: (i) a service discovery query to be mapped to a
Cloud peer, (ii) waiting time till an update query matches the discovery query; and
(ii) notification delay from the Cloud peer to the Application Provisioner that origi-
nally posted the service discovery query. Pastry overlay message complexity mea-
sures the details related to the number of messages that flow through the network
in order to: (i) initialize the multidimensional attribute space, (ii) map the discovery
and update queries, (iii) maintain overlay, and (iv) send notifications.

Table 12.7 (response time vs. complexity) shows the results for response time in
seconds with increasing complexity/problem size for the test application. Cloud
consumers submit their applications with provisioner A and B. The initial experi-
mental results reveal that with increase in problem complexity (number of horizon-
tal and vertical partitions), the Cloud consumers experience increase in response
times. The basic reason behind this behaviour of the provisioning system is related

Table 12.7  Response time, co-ordination delay, message count versus complexity

Problem complexity 5 × 5 10 × 10 15 × 15

Provisioner A B A B A B

Response time (s) 27 27 107 104 245 229
Coordination delay (s) 5.58 7.13 26.08 24.97 60.06 48.09
Update message 3,203 3,668 3,622
Discovery message 75 400 450
Total message count 5,760 7,924 8,006

Fig. 12.4  Experiment Setup in Amazon EC2

21512  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

to the fixed number Application Management services, i.e. 9, available to the
Application Provisioners. With increase in the problem complexity, the number of
job threads (a job thread represents a single work unit, e.g. for a 5 × 5 Mandelbrot
configuration, 25 job threads are created and submitted with the Application
Provisioner) that are to be executed with management services increase, hence
leading to worsening queuing and waiting delays. However, this behaviour of the
provisioning system can be fixed through implementation of reactive provisioning
of new VM instances to reflect the sudden surge in application workload processing
demands (problem complexity). In our future work, we want to explore how to
dynamically provision or de-provision VMs and associated Application Management
services driven by workload processing demands.

Table 12.7 (coordination delay vs. complexity) presents the measurements for
average co-ordination delay for each discovery query with respect to increase in the
problem complexity. The results show that at higher problem complexity, the dis-
covery queries experience increased co-ordination delay. This happens because the
discovery queries of the corresponding job threads have to wait for a longer period
of time before they are matched against an update query object. However, the job
thread processing time (CPU time) is not affected by the co-ordination delay; hence,
the response time in Table 12.7 shows a similar trend to delay.

In Table 12.7 (message count vs. complexity), we show the message overhead
involved with management of multidimensional index, routing of discovery and
update query messages, and maintenance of Pastry overlay. We can clearly see that
as application size (problem complexity) increase, the number of messages required
for mapping the query objects and maintenance of the overlay network increase. The
number of discovery and update messages produced in the overlay is a function of the
multidimensional index structure that indexes and routes these queries in a distributed
fashion. Hence, the choice of the multidimensional data indexing structure and rout-
ing technique governs the manageability and efficiency of the overlay network
(latency, messaging overhead). Hence, there is much work required in this domain as
regards to evaluating the performance of different types of multidimensional indexing
structures for mapping the query messages in peer-to-peer settings.

12.8 � Conclusions and Path Forward

Developing provisioning techniques that integrate application services in a peer-to-
peer fashion is critical to exploiting the potential of Cloud computing platforms.
Architecting provisioning techniques based on peer-to-peer network models (such
as DHTs) is significant; since peer-to-peer networks are highly scalable, they can
gracefully adapt to the dynamic system expansion (join) or contraction (leave,
failure), and are not susceptible to a single point of failure. To this end, we pre-
sented a software fabric called Cloud peer that creates an overlay network of VMs
and application services for supporting scalable and self-managing service discov-
ery and load-balancing. The functionality exposed by the Cloud peer service is very

216 R. Ranjan et al.

powerful and our experimental results conducted on Amazon EC2 platform confirm
that it is possible to engineer and design peer-to-peer Cloud provisioning systems
and techniques.

As part of our future work, we would explore other multidimensional data
indexing and routing techniques that can achieve close to logarithmic bounds on
messages and routing state, balance query (discovery, load-balancing, coordination)
and processing load, preserve data locality, and minimize the metadata. Another
important algorithmic and programming challenge in building robust Cloud peer
services is to guarantee consistent routing, look-up, and information consistency
under concurrent leave, failure, and join operations by application services. To
address these issues, we will investigate robust fault-tolerance strategies based on
distributed replication of attribute/query subspaces to achieve a high level of robustness
and performance guarantees.

References

	 1.	 Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin
A, Stoica I, Zaharia M (2009) Above the clouds: a Berkeley view of cloud computing.
University of California at Berkley, USA. Technical Rep UCB/EECS-2009-28

	 2.	 The Reservoir Seed Team (2008) Reservoir – an ICT infrastructure for reliable and effective
delivery of services as utilities. IBM Res Rep H-0262

	 3.	 Buyya R, Yeo C, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging
IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gen
Comput Syst 25:599–616

	 4.	 Google (2009) Google App Engine. https://appengine.google.com/. Accessed 16 Dec 2009
	 5.	 Ultra Serve Internet Pty Ltd (2009) Rejila On Demand Cloud Computing Servers. http://www.

rejila.com/. Accessed 14 Dec 2009
	 6.	 Rackspace US, Inc. (2009) The Rackspace Cloud. http://www.rackspacecloud.com. Accessed

12 Dec 2009
	 7.	 Microsoft (2009) Windows Azure Platform, http://www.microsoft.com/windowsazure/.

Accessed 12 Dec 2009
	 8.	 Amazon Web Services LLC (2009) Amazon Elastic Compute Cloud, http://aws.amazon.com/

ec2/. Accessed 16 Dec 2009
	 9.	 Salesforce.com (2009) Application Development with Force.com’s Cloud Computing

Platform http://www.salesforce.com/platform/. Accessed 16 Dec 2009
	10.	 Quiroz A, Kim H, Parashar M, Gnanasambandam N, Sharma N (2009) Towards autonomic

workload provisioning for enterprise grids and clouds. In: Proceedings of the 10th IEEE/ACM
international conference on grid computing, Banf, Alberta, Canada, 13–15 Oct 2009, IEEE
Computer Society Press

	11.	 Amazon Web Services LLC (2009) Amazon CloudWatch. http://aws.amazon.com/cloudwatch/.
Accessed 22 Sept 2009

	12.	 Amazon Web Services LLC (2009) Elastic Load Balancer http://aws.amazon.com/elasticload-
balancing/. Accessed 22 Sept 2009

	13.	 Rochwerger B, Breitgand D, Levy E, Galis A, Nagin K, Llorente L, Montero R, Wolfsthal Y,
Elmroth E, Caceres J, Ben-Yehuda M, Emmerich W, Galan F (2009) The reservoir model and
architecture for open federated cloud computing. IBM Syst J 53

	14.	 Chu X et al (2007) Aneka: next-generation enterprise grid platform for e-Science and
e-Business applications. In: Proceedings of the 3rd IEEE international conference on
e-Science and grid computing, Bangalore, India

21712  Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing

	15.	 Ranjan R, Chan L, Harwood A, Karunasekera S, Buyya R (2007) Decentralised resource
discovery service for large scale federated grids. In: Proceedings of the 3rd IEEE international
conference on eScience and grid computing (eScience’07), Bangalore, India, IEEE Computer
Society, Los Alamitos, CA

	16.	 Eucalyptus Systems Inc (2009) Eucalyptus Systems. http://www.eucalyptus.com/. Accessed
22 Sept 2009

	17.	 Amazon Web Services LLC (2009) Auto Scaling. http://aws.amazon.com/autoscaling/.
Accessed 22 Sept 2009

	18.	 GoGrid Cloud Hosting (2009) F5 Load Balancer. GoGrid Wiki. http://wiki.gogrid.com/wiki/
index.php/(F5)_Load_Balancer. Accessed 21 Sept 2009

	19.	 Bakhtiari S, Safavi-Naini R, Pieprzyk J (1995) Cryptographic Hash Functions: A Survey.
http://citeseer.ist.psu.edu/bakhtiari95cryptographic.html. Accessed 22 Sept 2009

	20.	Balakrishnan H, Kaashoek MF, Karger D, Morris R, Stoica I (2003) Looking up data in
peer-to-peer systems. Commun ACM 46(2):43–48

	21.	 Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997) Consistent hashing
and random trees: distributed caching protocols for relieving hot spots on the World Wide
Web. In: Proceedings of the 29th annual ACM symposium on theory of computing (STOC
’97), New York. ACM Press, pp 654–663

	22.	 Preneel B (1999) The state of cryptographic hash functions. In: Lectures on data security.
Modern cryptology in theory and practice. Springer, London, pp 158–182

	23.	 Lua K, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey and comparison of peer-to-
peer overlay network schemes. IEEE Commun Surv Tutorials 7(2), IEEE Communications
Society Press, Washington DC, USA

	24.	 Li J, Stribling J, Gil TM, Morris R, Frans Kaashoek M (2004) Comparing the performance of
distributed hash tables under churn. In: Proceedings of the 3rd international workshop on
peer-to-peer systems (IPTPS04), San Diego, CA

	25.	 Bharambe A, Agarwal M, Seshan S (2004) Mercury: supporting scalable multi-attribute range
queries. In: Proceedings of SIGCOMM 2004 (SIGCOMM’04). ACM, Portland, OR

	26.	 Castro M, Costa M, Rowstron A (2004) Should we build Gnutella on a structured overlay?
SIGCOMM Comput Commun Rev 34(1):131–136

	27.	 Linga P, Demers A, Gupta I, Birman K, van R (2003) Kelips: building an efficient and stable
peer-to-peer DHT through increased memory and background overhead. In: Proceedings of
the 2nd international workshop on peer-to-peer systems (IPTPS03), Berkeley, CA

	28.	 Spence D, Crowcroft J, Hand S, Harris T (2005) Location based placement of Whole
Distributed Systems. In: Proceedings of the 2005 ACM conference on Emerging network
experiment and technology (CoNEXT’05). ACM Press, New York, pp 124–134

	29.	 Ganesan P, Yang B, Garcia-Molina H (2004) One torus to rule them all: multi-dimensional
queries in peer-to-peer systems. In: Proceedings of the 7th International Workshop on the Web
and Databases (WebDB ’04). ACM Press, New York, pp 19–24

	30.	 Ranjan R, Harwood A, Buyya R (2008) Peer-to-peer based resource discovery in global grids:
a tutorial. IEEE Commun Surv Tutorials 10(2):6–33

	31.	 Samet H (1989) The design and analysis of spatial data structures. Addison–Wesley,
Reading, MA

	32.	 Rowstron A, Druschel P (2001) Pastry: scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: IFIP/ACM international conference on distributed
system platforms, Heidelberg

	33.	 Ranjan R (2007) Coordinated resource provisioning in federated grids. Ph.D. thesis, The
University of Melbourne

	34.	 Tanin E, Harwood A, Samet H (2007) Using a distributed quadtree index in peer-to-peer
networks. VLDB J 16(2):165–178, Springer, New York

	35.	Gupta A, Sahin OD, Agrawal D, Abbadi AEl (2004) Meghdoot: content-based publish/
subscribe over peer-to-peer networks. In: Proceedings of the 5th ACM/IFIP/USENIX interna-
tional conference on Middleware (Middleware ’04), New York. Springer, New York, pp
254–273

219

Abstract  The Nimrod tool family facilitates high-throughput science by allowing
researchers to explore complex design spaces using computational models. Users are
able to describe large experiments in which models are executed across changing
input parameters. Different members of the tool family support complete and
partial parameter sweeps, numerical search by non-linear optimisation and even
workflows. In order to provide timely results and to enable large-scale experiments,
distributed computational resources are aggregated to form a logically single high-
throughput engine. To date, we have leveraged grid middleware standards to spawn
computations on remote machines. Recently, we added an interface to Amazon’s
Elastic Compute Cloud (EC2), allowing users to mix conventional grid resources and
clouds. A range of schedulers, from round-robin queues to those based on economic
budgets, allow Nimrod to mix and match resources. This provides a powerful platform
for computational researchers, because they can use a mix of university-level
infrastructure and commercial clouds. In particular, the system allows a user to pay
money to increase the quality of the research outcomes and to decide exactly how
much they want to pay to achieve a given return. In this chapter, we will describe
Nimrod and its architecture, and show how this naturally scales to incorporate clouds.
We will illustrate the power of the system using a case study and will demonstrate
that cloud computing has the potential to enable high-throughput science.

13.1 � Introduction

Traditionally, university research groups have used varying sources of infrastructure
to perform computational science, from clusters owned by individual departments to
high-end facilities funded by federal governments. While these are priced differently,

B. Bethwaite (*)
Faculty of Information Technology, Monash University, Clayton, Australia
e-mail: blair.bethwaite@infotech.monash.edu.au

Chapter 13
Mixing Grids and Clouds: High-Throughput
Science Using the Nimrod Tool Family

Blair Bethwaite, David Abramson, Fabian Bohnert, Slavisa Garic,
Colin Enticott, and Tom Peachey

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_13, © Springer-Verlag London Limited 2010

220 B. Bethwaite et al.

they have rarely been provided on a strict commercial basis. Local clusters, for
example, are usually funded by recurrent university funding or by one-off grants.
Further, access to these machines is controlled by the users themselves. With regard
to high-end facilities, such as the Australian National Compute Infrastructure
(http://www.nci.org.au) or the US TeraGrid (http://www.teragrid.org), it is often
necessary to apply for a peer reviewed grant, and the quality of the application is
assessed by a resource-allocation committee. However, these grants are usually
made in terms of CPU hours rather than dollars.

Cloud computing represents a major shift in the provisioning and delivery of
computing infrastructure and services. It enables a shift from distributed, unman-
aged resources to a variety of scalable, centralised services managed in professional
data-centres with rapid elasticity of resource and service provisioning to users.
Most importantly, commercial cloud services have appeared in which users can pay
for access on an hourly basis. These resources open the opportunity for university
researchers to buy compute time on an ad-hoc basis – shifting university funding
models from capital expenditure to recurrent costs.

This transition poses many policy issues as well as a range of technical challenges.
Existing resources that are free will not disappear; there is clearly a role for continued
investment in university infrastructure. On the other hand, commercial clouds could
provide an overflow, or elastic, capability for individual researchers. One could
easily imagine a research group performing much of their base-load computations
on ‘free’ resources, but resorting to pay-as-you-go services to meet peak demand.
To date, very few tools can support both styles of resource provisioning.

Many years ago, we introduced the idea of a computational economy as a mecha-
nism to enable resource sharing on an open basis [1]. In this model, resource providers
charged for time and users paid. At that time, we only envisaged a pseudo unit of
currency to allow different users to compete for scarce resources. A user willing to
pay more has more chance of achieving a deadline, and will complete more work than
one who is only prepared to pay less. We implemented this scheme in the Nimrod
tool family [2], though the lack of global infrastructure based on this model made
it more of an academic proposal.

However, the Nimrod computational economy provides an ideal mechanism for
mixing free and pay-as-you-go commercial cloud services. Interestingly, the same
algorithms that we proposed for the computational economy can be used to trade-off
resources in such a mixed grid.

In this chapter, we discuss the Nimrod tool family and describe the kind of high-
throughput problems that it solves. We discuss the scheduling system that Nimrod
uses to balance time and cost-based deadlines, and show that these can be used on
a mixed test-bed consisting of grid and cloud resources. We then illustrate the
power of the system to achieve scientific outcomes. Our case study shows that a
user has the ability to decide how much money they are prepared to pay for
improved science outcomes. Specifically, the case study explores the basic science
that can be delivered from a typical university department cluster, and shows how
the Amazon Elastic Cloud (EC2) (http://aws.amazon.com/ec2/) can augment
this to improve the science outcomes. The chapter also discusses some of the

http://www.nci.org.au
http://aws.amazon.com/ec2/

22113  Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family

issues that arise in the implementation of our Amazon specific adapters and some
of the open challenges for Nimrod and similar tools.

13.2 � High-Throughput Science with the Nimrod Tools

While computation is now widely used in scientific research, we frequently see
studies that report on just a few simulations or the analysis of a small quantity of
data. Such studies may be suggestive, but they are typically not robust in the sense
of quantifying sensitivity to factors such as initial conditions, parameter choices
and data used for parameter estimation.

The commodity parallel computing revolution promises to make such limitations
unnecessary. Continued Moore’s Law growth in transistor counts in microprocessors,
combined with physical limits on circuit size, is spurring the development of multi-core
processors, which may be used alone or within larger multiprocessor systems to run
large numbers of computational studies in parallel. Further, the emergence of commer-
cial computing clouds means that researchers can access large amounts of computing
power cheaply and quickly. Similarly, many fields that were once data poor now have
access to multi-terabyte datasets, with commodity parallel disk arrays providing for
low-cost storage and commodity parallel computers enabling rapid analysis.

While the availability of suitable commodity hardware is pushing high-throughput
computing (HTC) into the realms of everyday science, such science would not be
possible without the considerable tool support necessary to effectively leverage and
orchestrate the data and processing resources. To gain the throughput necessary to
obtain results in a timely fashion, it is often necessary to use multiple distributed
resources, which comprise varied hardware, and typically run different software
stacks. In some cases, the computational effort required dwarfs the resources
provided by a researcher’s home institution and/or state and national initiatives,
indicating that the researcher must either source the capacity elsewhere, compromise
on accuracy or scope, or possibly abort their plans.

Resources for high-throughput science are typically commodity clusters managed
by batch queuing systems or idle-cycle harvesting pools (e.g. Condor [3] pools),
made available remotely through grid middleware interfaces, such as Globus [4],
UNICORE [5] and GLITE [6]. These middleware stacks and the development
efforts around them have focused on exposing and standardising the task/job and
data-oriented services typical of the requirements of HTC and HPC workloads.
There are a number of successful production grid initiatives operating worldwide,
such as OSG, EGEE, TeraGrid and PRAGMAGrid. However, grid computing has
not had a widespread adoption outside of scientific HTC, most likely because it has
been specifically tailored for that application domain. There also remain significant
technological barriers that slow adoption, such as interoperability [7,8] and applica-
tion deployment [9].

The low cost, abundance and increasing performance of virtualisation technology,
which is being exploited to consolidate computing infrastructure, promises to ease

222 B. Bethwaite et al.

and promote novel solutions to the deployment problem. This will also have a
positive influence on interoperability between systems and HTC applications by
allowing the same software stack from operating system to scientific application,
to be built, hosted and run on one infrastructure, and relatively easily transferred to
and run on another – whether it is a grid or cloud system.

13.2.1 � The Nimrod Tool Family

Over the past 15 years, we have built, maintained and improved the Nimrod tool
family. These tools automate parameter sweeps and searches using distributed
computing resources. A user typically provides Nimrod with a plan file that contains
information about the parameters and their values, and a description on how to
execute the applications. Plan files are declarative and deliberately similar to the
job scripts used by batch queue systems; however, they also expose file transfer and
parameter substitution functionality.

Users specify the input files to copy to the computational node, the tasks necessary
to execute the application for a single parameter combination, and the output files
to copy back. Thus, the task syntax used in the plan file is intuitive, because it is
declarative and mimics how a user might run the application on their machine or a
local cluster.

Using Nimrod significantly decreases the effort required to scale-up the level of
parallelism in a computational experiment. Users are able to add computational
resources and associated credentials to Nimrod and choose any combination in
order to create a logical high-throughput engine for each experiment. In this way,
Nimrod provides meta-scheduling functionality by distributing jobs across multiple
underlying resource schedulers.

The Nimrod tools have been successfully used in various research involving
high-throughput science – with recent work in fields such as molecular biology
[10], cardiology [11], chemistry [12] and climatology [13]. We actively pursue col-
laborations with specialists who have challenging and novel applications for para-
metric distributed computing.

Table 13.1 lists the major, actively developed, components of Nimrod. When we
refer to Nimrod services or just ‘Nimrod’ without qualifying a particular variant or
group, we are referring to Nimrod/G components.

13.2.2 � Nimrod and the Grid

Nimrod targets different types of computational resources, ranging from local batch
schedulers to distributed Condor [3] pools and Globus-enabled [4] grid resources.
The latter leverages Globus functions that support remote job execution, file transport,
security and resource discovery.

22313  Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family

Nimrod’s Globus support began prior to the release of the widely adopted
pre-web services Globus Toolkit 2, and has continued with more recent releases
of the web services-based Globus Toolkit 4. As a result, it supports resources
using both variants of the toolkit through the globus or gt4 actuator.

Recently, we used Nimrod/G to run a large experiment in protein crystallography,
made particularly significant by its use of over 20 high-end clusters from several
grids worldwide to provide the half-a-million CPU hours required for the experiment
within 2 months [7]. Cloud computing has the potential to significantly increase
throughput for such science, while decreasing the human effort involved in coordi-
nating interoperability and deployment between resources.

13.2.3 � Scheduling in Nimrod

Nimrod supports a pluggable scheduling architecture that allows it to use a range
of different scheduling techniques. The simplest, a first-come-first-served approach,
places jobs on resources in order to maximise throughput. This default approach

Table 13.1  Components of the Nimrod tool family (non-exhaustive)

Tool Purpose Utilises

Nimrod/G [1] Provides distributed parameter sweep and single task
execution via grid and cloud mechanisms, plus economic
and deadline scheduling of jobs across multiple compute
resources. Importantly, Nimrod/G operates either as a tool
(usually via a web portal) or a middleware layer in its
own right, serving as a job management system for other
software, including the other members of the Nimrod
family.

Nimrod/O [14] Supports design optimisation rather than complete
enumeration. Computational models are treated as
functions that accept input parameters and return an
objective cost value. Nimrod/O incorporates a number
of different search heuristics ranging from gradient
descent to genetic algorithms. Used in conjunction
with Nimrod/G, it can exploit parallelism in the search
algorithm.

Nimrod/Ga

Nimrod/E [15] Provides experimental design techniques (e.g. fractional
factorial analysis) for analysing parameter effects on an
applications output. The outcome is a Nimrod/G style
sweep that explores only those parameter combinations
likely to influence the experiment’s results, reducing
the number of runs required to achieve useful scientific
outcomes.

Nimrod/Ga

Nimrod/K [16] Integrates the above Nimrod tools into the Kepler workflow
engine; along with a novel dataflow mechanism, this
provides dynamic parallelism for Kepler workflows.

Nimrod/Ga,
Kepler

a The other tools utilise Nimrod/G as a distributed computing middleware, but can also operate
independently by using the local machine as a compute resource

224 B. Bethwaite et al.

allows a user to leverage as many resources as possible. A range of schedulers also
support a computational economy in which resource providers charge, and users
pay, for service. This allows a user to express the importance of their experiment in
terms of a deadline, combined with a computational budget. Nimrod/G pioneered
this approach in 2000 [1] when no such infrastructure existed.

Originally, the idea of a computational economy was to provide a common
language in which different users could compare their resource requests. Within a
finite economy, users who were prepared to expend more of their grid dollar (G$)
budget were more likely to complete computations within their deadlines. This
approach was expanded into an architecture in which users paid for services, and
service providers charged [17].

Commercial clouds now form the first publicly accessible computational economy,
making economic computational and data scheduling especially significant and
topical. In commercial clouds, service providers charge ‘real’ money based on the
cost of provision. Importantly, in this work, we have merged these two different
uses of currency, and have leveraged the earlier work in a computational economy
to embrace commercial clouds.

The existing job scheduler has been designed for space-shared batch-queued
systems, as is typical on a computational grid. It was envisaged that these resources
would charge for some absolute atomistic measure of computing used (e.g. MIPS),
rather than in time-slice as is the case with EC2. This means that the scheduler will
underestimate the budget used and will not recognise the time already purchased.
However, as we have shown in Section 4, the current implementation is still
applicable; implementing a time-slice scheduler will be a subject of future work.

As a consequence of the Nimrod tools specialising in parameter study applica-
tions, the job scheduler is able to make reasonable assumptions about job execution
times, resource performance and job throughput. Many modelling applications have
low variance in their processing requirements between the parameter sets (e.g. the
case study in Section 4), though there are certainly exceptions, for example, the case
study in [7]. Nimrod’s economic and deadline-scheduling algorithms exploit this
property of the workload to provide soft deadline and budget guarantees. Much
theoretical and practical work has been devoted to the area of scheduling, with wildly
varying approaches. Some strive to meet hard deadlines on an inherently unreliable
distributed infrastructure by using task-replication algorithms [18], others mandate an
omniscient super-scheduler; some assume historical data to predict non-deterministic
events, and still others employ statistical inference and machine learning to predict
and adjust reliability [19].

Nimrod takes a practical, adaptive, approach by requiring no extra information or
service. This is important because, from our experience, we observed that users
often have little idea of the computational requirements of their models across vary-
ing hardware or inputs. Also, for the typical workload (with low job run-time varia-
tion and an order of magnitude greater number of jobs than parallel processing
units), this produces results very close to optimal, and for the typical user, near
enough is good enough.

22513  Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family

Nimrod implements four different adaptive scheduling strategies (listed in
Table 13.2) [20] that attempt to meet deadline and/or budget constraints, possibly
while minimising execution time or cost. Over the duration of the experiment, the
scheduler refines a profile for each computational resource and alters the job
allocation accordingly.

As commercial clouds enable researchers to easily expand their computational
test-beds beyond the confines of university-level infrastructure, it is likely that they
will wish to do so while continuing to utilise their local resources and minimising
expenditure on cloud time. For this reason, the experiment we present in Section 4
uses the cost-minimisation strategy.

13.3 � Extensions to Support Amazon’s Elastic Compute Cloud

Recently, we developed a new actuator and associated components capable of
interfacing Nimrod with compute clouds offering EC2-compatible APIs. In addition
to allowing Nimrod jobs to be run on EC2, it also supports Eucalytpus [21] and
OpenNebula [22] clouds. In this section, we discuss the extension and provide a
discussion of issues involved in writing applications for such clouds.

The EC2 service provides one of the most generic and low-level interfaces to
Infrastructure as a Service (IaaS) utility computing. At its most basic, it simply
allows clients to start an instance of a particular virtual machine image on one of a
handful of virtual hardware configurations. Further use of that instance is afforded via
Secure Shell (SSH) access, which EC2 supports by providing a service for generating
and managing SSH cryptographic key-pairs. Instances are then pre-configured with
a key of the client’s choice when a virtual machine is booted.

In contrast to IaaS, grid middleware typically provides a Platform as a Service
(PaaS) to some representation of a computational job – usually an invocation of
some program, optionally staged into the remote machine as part of the job and
potentially specifying a number of options relevant to the local resource manager
(LRM) or batch queuing system.

Developing or adapting an application to use EC2 can be challenging, and often
requires writing code for tasks peripheral to the main purpose of the application
such as machine provisioning and management. Grid clients, such as Nimrod,
typically deal with middleware interfaces at the level of job management and
file-transfer services without concern for the lifecycle of the machine on which the

Table 13.2  Adaptive scheduling algorithms in Nimrod/G

Scheduling strategy
Execution time
(not beyond deadline)

Execution cost
(not beyond budget)

Time Minimise Limited by budget
Time optimal Minimise Unlimited budget
Cost Limited by deadline Minimise
None Limited by deadline Limited by budget

226 B. Bethwaite et al.

jobs might run. Typically, Nimrod only needs to know (or discover) the resource
type and contact details, along with the architecture of the platform, in order to
use it as a computational resource. No explicit management of the underlying
computational resource is normally required. Hence, management of the virtual
infrastructure is the largest part of the extension.

Rather than using a higher-level IaaS or PaaS built on top of EC2, we opted to
use the basic core interface – the EC2 web service for provisioning and SSH for
interaction. This means that the EC2 extension can accommodate a broad range of
uses, and importantly for deployment it can utilise almost any virtual machine
image suitable for running within the cloud. It is important to note that the exten-
sion provides an EC2 cloud execution mechanism for Nimrod, and that many of the
higher level AWS services (such as Elastic Load Balancer) are not applicable
to Nimrod because it is not a cloud-hosted service. We are simply interested in
utilising the compute capacity.

To define a Nimrod EC2 resource requires a label, the service URL, the access
and secret key file locations, a machine (and optionally, kernel and initial ramdisk)
image identifiers, an instance type, and limits on the number of instances to run in
parallel. There are further options, such as whether the use of a proxy or tunnelling
is required, and most options have default settings for use with EC2.

13.3.1 � The Nimrod Architecture

This section describes the architectural details of Nimrod relevant to the EC2
extension. Nimrod utilises a modular architecture that clearly separates the respon-
sibility for various processes to a number of extensible modules. The modules are
coordinated via a data model using a relational database management system
(RDBMS), which also provides the basis for persistence and failure recovery.
A particularly important feature of Nimrod is its use of a remote agent that runs on the
computational node. The agent retrieves work from the root server (the server where
the other Nimrod modules are running) and will, in a single execution, process as many
jobs as available during its allotted time. This contrasts with the usual approach of
submitting each job to the middleware separately, and helps mitigate the effects of
unpredictable queue wait time on overall execution time. Nimrod, along with Condor
[3] (which uses the glide-in mechanism), was one of the pioneering systems to use
such a technique. Recent specialised high-throughput systems, such as Falkon [23],
follow a similar approach. This approach is also well-matched to existing cloud
services, as will be discussed in Section 3.2.

The agent is highly portable and can be built for several different architectures
and operating systems. Importantly, there is no requirement to install any Nimrod
components on the remote computational system prior to running an experiment, as
the agent is staged in and launched using a variety of supported interfaces. This
greatly simplifies system deployment and makes it possible to easily create an ad-hoc
high-throughput engine by consolidating multiple computational resources.

22713  Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family

Nimrod jobs correspond to executions of a Nimrod task for a particular parameter
combination. As discussed in Section 2.1, the Nimrod tools use customised
computational-task description syntax, similar to a batch script. Depending on the
tool being used, all jobs for a particular experiment may be added to the database prior
to execution or added dynamically, for example, by some iterative process (e.g. an
optimisation/search). While Nimrod is typically used for parametric studies of a
statically defined task, it also accommodates assigning a different task to every job
and thus provides a high-level general-purpose computational middleware service.

Most of the low-level machinery is concerned with interacting with computational
resources and services in order to launch agents and ensure that those agents can
contact the root – in some cases, this involves launching a proxy to bridge between
private cluster networks and the root machine which is often on the public internet.
Actuators interact directly with external systems, such as middleware services
like the Globus Resource Allocation Manager (GRAM), batch systems, or other
meta-schedulers. Actuators (1) perform resource information discovery functions
(e.g. determining machine architecture), (2) transfer agents and their prerequisite
files (contact details for modules on the root and symmetric cryptography keys for
authentication) to resources and (3) subsequently launch or (in)directly queue batch
jobs to launch agents. Actuators can be considered as resource-specific drivers for
Nimrod, providing a uniform interface to various types of computational resource.

The agent schedulers decide what operations ought to be performed by the
actuator for a given resource and experiment. They (1) trigger actions by the
actuators in response to job-to-resource assignments made by job schedulers,
(2) enforce resource or user-specified limits on agent submissions and (3) for some
resource types, schedule peripheral tasks such as credential refreshes.

Job schedulers assign work to the available resources using a choice of in-built
heuristics, including cost and time minimisation on a per-experiment basis. It is
also possible to do one’s own job scheduling through a specialised API. The job
scheduler takes into account dynamic job metadata, collected by the agents, and
continually refines the schedule throughout execution.

The database- and file-server provide agents with job and control data, and
access to the experiment file system on the root, respectively. Computational
resources can have a number of typical and differing network topologies with
regard to connectivity to the internet. A thorough discussion is beyond the scope of
this chapter; however, in these cases, Nimrod can launch the agent in proxy mode
on one or more intermediate machines in order to provide network access for the
agents to connect to the servers.

13.3.2 � The EC2 Actuator

Figure 13.1 shows the architecture of the EC2 extension. The actuator provides the
main control flow, an interface to events and data regarding resource configuration,
and agent commands. Typically, Nimrod actuators interface with a library or call

228 B. Bethwaite et al.

out to command-line client tools in order to start agents on remote resources. A
large part of an actuator’s implementation is devoted to adapting the interface
offered by the external middleware or service, to the interface required by the
actuator model. In Nimrod, this functionality is encapsulated in a resource module.
The new EC2 resource module leverages the Boto (http://code.google.com/p/boto/)
library for communication with the EC2 web service. We chose to use Boto because
it is implemented in Python, like Nimrod/G, so we did not need to create a com-
mand-line wrapper for the AWS Java client tools.

Boto provides client implementation for many of the current AWS query APIs,
including EC2, S3, SQS, etc. The EC2 query API has been adopted by a number
of other IaaS cloud projects offering software for creating private and hybrid
clouds. Notable examples with support in current releases include Eucalyptus
and OpenNebula. The EC2 actuator can provision Amazon EC2, Eucalyptus and
OpenNebula cloud resources for use in Nimrod experiments.

As shown in Fig. 13.1, the EC2 resource divides instances into slots based
on the number of processor cores per instance and the number of cores required
per job. Agents are allocated to the slots and then launched via SSH once the
instance has been initialised. Owing to limitations of the IPv4 address space,
and like compute clusters, a common network configuration for private clouds
uses a reserved private IP address range. We postulate that this will become
more common as cloud computing is adopted for HTC. External access
will be possible via a port-forwarding method from an intermediate device.

Fig. 13.1  EC2 extension architecture

http://code.google.com/p/boto/

22913  Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family

In preparation for this, the EC2 extension is capable of launching a proxy (with an
SSH tunnel back to the root) within a cloud, and agents will then collect work,
etc., via the Nimrod proxy.

13.3.3 � Additions to the Schedulers

The Nimrod actuator acts on commands scheduled to it by the agent scheduler,
which is responsible for examining pending jobs and scheduling agents to consume
them. The agent scheduler determines initialisation necessary for a computational
resource to run Nimrod agents, when new agents are needed, and when agents
should be stopped.

Previously, the default agent scheduler in Nimrod scheduled agents one at a
time, in a similar fashion to how they could be launched using external middleware.
However, there are now computational middleware standards (e.g. DRMAA [24])
and non-standard interfaces (e.g. to commercial cloud systems such as EC2) in
common use that make it possible to request multiple slots or leases at once, and in
some cases this can improve provisioning performance. This necessitated changes to
the agent scheduler to enable it to queue multiple agents in a single transaction.

Previously, the job scheduler had no notion of accommodating the kind of
dedicated resource capacity presented by machine instances in the cloud. In order
to ensure that we fully utilise each machine (e.g. avoiding running one uni-processor
job on a multi-core machine), it was necessary to alter the job scheduler to ensure
that it allocated jobs, where possible, in multiples of slots-per-instance.

13.4 � A Case Study in High-Throughput Science
and Economic Scheduling

In this section, we present a typical Nimrod experiment, along with domain
background, as a case study to demonstrate the utility of the Nimrod EC2 extension.
We discuss how the Nimrod EC2 extension might be used to improve scientific
results and/or meet a deadline. Further, we give economic scheduling and execution
data from a scaled version of the original experiment, and provide a cost analysis
of the full version.

The research discussed in this case study uses Bayesian statistics for training a pre-
dictive model within a recommender system for the museum domain (Section 4.1).
Importantly, the computational technique being used – a Markov chain Monte Carlo
(MCMC) approach – is common to other fields where multi-dimensional integration
arises (e.g. computational physics, computational biology and computational linguis-
tics). Hence, the discussed example applies to a broad range of computational problems,
and demonstrates what can be achieved in other domains with a similar structure.

230 B. Bethwaite et al.

13.4.1 � Introduction and Background

This case study concerns techniques for automatically recommending exhibits to
museum visitors, based on non-intrusive observations of their movements in the
physical space. In general, recommender systems help users find personally
interesting items in situations where the amount of available information is
excessive [25]. Employing recommender systems in our scenario is challenging, as
predictions differ from recommendations (we do not want to recommend exhibits
that visitors are going to see anyway). We address this challenge by (1) using a
Gaussian Spatial Process Model (SPM) to predict a visitor’s interests in exhibits
[26], (2) calculating a prediction of a visitor’s pathway through the museum [27]
and (3) combining these models to recommend personally interesting exhibits that
may be overlooked if the predicted pathway is followed.

13.4.2 � Computational Requirements

SPM has 2n + 3 model parameters (n is the number of exhibits), which need to
be estimated from the observed visit trajectories. To achieve this, we opted for
a Bayesian solution. Unfortunately, the integrations required to calculate the
parameters’ posterior distribution are generally not tractable in closed form.
However, the posterior can be approximated numerically using computationally
demanding MCMC integration methods, such as the Metropolis-Hastings algo-
rithm and the Gibbs sampler. Following Banerjee et al. [28], we use a slice Gibbs
sampler [29] to sample from the posterior distribution. This approach is favourable,
because it does not require tuning that is tailored to the application (hence, providing
an automatic MCMC algorithm for fitting Gaussian spatial process models). In our
case, we used every twentieth generated MCMC sample (to reduce positive
autocorrelation between samples) after a burn-in phase of 1,000 iterations, and
stopped the sampling procedure after 8,000 iterations. Thus, in total, this procedure
provided 350 samples from the posterior.

The statistical quality of the parameter estimates derived from the MCMC
samples increases with the number of MCMC iterations. Figure 13.2 depicts the
standard error of the posterior mean estimate of one of SPM’s parameters as a
function of the number of iterations. Decreasing the standard error by a factor of 10
requires 100 times as many samples. Thus, decreasing the standard error becomes
increasingly expensive (the relationship is quadratic). Interestingly, because MCMC
sampling is linear in time, we see a direct relationship between computation time
(measured in MCMC iterations) and the statistical quality of the parameter estimates.
This relationship between estimation accuracy and computational time is a
commonly recurring theme in computational modelling.

Employing an MCMC approach for model training is computationally expensive
in its own right (in our case, 8,000 MCMC iterations were required for acceptable

23113  Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family

accuracy). The computational cost is further increased by using a technique called
‘leave-one-out cross validation’ to evaluate SPM’s predictive performance. That is,
for each visitor, we trained SPM with a reduced dataset containing the data of 157
of our 158 visit trajectories (following the above-mentioned sampling procedure),
and used the withheld visitor pathway for testing. Owing to these factors, evaluat-
ing one SPM variant with our dataset requires approximately 6 days of compute
time on a modern commodity-cluster server such as the East Enterprise Grid (http://
www.enterprisegrid.edu.au). This equates to over 22,000 CPU hours. Compounding
this is the need to explore a collection of different SPM variants, nine over the
course of this research, adding up to approximately 200,000 CPU hours for a
modest-size research project.

13.4.3 � The Experiment

The full-quality (8,000 MCMC iterations) experiments were run over a few months
using Nimrod/G to distribute thousands of model trainings across university-level
computational grid resources that were available on an opportunistic basis.
However, relying on opportunistic resources makes it difficult to provide a quality
of service (QoS) guarantee on the run-time of the experiment. Hence, if only limited
resources are available in the presence of a deadline, one might be forced to reduce
the run-time of the jobs, jeopardising the estimation quality. Alternatively, the
Nimrod EC2 extension allows the scientist to expand their resource pool for a
fee rather than compromising the quality of their research in such a situation.

Fig. 13.2  Standard error of one posterior mean estimate over the number of MCMC iterations

http://www.enterprisegrid.edu.au
http://www.enterprisegrid.edu.au

232 B. Bethwaite et al.

To demonstrate the EC2 extension and applicability of Nimrod’s existing
economic scheduling capabilities, we ran a smaller version of the full sweep
experiment – 9 SPMs by (158 reduced datasets + 1 complete dataset), totalling
1,431 distinct tasks) – by decreasing the number of MCMC iterations from 8,000 to
80 (a reduction in the computational requirements by a factor of 100).

A back-of-envelope analysis using the approximate 6-day run-time (for jobs on
our East cluster) from the full-quality experiments (scaled down 100 times) reveals
that with East alone, this experiment would take at least 17.2 h, though this is below
minimum because it also scales input and output file copy time and start-up
overhead, which are uniform for the full and scaled experiments.

We enacted a scenario requiring results overnight (a 12-h deadline) with a limited
free resource set (listed in Table 13.3). The free resources alone are incapable of
meeting the projected throughput requirements. Hence, we added EC2 with a
US$100 budget and selected a cost-minimisation strategy from the scheduler
(as discussed in Section 2.3). Our free resources included the Eucalyptus Public
Cloud (EPC) (http://open.eucalyptus.com/wiki/EucalyptusPublicCloud), so that
we could demonstrate Eucalyptus compatibility and the private cloud tunnelling
mechanism (the EPC does not allow outgoing connections from machine instances).
The EPC is simply a public demo system for testing Eucalyptus, and provides no
service guarantees and is not intended for computation. Users can run up to four
instances concurrently and a 6-h maximum instance up-time is enforced.

13.4.4 � Computational and Economic Results

The number of jobs in execution on each resource over time is shown in Fig. 13.3.
All 1,431 jobs were completed successfully within the deadline and budget in 11 h and
6 min, having spent US$68.35 according to the economic scheduler. The scheduler
quickly filled the available cores on East and gradually scheduled to EC2, soon
adding more jobs to EC2 once East was fully allocated. The delay between the jobs
starting on EC2 and East represents the EC2 instance provisioning wait-time. No
queue wait-time was experienced on East. Before the halfway point, the scheduler
began to estimate that East was capable of finishing the remaining jobs, and
because of the cost-minimisation bias, EC2 usage was quickly reduced to nothing
despite it having the highest throughput. The EPC, being a low-performance
demonstration system, never managed to complete a job before the 6-h instance

Table 13.3  Computational resources used for the experiment

Resource No. of cores Compute/core Memory/core Cost/core

East 120 1.6 GHz Intel Xeon E5310 1 GB N/A
EC2a 152 2.5 EC2 Compute units 0.875 GB US$0.10
EPC 4 Unknown 0.5 GB N/A
a We used c1.xlarge type instances with AMI-0dda3964, hosted in the US-East EC2 region

http://open.eucalyptus.com/wiki/EucalyptusPublicCloud

23313  Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family

limit was reached. The EC2 actuator recovered from this and restarted the proxy on
a newly launched instance. However, the jobs were rescheduled to East.

Owing to the economic scheduler not being aware of the time-slice charging of
EC2 instances, it underestimated the real cost by approximately US$20. It also does
not currently consider data-transfer charges (although transfer statistics are recorded),
but here they were negligible. This underestimation may seem considerable.
However, it is exacerbated in this case by the high level of instance parallelism and
relatively short instance run-time. The schedulers estimate would be much better if,
for example, fewer instances were used for longer (the user can enforce this).

Table 13.4 shows run-time statistics of the completed jobs, which provide insight
into the performance of EC2. EC2 completed jobs in 74% of the time that East took
(25-min better on an average). This is slightly worse than the EC2 compute unit rat-
ing suggests (a direct comparison between East and EC2 is possible because East
has the same vintage Xeon CPUs as those used in the EC2 rating). Each EC2 core
on a c1.xlarge instance should provide roughly 2.5 GHz when compared with
East’s 1.6 GHz – therefore, we expect EC2 to take approximately 64% of the time
of East. Of particular note is the higher run-time standard deviation on EC2. A
possible explanation for this is that the physical hardware may have been shared

Table 13.4  Completed job statistics

Resource
No. of jobs
completed Tot. job time (h:m:s) m / s Job run time (min)

East 818 1245:37:23 91.36/5.70
EC2 613 683:34:05 66.91/14.23

Note: the EPC is omitted because it did not complete any jobs

Fig. 13.3  Jobs executing over time

60 120 180 240 300 360 420 480 540 600 660

Time Elapsed (minutes)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

N
um

be
r

of
 R

un
ni

ng
 J

ob
s

Task Parallelism

East
EC2
EPC

234 B. Bethwaite et al.

among multiple instances. It is important to note that no fully virtualised infrastructure
services, such as EC2, provide QoS guarantees on the performance of hard-
ware sharing.

With this information, we can project the lower bound cost of running the
full-quality experiment in a similar situation, again using EC2 as the overflow
resource. We scale MCMC iterations and hence job run-time by a factor of 100, and
similarly, we scale the deadline to 50 days. We assume that the local resource pool
has not changed. In 50 days, East can deliver us 50 × 24 × 120 = 144,000 CPU
hours, the equivalent of 945 jobs. We need EC2 to complete the remaining 486 jobs,
which requires at least 54,197 EC2-core-hours at US$0.10 an hour, resulting in a
potential charge of US$5,420. Clearly, investing that amount of money into capital
expenditure (e.g. to extend the capacity of East) would have made little difference
to the overall completion time.

13.4.5 � Scientific Results

Using Nimrod/G and associated computer clusters and clouds enabled us to explore
a greater variety of SPM in a shorter, feasible, time frame without compromising
the quality of the results. For instance, we tested the variants of the original model
[26], which use different ways of measuring distances between museum exhibits [30].
This led to insights regarding the suitability of the different model variants for
certain application scenarios.

In the future, we intend to investigate other ways of incorporating exhibit features
into SPM. We also plan to extend our model to fit non-Gaussian data.

13.5 � Conclusions

This chapter demonstrates the potential for cloud computing in high-throughput
science. We showed that Nimrod/G scales to both freely available resources as well
as commercial services. This is significant because it allows users to balance
deadlines and budgets in ways that were not previously possible.

We discussed the additions to Nimrod/G required for it to use Amazon’s EC2 as
an execution mechanism, and showed that the Nimrod/G architecture is well suited
to computational clouds. As a result, Nimrod/G’s cloud actuator allows higher level
tools to exploit clouds as a computational resource. Hence, Nimrod/G can be
classified as providing a ‘Platform as a Service’ to job producers/schedulers, and
becomes both a cloud client and cloud service in its own right.

The case study showed that computational clouds provide ideal platforms for
high-throughput science. Using a mix of grid and cloud resources provided timely
results within the budget for the research under discussion.

23513  Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family

The economies of scale employed by commercial cloud computing providers
make them an attractive platform for HTC. However, questions of national interest
and policy issues in spending public research funding with commercial providers
remain, especially when they are based overseas. Commercial offerings are
motivated by profit, and hence it should be possible to provide a non-profit
equivalent more cheaply to better utilise government and university funding, while
ensuring the prioritisation of researcher requirements. There is clearly scope for
the adoption of similar operational techniques in order to provide HTC resources
to the research community.

Commercial computing infrastructure requirements also deviate somewhat from
typical HTC requirements1. The commercial cloud provider must have sufficient
data-centre capacity to meet fluctuating demand, while providing high QoS with
regard to reliability and lead time to service. This necessitates reserving capacity
at extra expense, passed on to the consumer. On the other hand, HTC workloads
are typically not so sensitive. Waiting some time for a processor is of little signifi-
cance when tens of thousands to millions of processor hours are required. Such
considerations may enable higher utilisation and lower capital overhead for
dedicated HTC clouds.

Future work will focus on providing accurate cost accounting by implementing
a time-slice scheduler and considering data-transfer charges. We also plan to
investigate the use of EC2 Spot Instance pricing. This could prove ideal for cost
minimisation biased scheduling, given the spot price for a particular machine type
is typically less than half of the standard cost.

Acknowledgements  This work has been supported by the Australian Research Council under the
Discovery grant scheme. We thank the Australian Academy of Technological Sciences and
Engineering (ATSE) Working Group on Cloud Computing for discussions that were used as input
to Section 1. We thank Ian Foster for his helpful discussions about the role of high-throughput
science and for his contribution to Section 2.

We acknowledge the work of Benjamin Dobell, Aidan Steele, Ashley Taylor and David
Warner, Monash University Faculty of I.T. students who worked on the initial Nimrod EC2 actuator
prototype. We also thank Neil Soman for assistance in using the Eucalyptus Public Cloud.

References

	 1.	 Abramson D, Giddy J, Kotler L (2000) High performance parametric modeling with
Nimrod/G: killer application for the global grid? In the 14th international parallel and
distributed processing symposium (IPDPS 2000), pp 520–528

	 2.	 Abramson D, Buyya R, Giddy J (Oct 2002) A computational economy for grid computing
and its implementation in the Nimrod-G resource broker. Future Gen Comput Syst
18:1061–1074

1 The recently released EC2 Spot Instance pricing (http://aws.amazon.com/ec2/spot-instances/) – a
supply-demand-driven auctioning of excess EC2 data-centre capacity – is an early example of a
scheme to bridge this gap.

http://aws.amazon.com/ec2/spot-instances/

236 B. Bethwaite et al.

	 3.	 Litzkow M, Livny M, Mutka M (1988) Condor – a hunter of idle workstations. In the
proceedings of the 8th international conference of distributed computing systems. IEEE
Press, June 1988, pp 104–111

	 4.	 Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J
Supercomput Appl 11:115–128

	 5.	 Erwin DW (2002) UNICORE – a grid computing environment. Concurr Comput Prac Exp
14:1395–1410

	 6.	 Laure E, Fisher SM, Frohner A, Grandi C, Kunszt P, Krenek A, Mulmo O, Pacini F, Prelz F,
White J, Barroso M, Buncic P, Hemmer F, Di Meglio A, Edlund A (2006) Programming the
Grid with gLite. Comput Method Sci Tech 12:33–46

	 7.	 Bethwaite B, Abramson D, Buckle A (2008) Grid interoperability: an experiment in bridging
grid islands. In the IEEE Fourth International Conference on eScience 2008, pp 590–596

	 8.	 Riedel M (2009) Interoperation of world-wide production e-Science infrastructures. Concurr
Comput Pract Exp 21:961–990

	 9.	 Goscinski W, Abramson D (2008) An infrastructure for the deployment of e-science
applications. In: Grandinetti L (ed) High performance computing (HPC) and grids in action.
IOS Press, Amsterdam, Netherlands, pp 131–148

	10.	 Schmidberger J, Bethwaite B, Enticott C, Bate M, Androulakis S, Faux N, Reboul C, Phan J,
Whisstock J, Goscinski W, Garic S, Abramson D, Buckle A (2009) High-throughput protein
structure determination using grid computing. In the IEEE International Symposium on
Parallel & Distributed Processing (IPDPS 2009), pp 1–8

	11.	 Sher A, Abramson D, Enticott C, Garic S, Gavaghan D, Noble D, Noble P, Peachey T (2008)
Incorporating local Ca2 + dynamics into single cell ventricular models. In: Proceedings of the
8th international conference on computational science, Part I, Springer-Verlag, Krakow,
Poland, pp 66–75

	12.	 Baldridge KK, Sudholt W, Greenberg JP, Amoreira C, Potier Y, Altintas I, Birnbaum A,
Abramson D, Enticott C, Garic S (2006) Cluster and grid infrastructure for computational
chemistry and biochemistry. In: Zomaya AY (ed) Parallel computing for bioinformatics and
computational biology, Wiley Interscience, New York, pp 531–550

	13.	 Lynch AH, Abramson D, Görgen K, Beringer J, Uotila P (Oct 2007) Influence of savanna fire
on Australian monsoon season precipitation and circulation as simulated using a distributed
computing environment, Geophysical Research Letters, 34(20):L20801

	14.	 Abramson D, Lewis A, Peachey T, Fletcher C (2001) An automatic design optimization tool
and its application to computational fluid dynamics. In: Proceedings of the 2001 ACM/IEEE
conference on supercomputing (CDROM), ACM, Denver, Colorado, pp 25–25

	15.	 Peachey T, Diamond N, Abramson D, Sudholt W, Michailova A, Amirriazi S (Jan 2008)
Fractional factorial design for parameter sweep experiments using Nimrod/E. Sci Program
16:217–230

	16.	 Abramson D, Enticott C, Altinas I (2008) Nimrod/K: towards massively parallel dynamic grid
workflows. In: Proceedings of the 2008 ACM/IEEE conference on supercomputing, IEEE
Press, Austin, Texas, pp 1–11

	17.	Buyya R, Abramson D, Giddy J, Stockinger H (2002) Economic models for resource
management and scheduling in Grid computing. Concurr Comput Prac Exp 14:1507–1542

	18.	 Zhang Y, Mandal A, Koelbel C, Cooper K (2009) Combined fault tolerance and scheduling
techniques for workflow applications on computational grids. In: The proceedings of the 2009
9th IEEE/ACM international symposium on cluster computing and the grid – volume 00,
IEEE Computer Society, pp 244–251

	19.	 Nurmi D, Brevik J, Wolski R (2008) QBETS: Queue Bounds Estimation from Time Series.
Job Scheduling Strategies for Parallel Processing, pp 76–101

	20.	 Buyya R, Giddy J, Abramson D (2000) An evaluation of economy-based resource trading
and scheduling on computational power grids for parameter sweep applications. Active
middleware services: from the proceedings of the 2nd annual workshop on active middleware
services, p 221

23713  Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family

	21.	 Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D (2009)
The eucalyptus open-source cloud-computing system. In: The IEEE international symposium
on cluster computing and the grid, IEEE Press, Shanghai, China, p 131, 124

	22.	 Sotomayor B, Montero RS, Llorente IM, Foster I (2008) Capacity leasing in cloud systems
using the OpenNebula engine. Chicago, IL

	23.	Raicu I, Zhao Y, Dumitrescu C, Foster I, Wilde M (2007) Falkon: a fast and light-weight
tasK executiON framework. In the proceedings of the 2007 ACM/IEEE conference on
supercomputing – volume 00, ACM Press, Reno, Nevada, pp 1–12

	24.	 Troger P, Rajic H, Haas A, Domagalski P (2007) Standardization of an API for distributed
resource management systems. In the proceedings of the seventh IEEE international symposium
on cluster computing and the grid, IEEE Computer Society, pp 619–626

	25.	 Resnick P, Varian HR (1997) Recommender systems. Commun ACM 40:56–58
	26.	 Bohnert F, Schmidt DF, Zukerman I (2009) Spatial processes for recommender systems.

In: The 21st international joint conference on artificial intelligence (IJCAI-09), Pasadena, CA,
pp 2022–2027

	27.	 Bohnert F, Zukerman I, Berkovsky S, Baldwin T, Sonenberg L (2008) Using interest and
transition models to predict visitor locations in museums. AI Commun 21:195–202

	28.	 Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data.
CRC Press, Boca Raton, FL

	29.	 Neal RM (2003) Slice sampling. Annal Stat 31:705–767
	30.	 Bohnert F, Zukerman I, Schmidt DF (2009) Using Gaussian spatial processes to model and

predict interests in museum exhibits. In the seventh workshop on intelligent techniques for
web personalization and recommender systems (ITWP-09), pp 13–19

Part III
Cloud Breaks

241

Abstract  Cloud computing is quickly becoming a significant IT resource, which a
typical organization will likely consider at some point. Be it Software-as-a-Service
or Infrastructure-as-a-Service, the implications can be significant with respect to
compliance with a variety of laws or regulations. The intention of this chapter is to
give some insight into the potential compliance pitfalls an organization may exp
erience if ill-prepared, and provide the tools to plan for and navigate around these
obstacles before they become insurmountable.

14.1 � Using the Cloud

Cloud computing has both advocates and naysayers, each with a variety of reasons
for their respective positions. This chapter does not intend to side specifically with
either. Rather, the purpose is to demonstrate an organization’s minimum require-
ments with respect to handling the data. It will also be demonstrated that the tasks
required are far from trivial and potentially expensive to implement and manage.
Thus, whether cloud computing should be considered by an organization is contin-
gent on understanding the costs and obligations.

14.1.1 � Overview

First off, using Cloud Providers or Cloud Services (herein referred to as “the
cloud”), is neither inherently insecure nor secure. It is highly doubted that a turn-
key cloud solution could prove to be the security panacea an organization hopes it

Chapter 14
Cloud Compliance: A Framework for Using
Cloud Computing in a Regulated World

Shawn R. Chaput and Katarina Ringwood

S.R. Chaput (*)
Privity Systems Inc307, 425 West 8th AvenueVancouver, British ColumbiaV5Y, 3Z5Canada
e-mail: schaput@privityinc.com

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_14, © Springer-Verlag London Limited 2010

242 S.R. Chaput and K. Ringwood

to be, but neither will it necessarily publicize every piece of Personally Identifiable
Information (PII) an organization provides, which is what many fear would happen.
The largest challenges with respect to engaging the cloud occur in the preparation
of a company for the cloud. This typically includes ensuring strong information
security governance and a clear understanding of the organization’s legal and regu-
latory landscape. In fact, outsourcing to the cloud could not be considered successful
without previously achieving an organizational security maturity level of four.

Another potential challenge with using the cloud surrounds how significant an
influence – if any – an organization can have with respect to modifying the way
the cloud operates, imposing and/or strengthening the liability terms of the con-
tracts, requesting and receiving the assurances required from the vendor, and
having a firm grasp on the enforcement of the solid legal agreement once it is put
in place.

14.1.2 � Background

As organizations mature and core competencies are developed, it may seem that
onsidering the cloud for specific types of applications, systems, infrastructure, and
platforms would be the next logical step. Cloud computing, although potentially more
granular and more distributed in nature, is not in fact radically different from tradi-
tional outsourcing or off-shoring arrangements: the same amount of diligence and
preparation is needed to start such an exercise. Much work on the topic of cloud
computing security has already been done by organizations such as the Cloud
Security Alliance (http://www.cloudsecurityalliance.org). For more detailed informa-
tion on the topics discussed here, it is recommended you read the most recent version
of their “Security Guidance for Critical Areas of Focus in Cloud Computing”. The
“audit & compliance” section of version 1 of that document was the foundation for
much of this chapter’s content, albeit at a higher level. The subsequent releases of the
Cloud Security Alliance’s Guidance documents will likely go into more detail.

14.1.3 � Requirements and Obligations

First, an organization needs to understand the legislative and regulatory landscape
in which it resides and operates. If a company processes credit cards, it will likely
be subject to the Payment Card Industry’s Data Security Standard (PCI DSS).1
Similarly, if the company handles Personally Identifiable Information (PII), it is

1 https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

24314  Cloud Compliance: A Framework for Using Cloud Computing in a Regulated World

quite likely that it is subject to various privacy legislations, such as the European
Union’s Data Protection Directive (EU DPD),2 or Canada’s Personal Information
Protection Electronic Documents Act (PIPEDA),3 thus requiring an organization to
follow specific guidelines without deviation or compromise regardless of how well
they align with internal policies. These are just two examples of how legislation or
regulation can shape a company’s information security structure and alter or add to
the needs with which an organization will approach the cloud provider.

14.1.3.1 � Regional Laws

It is nearly impossible to list all of the relevant regional laws, which may shape or
otherwise affect the requirements necessary to consider when outsourcing to the
cloud. As mentioned previously, privacy is an excellent example of a topic with
specific regional laws. When looking at Canada and the United States of America,
there are dozens of individual laws that are geographically binding and as a result
may take priority over others, even though on the whole they may not be substan-
tially different. To further complicate matters, if an organization operates in more
than one jurisdiction, it is likely subject to each respective law. This is an area
where the lawyers excel and can help an organization understand which regulations
will take precedence over others.

To further add to the confusion, agreements such as the International Safe
Harbor Privacy Principles4 can make an organization subject to laws in areas where
it does not even operate. A good example would be the US-EU Safe Harbor agree-
ment5 meant to provide a streamlined process for companies outside the EU’s
jurisdiction that will have a chance – by demonstrating compliance with EU
Directive 95/42/EC on protection of personal data – to gain the benefits of trade
with EU companies requiring reciprocal compliance. This means that not only does
an organization need to know its immediate legal responsibilities in respect to the
region(s) within which it operates, but it also must stay ahead and aware of the
additional types of arrangements to which it is privy and understand the related
requirements.

Several Canadian provinces experienced an incredible effect of the Uniting and
Strengthening America by Providing Appropriate Tools Required to Intercept and
Obstruct Terrorism (USA PATRIOT) Act6 of the USA, even though the same prov-
inces were not typically subject to foreign laws, not withstanding those of its closest
neighboring country. Many government agencies were not permitted to use providers
whose systems were physically in the USA, for the fear that their hosted data would

2 http://ec.europa.eu/justice_home/fsj/privacy/docs/lawreport/paper/ispa_en.pdf
3 http://www.priv.gc.ca/legislation/02_06_01_e.cfm
4 http://www.trade.gov/td/ecom/shprin.html
5 http://www.export.gov/safeharbor/eg_main_018236.asp
6 http://epic.org/privacy/terrorism/hr3162.html

244 S.R. Chaput and K. Ringwood

be secretly examined, copied, or seized under the auspices of the Act. Again, not
only do organizations need to be aware of the laws that directly affect them, they
also need to be aware of the ones to which they do not wish to be privy and make
their business decisions accordingly.

14.1.3.2 � Industry Regulations

Like the regional laws, industry regulations are wide reaching, complicated, and at
times potentially overlapping. Retail and credit card processing are a hot topic of
late within the Information Security community, allowing most to become familiar
with PCI DSS, American Express’ Data Security Operating Policies (DSOP),7 or
Visa’s Cardholder Information Security Program (CISP).8 Similarly, energy pro-
ducers within North America may need to concern themselves more with North
American Energy Reliability Council (NERC)9 or Federal Energy Regulatory
Commission (FERC).10 Investment Dealers may be subject to the Investment
Dealers Association Uniform Securities Legislation (IDA USL).11 Healthcare has
more laws and regulations than most would care to read. The list goes on.

Despite a limited scope of certain laws being mapped to specific types of indus-
tries, the awareness in itself is not sufficient to help determine benefits or negative
implications on the organization prior to considering using the cloud.

14.2 � Cloud Compliance

14.2.1 � Information Security Organization

A company’s Information Security Organization (ISO) – assuming one is estab-
lished – has likely already determined which of these laws and regulations are
relevant and have documented the requirements thoroughly. The ISO will work
towards achieving the information security maturity for the organization, helping
on an ongoing basis to establish the best course of action a company needs to take
to become or stay compliant. Failing the existence of an ISO, it will likely be
incumbent on the company to establish one prior to using the cloud. At a minimum,
the ISO can help with the identification of relevant laws and regulations, ensuring

7 https://www209.americanexpress.com/merchant/singlevoice/pdfs/en_GB/American%20
Express%20DSOP%20for%20Merchants%20-%20UK.pdf
8 http://visa.com/cisp
9 http://www.nerc.com/
10 http://www.ferc.gov/
11 http://www.iiroc.ca/English/Pages/home.aspx

24514  Cloud Compliance: A Framework for Using Cloud Computing in a Regulated World

security requirements are met and providing a single point of contact for the various
security-related communications likely to occur between the organization and the
cloud, while developing new, and integrating existing, strategic company goals.

14.2.2 � Data Classification

Assuming that an organization is subject to at least one of their industry-specific
regulations or laws, they will be required, at a minimum, to demonstrate some
semblance of control over its IT resources, quite likely predicating the existence of
an information security program. To meet regulatory obligations, an organization
needs to understand the information assets and their related security requirements,
which can only be achieved by doing something that most companies try to avoid:
proper classification and labeling of their data.

14.2.2.1 � Classifying Data and Systems

The exercise of classifying data is incredibly important when looking at allowing
others access. An organization needs to be able to provide the security requirements
surrounding the data in question at any given point, especially if considering granting
another entity the custodianship over said data. This exercise also provides an orga-
nization with the ability to pick and choose which data they will provide to out-
sourcers – and more importantly, which to exclude. By limiting the inclusion of
government classified PII or PCI data, for instance, the requirements related to the
security of the hosting systems become remarkably more relaxed. Presumably, each
of these classifications would have unique and distinct security requirements
needed to be passed onto the cloud provider. Reducing those requirements would
likely substantially reduce the cost of using the cloud in general, although it may
also limit the systems and data the organization possesses from being outsourced.
Classification of data and systems will likely lead to a cost-benefit analysis with
respect to the use of the cloud as a better understanding of the metadata may reveal
shortcomings in the existing security architecture. Knowing what an organization
sends to the cloud can help set the expectations on how a provider is required to
protect it.

14.2.2.2 � Specific Type of Data of Concern

Understanding the requirements of the data is paramount to appropriately securing
it. Aside from Personally Identifiable Information, Payment Card Industry data,
and the myriad regulations with which an organization would need to be concerned,
there are many other types of relevant data to be taken into account.

246 S.R. Chaput and K. Ringwood

Government classifies data, in Canada for instance, as Confidential, Secret, Top
Secret, or Cosmic Top Secret, and has a variety of requirements, which should be
considered relevant to each classification level. Specifically, regardless of the clas-
sification level, in order to have access to and store data, an organization would
have to have obtained a Facility Security Screening (FSC) clearance with Document
Storage from the Canadian and International Industrial Security Directorate
(CIISD) of Public Works and Government Services Canada (PWGSC).12 Depending
on the level of access and document sensitivity, the requirements increase – as does
the time to validate those requirements. An organization could absolutely not con-
sider hosting data of similar classifications on clouds which do not have these levels
of screening from their respective domestic security screening providers.

Data considered “Trade Secrets” within an organization will likely have a bare
minimum level of security associated with it. Similarly to data about mergers and
acquisitions or financial data, an organization will actively want to protect the trade
secret data in a meaningful and defined manner. Although there may not be specific
government legislation around it (in the case of publicly traded companies, there
most likely are laws governing the integrity of this data at a minimum, such as
Sarbanes Oxley in the United States13), an organization have no desire to purposely
or inadvertently divulge its data, and will likely be willing to take significant steps
to protect it.

14.2.2.3 � Labeling

Classifying data is only as effective as the exercise of labeling the same data and
related systems to reflect their classification. If an organization has undertaken the
exercise of classification, it is likely that it has gone through the effort of appropriately
labeling it. Of course, by extending an organization to the cloud it becomes incum-
bent to ensure the appropriate labeling of the relevant systems and data used in the
cloud. The challenges of physically labeling virtualized systems persist, and are fur-
ther compounded by cloud’s virtualization of datacenters.

14.2.3 � Access Control and Connectivity

Control mechanisms necessary for appropriate user access are another segment of
compliance concern with respect to using the cloud. Specifically, it may be neces-
sary to ensure the availability of authentication mechanisms that need to both
provide appropriate levels of authorization and accountability as well as integrate

12 http://ssi-iss.tpsgc-pwgsc.gc.ca/index-eng.html
13 http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf

24714  Cloud Compliance: A Framework for Using Cloud Computing in a Regulated World

seamlessly with client’s environment. This is where out-of-the-box solutions
from the cloud provider may not be sufficient for an organization’s authentication
requirements. Depending on the cloud type – SaaS, PaaS, IaaS – the requirements
would vary radically. If using cloud Infrastructure-as-a Service, the capability for
remote administration of the related equipment would likely be required; how
someone physically and logically connects and authenticates to this environment
can have a substantial influence on the cloud provider and client organization’s
compliance initiatives. For instance, if a computer directly connects to a PCI envi-
ronment, it runs the potential of being within the scope of the PCI compliance ini-
tiative. One way to circumvent this issue would be traversing a demarcation firewall
and connecting to a jump point administrative system (such as a terminal server)
that uses strong authentication. Mechanisms like this may need to be explored to
fully understand the implications of using the cloud and weighing the cost-to-benefit
ratio prior to making the decision.

14.2.3.1 � Authentication and Authorization

With respect to authentication, how an organization provides access is a subject of
great importance. Failing the existence of some sort of universal federated identity
or the ubiquity of “Identity 2.0” type technology, offering access to the cloud is not
without its substantial obstacles. Many questions immediately arise: Who manages
the authentication database? Is the client’s organization responsible for providing it
and the related links to the cloud or is the cloud managing it entirely? If the latter,
how does the client’s organization obtain the assurances around appropriate access?
Alternatively, if the client is providing the authentication mechanism, how does it
leverage the distributed environment of the cloud and the benefits of redundancy
without having similar capabilities around its LDAP or other authentication direc-
tory? These are all very difficult questions to answer and require sufficient planning
and understanding of the risks and technologies.

Authorization suffers similar problems, specifically around ensuring only those
with appropriate managerial approval are provided the requisite access. In an out-
sourced environment, it is difficult – if not impossible – to ensure that all of the
access is known and approved. Presumably, the cloud provider may have some
access of which the client’s organization would not necessarily be aware nor have
any significant influence over after the fact.

14.2.3.2 � Accounting and Auditing

The issue of authentication is further compounded by the issue of accountability
and nonrepudiation. In the case of a cloud provider managing the authentication
mechanisms, appropriate logging and monitoring facilities may need to be present
depending on the nature of the data in question. In the case of PCI DSS, this is a
clear requirement. More so, adequate separation of duties between those who

248 S.R. Chaput and K. Ringwood

administer the systems and those who monitor the logs should probably exist.
Regardless of the specifics, the logging and monitoring will likely be required,
presumably in some sort of Security Information and Event Monitoring (SIEM)
solution format. This of course begs new questions immediately: is the SIEM part
of the cloud provider’s standard offering? Should it be? How costly would it be, and
how reliable? Would it make more sense to manage the SIEM internally rather than
trust it to the cloud? Again, these are questions an organization should be concerned
with prior to even looking at engaging the cloud.

14.2.3.3 � Encrypting Data in Motion

Given the nature of services cloud offers, as well as the type of requirements most
companies have to operate successfully and optimally, a large volume of data will
travel between the client and the cloud. How does an organization protect the data
in motion? Encryption quickly comes to mind as an immediate solution, especially
when it comes to web applications and other Software-as-a-Service offerings,
where protocols such as Secure Sockets Layer (SSL) may adequately address the
issue. When looking at Platform and Infrastructure-as-a-Service, however, the tran-
sit becomes a little more complicated. Should there be a dedicated site-to-site
Virtual Private Network (VPN) between the organization and the cloud provider? It
is likely that the organization would at a minimum desire some sort of encryption
for the authentication traffic and presumably for any administrative activities, but
the nature of the data and relevant legislation influencing its usage and storage
would otherwise dictate what needs to be protected and how.

14.2.3.4 � Encrypting Data at Rest

With respect to specific compliance requirements and the mechanisms needed to be
in place to protect various types of information, encrypting data stored in the cloud
will also most likely be a requirement. Once the cloud provider has been made
aware of it, certain assurances would need to be given with respect to the use of
encryption or similar controls that would allow clients to maintain their compli-
ance. One should not, however, underestimate the potential costs of such a solution,
nor forget that there would be a need for substantial administrative activities such
as key management and key changes.

14.2.4 � Risk Assessments

Sufficient research and various assessments should be conducted prior to considering
use of clouds. In this context, various frameworks needed to establish the overall
impact of the risk of outsourcing to the cloud, as well as the related costs of

24914  Cloud Compliance: A Framework for Using Cloud Computing in a Regulated World

compliance, would need to be taken into account. During the process of conducting
these analyses and assessments, an organization should be able to determine whether
utilizing cloud resources is a viable and cost-justified option, while at the same time
ensuring that all of the essential regulatory and legislative requirements have been
considered. A sample of a few key assessments follows.

14.2.4.1 � Threat and Risk Assessments

Without going into detail describing a Threat and Risk Assessment (TRA), an orga-
nization must ensure that a TRA with respect to an organization’s existing infra-
structure is conducted prior to considering switching to the cloud. Through
employing a TRA, an organization will at a minimum be able to identify shortcom-
ings of the existing deployment and develop or build a remediation strategy appro-
priate to the shortcomings, taking into account the likelihood of using the cloud and
changes that would be entailed.

There are different options that would allow an organization to exercise due dili-
gence when looking at cloud computing as their new direction. Requesting the
cloud provider to supply the results of their own TRA would be one alternative. The
client could also conduct its own independent TRA of the cloud. If the data and
systems in question are of particular importance and sensitivity, doing a scheduled
TRA, or at least one on a regular basis, may be an extremely beneficial tool that
would enable the company to ensure compliance to existing laws, and more actively
and aggressively monitor the quality of service a provider is giving them. An
example of something that is already in place externally would be PCI DSS 1.2,
which mandates that a Risk Assessment be conducted at least annually for payment
card processing environments.

Frameworks for TRAs tend to be based on Risk Management best practices
and are fairly easy to come by. Some of the most common best practices are: AS/
NZS 4360:2004 Risk Management14; BS 7799–3:2006 Guidelines for Information
Security Risk Management,15 and; ISO/IEC 27005:2008 – Security Techniques
– Information Security Risk Management.16 Adopting any one of these frame-
works would ensure easy understanding of the organization’s obligations; sug-
gesting the cloud provider use one of these approaches further aligns the cloud
with the overall desired course, as well providing a way to confirm TRAs are
being conducted and are dependent on the shared and pre-approved best practices
methodology.

14 http://www.standards.org.au/
15 http://www.bsigroup.com/
16 http://www.iso.ch/

250 S.R. Chaput and K. Ringwood

14.2.4.2 � Business Impact Assessments

Again, without going into too much detail about defining a Business Impact
Assessment (BIA), an organization must identify the business requirements of
any one of their systems prior to considering outsourcing it to the cloud. This
includes understanding a few key details of the systems in question. For instance,
a company should know the Recovery Time Objective (RTO) or the acceptable
amount of time to restore the function of the system without gravely affecting the
financial stability of the organization of the systems. Another important thing to
identify would be the Restore Point Objective (RPO) or the acceptable latency of
data to be recovered. Each of these issues can severely impact the cost of outsourcing,
so great care and diligence needs to be exercised in the execution. Once com-
pleted, the Business Impact Assessment values would need to be communicated
to the cloud provider.

14.2.4.3 � Privacy Impact Assessments

Where PII is involved, an organization should conduct a Privacy Impact Assessment
(PIA) prior to engaging the cloud in order to understand the implications and risk
of the engagement. The Canadian Federal Government17 and Provincial Government
of British Columbia (BC)18 Canada have done an excellent job in providing freely
available frameworks and reference materials, all easily found using your favorite
search engine.

14.2.5 � Due Diligence and Provider Contract Requirements

Once the preliminary requirements have been addressed, and the systems and
data with which the cloud is to be seeded have been chosen, it is time to engage
the provider and start the rest of the due diligence work. Some of this would be
done through capturing those various requirements in contracts and ensuring the
organization is aware of the service it is obtaining and all of the impacts that
entails. The exercise of diligence can uncover or validate many things. With
respect to compliance and security, an organization can verify if the practices in
place on the cloud provider’s side are satisfactory and align with the client’s
requirements.

17 http://www.tbs-sct.gc.ca/pubs_pol/ciopubs/pia-pefr/paipg-pefrld-eng.asp
18 http://www.cio.gov.bc.ca/services/privacy/Public_Sector/pia/default.asp

25114  Cloud Compliance: A Framework for Using Cloud Computing in a Regulated World

14.2.5.1 � ISO Certification

Practices such as obtaining ISO/IEC 27001:200519 certification as a way to demonstrate
an understanding and adherence to best security practices may be a valid response;
however, the certification is only as useful as the company’s defined requirements.
Prior to taking the certification as evidence of a solid security foundation, an inves-
tigation into the scope and how it pertains to the outsourcing arrangement needs to
be conducted. The worst-case scenario would be for a company to pursue a certifi-
cation that would not be able to address any of the systems and processes to be used
as they may be out of scope of that specific certification. On the other hand, even
though having a qualification like this may not necessarily address the specific
security requirements of the organization, it does demonstrate a certain commit-
ment to ensuring that quality programs are in place in general.

14.2.5.2 � SAS 70 Type II

A common type of an externally conducted assessment by North American out-
sourcing providers is a Statement on Auditing Standards No. 70 (SAS 70)20 Service
Organizations. The “Type II” provides an opinion as to the operating efficiency of
the tested controls. Most outsourcers tend to have these assessments conducted
periodically (mostly annually) in order to provide or maintain certain assurances to
the customers. The associated cost is built into the cost of the outsourcing arrange-
ment. Not entirely unlike the ISO certification, the scope of the assessment is of
particular concern for clients; so if a provider is offering such assurances, it is nec-
essary to remember that ensuring the scope is comprehensive and relevant is more
important than how often the assessments get done.

14.2.5.3 � PCI PA DSS or Service Provider

Relevant for the retail space or any organization processing payment cards, PCI
approved Services Providers or Payment Application DSS certified applications
may be in scope for the organization. These are fairly easy to research, at least
initially, as Visa tends to publish lists of approved vendors for each application on
a fairly regular basis.21 Since an organization cannot outsource to a service provider
that has not been pre-approved, nor can it use an application not on the PA-DSS

19 http://www.iso.ch/
20 http://www.aicpa.org/Professional+Resources/Accounting+and+Auditing/Audit+and+
Attest+Standards/Authoritative+Standards+and+Related+Guidance+for+Non-Issuers/auditing_
standards.htm
21 https://www.pcisecuritystandards.org/security_standards/vpa/

252 S.R. Chaput and K. Ringwood

confirmed list (at least not without jumping through a whole new collection of
hoops), it follows that parts of their compliance, or lack thereof, remains out of their
hands. Alternatively, in order to make it, or remain on the pre-approved vendor
list, the cloud provider is encouraged to use specific applications to handle client’s
customer’s card numbers data in order to achieve PA DSS certification on an
annual basis.

The challenges with respect to requirements like this surround the strategic
direction of the cloud provider. If, for instance, the provider is not solely tied to the
concept of maintaining a PCI status, problems will ensue for the client. Specific
language must be inserted into contracts with respect to ensuring compliance.
Further, as a colleague once suggested: plan for the divorce before the wedding.
This leads to the concepts of Portability and Interoperability.

14.2.5.4 � Portability and Interoperability

Planning for contingency is paramount for outsourcing arrangements and cloud
arrangements are no different. It is important to identify who owns the data and
ensure that both parties agree. Further, in the event that the arrangement no longer
meet the requirements of either party, preparations should take place to allow for
smooth transitioning away. This can include simple steps such as ensuring proper
termination clauses are inserted into legal agreements, but will likely include more
complicated technical considerations. The data being surrendered at contract termi-
nation may not be in a universal format, and if returned in a vendor-specific propri-
etary format might be rendered unreadable. Surely this would not be a desired
outcome, and an organization must plan to ensure that a different result is produced
by doing their fair share of due diligence while negotiating the terms of their ser-
vices, rather than after when it may be too late.

14.2.5.5 � Right to Audit

If the agreement begins to proverbially “go sideways” or the client organization
begins to question the results of an assessment, it may be in the client’s best interest
to conduct their own assessment of the cloud provider’s environment and operating
procedures. This action, of course, must be predicated on the existence of a
“Right to audit” clause within the contract. Not to be taken lightly, the right to
audit clause also indirectly implies that the client will have to be willing to accept
relatively large costs from an impartial third party acting as an auditor of the
environment. This clause provides the ability to execute the arrangement and
hopefully would never need to be used, acting more as a deterrent for the cloud
provider to not dismiss their responsibilities to the client throughout the full term
of their services.

25314  Cloud Compliance: A Framework for Using Cloud Computing in a Regulated World

14.2.5.6 � Service Level Agreements

It is also expected that the client organization will be entitled to a bare minimum
level of service. It is incumbent on the client to demand relevant, measurable, and
specific Service Level Agreements (SLAs) and Service Level Objectives (SLOs)
for security-related events, although the client must be aware that there is an inverse
relationship with the timeliness of response for most issues and the cost of the ser-
vice given. This initiative should be linked to the Business Impact Assessment
results as well.

14.2.6 � Other Considerations

Some of the other considerations to give thought to involve ensuring that the cloud
providers have an appropriate governance structure with clearly defined problem-
management procedures and escalation paths. Some other key procedures and plans
should also be included, such as incident response plans with appropriate roles and
responsibilities outlined for both the client and the provider.

14.2.6.1 � Disaster Recovery/Business Continuity

An organization needs to be adequately satisfied with the ability of the cloud pro-
vider to ensure appropriate availability of the client’s corporate assets with which
they were entrusted. It may be suggested that the client be privy to reviews of the
business continuity plans or disaster recovery plans, or related testing activities.
Again, verbiage around this concept should be captured within the contract to
ensure suitability and appropriate compensation are considered.

14.2.6.2 � Governance Structure

As stated previously, the cloud provider’s governance structure should be investi-
gated and arrangements with respect to communication should be formalized. This
is required specifically around escalations and problem management, where an offi-
cial channel needs to be established such that there is always an individual account-
able and responsible on both the client and cloud provider sides to ensure adequate
completion of the required tasks in a timely and acceptable fashion. There should
always be an appropriate escalation point as well, in the event that the responsible
individual is unable to complete the necessary tasks as outlined. The governance
structure which would outline all of these, amongst many other processes, needs to
be formalized and agreed upon prior to contract signing.

254 S.R. Chaput and K. Ringwood

14.2.6.3 � Incident Response Plan

Many compliance initiatives specifically outline the requirement of incident
response teams and their related plans. When dealing both with the cloud and
outsourcers in general, this approach needs to be explained, negotiated, docu-
mented, and formalized such that there is no room for interpretation when it comes
to plan execution. Specifically, the roles and responsibilities for all involved par-
ties ought to be explicitly outlined to ensure that appropriate actions are taken and
necessary notifications are made. Breach notification is a particularly troublesome
issue with clouds because the laws mandating them tend to be jurisdictional and
related to the physical geography of the place of the breach. When developing the
responsibilities of the incident response plan, it may be best to consider verbiage
that would allow for tying the obligation to determine the actual location of the breach
and the related notification requirements for that region to the cloud provider
rather than the client.

14.3 � Conclusion

As it can be imagined, compliance with the vast array of legislation and regulations
when using cloud computing services can be quite complicated and burdensome.
However, hopefully the crux of this chapter was not lost and it did not appear as
though one should reconsider engaging cloud providers. The intent was rather to
ensure client organizations that are already considering outsourcing to the cloud
understand which data and systems might be prime (easy) candidates for outsourcing,
and which may be prohibitively expensive. The key, as can likely be imagined, is
to have firm control over an organization’s information assets and a strong under-
standing of the related legislative and regulatory requirements over that data. Once
that concept is understood, and the requirements are gathered, it is achievable to
consider the cloud options and obtain and benefit from them at realistic costs.

Bibliography

“Auditing the Cloud”, Grid Gurus, http://gridgurus.typepad.com/grid_gurus/2008/10/auditing-
the-cl.html, October 20, 2008

Anderson R (2008) Security engineering: a guide to building dependable distributed systems.
Wiley, New York

Cloud Computing: Bill of Rights. http://wiki.cloudcomputing.org/wiki/CloudComputing:Bill_of_
Rights

Security Guidance for Critical Areas of Focus in Cloud Computing v2.1, Cloud Security Alliance.
http://www.cloudsecurityalliance.org/csaguide.pdf, 2009

Hurley W (2009) Beautiful Security. O’Reilly Media
Jaquith A (2007) Security metrics: replacing fear, uncertainty, and doubt. Addison-Wesley

Professional

25514  Cloud Compliance: A Framework for Using Cloud Computing in a Regulated World

Mather T (March 2, 2009) Cloud computing is on the up, but what are the security issues? Secure
Computing Magazine, London

Raywood D (March 9, 2009) Data privacy clarification could lead to greater confidence in cloud
computing. Secure Computing Magazine, London

Reese G (2009) Cloud application architectures: building applications and infrastructure in the
cloud. O’Reilly Media

Roiter N (March 2009) How to secure cloud computing. Information Security Magazine. http://
searchSecurity.techtarget.com/magazineFeature/0,296894,sid14_gci1349670,00.html

Sherwood J (2005) Enterprise security architecture: a business-driven approach. CMP

Wood L (January 30, 2009) Cloud computing and compliance: be careful up there. ITWorld

257

Abstract  Interoperability, which brings major benefits for enterprise and science,
is key for the pervasive adoption of grids and clouds. The lack of interoperability
has impeded broader adoption and the reason, enterprise argues, why the grids have
not performed at expected levels. Interoperability between existing grids and clouds
is of primary importance for the EU.

This chapter focuses on the guiding principles of interoperability and openness
for the development of cloud computing, as they have been for the Internet so far.
Therefore, global standardization efforts are emphasized in this chapter and seen as
a key priority.

We look at the importance of interoperability and what standardization efforts
are taking place surrounding cloud computing, considering how enterprises do not
wish to tie their applications to specific providers’ remote infrastructure – particu-
larly if there is proprietary technology deployed. Nevertheless, it is still considered
early in the market’s development for formal standardization of many aspects of
cloud computing – except maybe in the area of virtualization technology – but
industry leaders recognize the importance of interoperability.

The chapter delivers a snapshot of the impact that cloud computing is
making on the European market and the influence of EU regulation in listing the
Opportunities for Europe. The concluding remarks and considerations provide a
look at the future market drivers and the key challenges of interoperability and data
confidentiality.

F. Gagliardi (*)
External Research, Microsoft Research, EMEA office: 12, Av. des Morgines,
CH-1213, Petit-Lancy (Geneva),
e-mail: Fabrizio.Gagliardi@microsoft.com

Chapter 15
Cloud Computing – Data Confidentiality
and Interoperability Challenges

Fabrizio Gagliardi and Silvana Muscella

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_15, © Springer-Verlag London Limited 2010

258 F. Gagliardi and S. Muscella

15.1 � Confidentiality of Data and Principal Issues
Globally: An Overview

Today, companies considering using a cloud-based service need to obtain a clear
understanding of the privacy, security, and legal consequences before signing the
SLA with a service provider. Forrester urges in a recent report [1] to develop a
checklist of data security and compliance priorities and compare organizational
needs to the cloud service provider’s policies and procedures.

Other important questions surround confidentiality of data and a variety of related
issues including security, privacy, and trust. Who is responsible for the data residing
or moving in the cloud, and under which jurisdiction they fall, are common unre-
solved questions. A key example is the UK National Health Service (NHS) that has
a jurisdiction which states that all UK Data must never leave the United Kingdom.

Specific items have to be included in the agreements for companies before
signing the contracts, which cover items as to how data are being handled once the
service contract is terminated, the kind of data that are returned to the organization,
and ensuring the elimination of the data at the host cloud service providers’ network.
Early adopters have run into a number of hurdles, including not knowing where
their data resides, what happens to the data when a decision is made to change the
services, and how the service provider guards the customer’s privacy. Concern over
proprietary data and personal information is a major issue. A cloud provider may not
necessarily commit to offering internal auditing on this feature, but understanding
through logs and who accesses the data should be available to the company.

Robert Gellman prepared a report for the World Privacy forum indicating that
the stored information [2] in the cloud eventually ends up on a physical machine
owned by a particular company or person located in a specific country. That stored
information may be subject to the laws of the country where the physical machine
is located. For example, personal information that ends up maintained by a cloud
provider in a EU Member State could be subject permanently to EU privacy laws.

15.1.1 � Location of Cloud Data and Applicable Laws

More specifically, Gellman’s report goes into greater detail on the explanation of
the EU directives, such as the EU’s Data Protection Directive [2, 3] that offers an
example of the importance of location on legal rights and obligations. Under Article
4 of the Directive, a national data protection law applies when a controller located
in the territory of the Member State processes personal information. A cloud provider
in an EU Member State could bring personal data obtained from a non-EU-based
user under a European data protection law. Once an EU law applies to the personal
data, the data remain subject to the law, and the export of that data will thereafter
be subject to EU rules limiting transfers to a third country. Thus, if a US company
gave its data to a cloud provider based in France, French data protection law would

25915  Cloud Computing – Data Confidentiality and Interoperability Challenges

apply and the export of the data back to the United States could be restricted or
prohibited. In addition, the subjects of the data would acquire rights of notice,
access, correction, etc. under French law. Once an EU Member State’s data protection
law applies to personal information, there is no clear way to remove the applicability
of the law to the data.

The location of a cloud provider’s operations may have a significant bearing on
the law that applies to a user’s data. The actual location may or may not appear in
the provider’s terms of service. Even if the provider discloses the location of
records, the provider may change it, possibly without any notice. The same data
may be stored in multiple locations at the same time. A provider who promises to
maintain user data in a specific jurisdiction (e.g. the United States) may reduce
some of the location risks that a user may face.

15.1.2 � Data Concerns Within a European Context

Generally, the question that arises is how national privacy and security standards
can be ensured in a global cloud environment. In terms of data privacy and jurisdic-
tion, national standards and regulations have resulted in few providers storing
regional hardware, and most choosing, instead, to use European and American
infrastructures. Reservations about cloud computing derive from concerns about
dependability, vulnerability, and lock-in to providers, as well as security-related
issues, when there are no longer true internal systems.

Many users today are choosing to combine internal IT and cloud computing
simply due to the fact that by doing this, they are not risking losing control of their
sensitive data, especially in the cases where no uniform service level agreements
(SLAs) exist. Indeed, loss of data, hardware breakdowns, and a reduction in perfor-
mance are noted in relation to today’s cloud computing offers.

The drawbacks on the current implementations lie primarily on external audits
not being currently permitted, limited logs available, the users’ trust in the brand
such that they have no alternative with regard to data security, and lack of informa-
tion regarding the actual location or the jurisdiction of data.

Organizations must plan carefully when constructing cloud computing environ-
ments to ensure that the flexibility and scalability do not overshadow the necessity
for risk-tolerant implementation. As the developments in the EU show, the initial
cloud computing implementation must not only be secure, but the whole system
must be flexible to accommodate emerging laws and regulations.

The Council of the European Union, in the Adoption of the Council Conclusions
on the future of Information Communication Technology (ICT) research, innovation
and infrastructures [4], stresses that the digital revolution is still in its early stages and
that a research and innovation capacity is essential to be able to shape, master, and
assimilate technologies and exploit them to economic, societal, and cultural advan-
tage; in addition, it underlines in this regard the necessity to ensure the availability,
appropriate treatment, and conservation of an unprecedented amount of data.

260 F. Gagliardi and S. Muscella

15.1.3 � Government Data

Government data are being put online to increase accountability, contribute valuable
information about the world, and to enable government, the country, and the world
to function more efficiently [5]. All of these purposes are served by putting the
information on the Web as Linked Data. Linked data principles provide a basis
for realizing the Web of Data by ensuring that data are organized, structured, and
independent of any application programs so that it can serve a broad community of
people and many applications. The main drivers behind linked data include the
value-add of structured content, a mission or mandate to make data linkable, and
most importantly, low development barriers. Key enabling technologies span Web
2.0, Mash-ups, Open Source, Cloud Computing, and Software-as-a-Service. Effort
toward interoperability can be made where most needed, making the evolution with
time smoother and more productive.

15.1.4 � Trust

The technology of cloud computing itself is not insecure. However, companies
must carefully plan, from the outset, the implications of massively scalable design,
storage, and computing. This is especially true if those services are outsourced to
cloud providers and not directly under company control. Recently, the Cloud
Security Alliance was set up [6] “to promote the use of best practices for providing
security assurance within Cloud Computing, and provide education on the uses of
Cloud Computing to help secure all other forms of computing.” An educational and
networking event entitled, SecureCloud 2010, hosted by the European Network and
Information Security Agency, the Cloud Security Alliance, and ISACA, which are
organizations that help to shape the future of Cloud Computing Security deal with
interoperability between cloud providers among other topics, demonstrated the
need to immediately address Cloud interoperability in earnest.

In a recent survey carried out by the European Network and Information Security
Agency (ENISA) [7], the principal reasons for Small and Medium-sized Enterprises
(SMEs) to adopt cloud computing were to avoid capital expenditure in hardware,
software, IT support, and information security by outsourcing (70% of SMEs
responded in favor of this, and 67% found flexibility, scalability, and IT resources
to be key to utilizing cloud). SMEs’ main concerns were that 44% were concerned
about privacy and the availability of services and 48% were worried over loss of
control of their own services. ENISA published a Cloud Computing Report in
November 2009 [8] on the benefits, risks, and recommendations for information
security, detailing that the cloud’s economies of scale and flexibility are both a
friend and a foe from a security point of view. The massive concentrations of
resources and data present a more attractive target to attackers, but cloud-based
defenses can be more robust, scalable, and cost-effective. The paper provided secu-
rity guidance for potential and existing users of cloud computing.

26115  Cloud Computing – Data Confidentiality and Interoperability Challenges

15.1.5 � Interoperability and Standardization in Cloud Computing

The development of standards and interoperability between the varying levels of
clouds is inevitable. It is also tied directly to the needed adoption by the enterprise.
Without clearly defined standards, best practices, and open interoperability, further
adoption of the cloud will evolve at a slower pace.

There have been a significant number of publications including those by the UK
Government and European Commission itself, which have made the economic case
for standards and their utilization in increasing innovation. The central premise of
this is that they remove the need for innovative developers and product/service
designers to waste time with the lower level functionality that has been developed
by others. There can also be the sharing of common solutions between application
areas through the utilization of building block technologies that are not subject or
area-specific. This will allow increased European competiveness through ensuring
that there is a minimization of the lag between early adopters and the main stream.
This ensures that organizations of varying sizes are able to contribute to the
economy, with their competitiveness not hindered by large scale “vendor lock-in”
or proprietary services gaining market dominance.

Dynamic capability is one of the features of cloud that differentiates it from grid
by offering resources as and when needed. Virtualization is another key difference.
These are among the drivers to adoption. However, there are many challenges to be
addressed with grid computing community contributing to cloud needs, above all, for
the Open Grid Forum (Open Grid Forum). Interoperability is not the only issue. SLAs
are a big challenge, as start-up companies or SMEs, which are currently the major
cloud users, want freedom of choice, although Amazon EC2 is the current market
leader and the de facto standard cloud service provider. If these companies want to
move to another provider, then the problem revolves not only around VM migra-
tion, but also other services such as databases that lack compatibility. Other chal-
lenges concern how to move existing software packages from internal data centers
to external clouds, bearing in mind that the architecture of the majority of this soft-
ware does not support scale-out, as well as network bandwidth utilization.

It suffices to say that cloud portability, possible via guaranteed standards and
interoperability, has to occur in the future, and the major players in this arena have
to be involved. The lack of involvement of the major players will lead to standard
clouds and nonstandard clouds or companies providing some form of filtering
mechanism or converters to allow for portability.

15.1.6 � Open Grid Forum’s (OGF) Production Grid
Interoperability Working Group (PGI-WG) Charter

Open Grid Forum’s (OGF’s) Grid Interoperation Now Community Group (GIN-CG)
and the Production Grid Infrastructure Working Group (PGI-WG) lead the interop-
erability of global grid infrastructures. The PGI-WG, a spin-off from GIN-CG,

262 F. Gagliardi and S. Muscella

brings together members of production grid infrastructures from all over the world
to address related challenges, building on the experiences of GIN-CG to create
profile documents to be fed into OGF standardization groups. This focus enables
work on refined or new OGF specifications. The PGI-WG chiefly focuses on three
OGF standards, working closely with the dedicated working groups:

Job Submission Description Language (JSDL)•	
Open Grid Services Architecture-Basic Execution Service (OGSA-BES)•	
Grid Laboratory Uniform Environment (GLUE) schema•	

The efforts of GIN-CG and PGI-WG represent important milestones by enabling
other grid infrastructure communities and software providers that intend to imple-
ment these specifications to join the standardization activity and contribute their
experiences. This work is also a significant step in the grid community’s transition
to the model proposed by EGI, where e-Infrastructures built from different software
will have to operate seamlessly together. Through this work, the ongoing efforts of
the Usage Records and Resource Usage Service Working Group will continue and
move to include their outputs into the Production Grid Profile being developed.

15.1.7 � Achievements in the OGF Open Cloud Computing
Interface (OGF-OCCI)

The OGF Open Cloud Computing Interface Working Group (OCCI-WG) is
developing a clean, open application programming interface (API) for
“Infrastructure as a Service” (IaaS) based Clouds. IaaS is one of the three primary
services, alongside Software, and Platform, of the emerging Cloud industry.
OCCI-WG is a working group of OGF established in March 2009. The group has
active membership of over 160 individuals, and is led by four chairs from indus-
try, academia, service providers, and end users. Several members are from com-
mercial service providers that are committed to implementing the OGF-OCCI
specification.

15.1.7.1 � What will OCCI Provide?

OCCI is a very slim REST-based API, which can be easily extended as shown in
Fig. 15.1. Without the overhead of many similar protocols, the REST approach
allows users to easily access their services. Every resource is uniquely addressed
using a Uniform Resource Identifier (URI).

Based on a set of operations – create, retrieve, update, and delete – resources can
be managed. Currently, three types of resources are considered: storage, network,
and compute resources. Those resources can be linked together to form a virtual
machine with assigned attributes. For example, it is possible to provision a machine
which has 2 GB of RAM, one hard disk, and one network interface.

26315  Cloud Computing – Data Confidentiality and Interoperability Challenges

Currently, the OCCI group is finalizing and documenting the initial draft specification.
The group is actively collaborating with other groups from the Storage Networking
Industry Association (SNIA) for storage, and Distributed Management Task Force
(DMTF) for management standards. The work is also featured on the http://www.
cloud-standards.org wiki, where Cloud-related standards are coordinated by the
major Standards Development Organizations (SDOs).

15.1.7.2 � Cloud Data Management Interface (CDMI)

The Storage Networking Industry Association™ has created a technical work
group to address the need for a cloud storage standard. The new Cloud Data
Management Interface (CDMI) is meant to enable interoperable cloud storage and
data management. In CDMI, the underlying storage space exposed by the above-
mentioned interfaces is abstracted using the notion of a container. A container is
not only a useful abstraction for storage space, but also serves as a grouping of the
data stored in it, and a point of control for applying data services in the
aggregate.

15.1.7.3 � How it Works

The cloud computing infrastructure management, shown earlier supports both OCCI
and CDMI interfaces. To achieve interoperability, CDMI provides a type of export
that contains information obtained via the OCCI interface. In addition, OCCI
provides a type of storage that corresponds to exported CDMI containers. OCCI and
CDMI can achieve interoperability initiating storage export configurations from
either OCCI or CDMI interfaces as starting points. Although the outcome is the
same, there are differences between the procedures using CDMI’s interface over
the OCCI’s as a starting point.

Fig. 15.1  Example of the REST-based API

http://www.cloud-standards.org
http://www.cloud-standards.org

264 F. Gagliardi and S. Muscella

Both OCCI and CDMI are standards working toward interoperable cloud computing
and cloud storage. The standards are being co-ordinated through an alliance
between the OGF and the SNIA, as well as through a cross-SDO cloud standards
collaboration group described subsequently. OCCI will take advantage of the
storage that CDMI has provisioned and configured.

Since both interfaces use similar principles and technologies, it is likely that a
single client could manage both the computing and storage needs of an application,
scaling both to meet the demands placed on them.

15.1.8 � SDOs and their Involvement with Clouds

2009 was a significant year for the development of standards efforts in cloud comput-
ing. In July 2009, the Object Management Group OMG™ announced a collabora-
tion with leading technology SDOs to coordinate and communicate standards for
Cloud computing and storage. Organizations that participate in this round-table style
collaboration include the DMTF, OGF, SNIA, Open Cloud Consortium (OCC), and
Cloud Security Alliance (CSA). Most SDOs already have many one-to-one liaison
relationships, which are effective and productive for handling specific issues. This
round-table-style collaboration provides a “bird’s eye view” of this broad and com-
plicated technical area, further helping the work already underway between these
leading standards bodies. This is the main reason for the establishment of a Cloud
Standards Coordination working group. The group has a goal to create a landscape
of cloud standards work, including common terminology.

To support this collaboration, a public working group has been established, and
anyone with relevant technical skills, interest, and commitment can participate.
Participation by enterprise and government IT leaders is encouraged to ensure that
their critical standards needs are being addressed. The work is an outgrowth of the
already existing Standards Development Organization Collaboration on Networked
Resources Management (SCRM) working group that has coordinated management
standards in general [9]. The organizations involved have created a wiki to describe
each organization’s standards and efforts in this space.

15.1.9 � An Example of Cloud Computing Interoperability
at Microsoft

Interoperability at Microsoft is important, and in recent years the interoperability
team has been working actively to make Windows the best platform to run PHP
applications [10]. The PHP Toolkit for ADO.NET Data Services, ADO.NET Data
Services, is shipped as a part of .NET 3.5 SP1 and provides a RESTful interface in
data services and an efficient way to surface your data to the web. The data are then

26515  Cloud Computing – Data Confidentiality and Interoperability Challenges

easily consumable, served up in JSON or XML (POX). The PHP Toolkit for
ADO.NET Data Services is an Open Source project that provides a set of utilities
and libraries for PHP developers to easily take advantage of these ADO.NET Data
Services. This toolkit was recently highlighted at the Gov 2.0 Summit in Washington
DC to explore how technology can enable transparency, collaboration, and effi-
ciency in government.

The Zend Framework [11] has invited the open-source community and soft-
ware vendors to participate in the formation of a Simple Cloud API. IBM,
Microsoft, Rackspace, Nirvanix, and GoGrid have already joined the project as
contributors. In the coming months, they will work together to define APIs for
these cloud application services, enabling a new generation of native cloud applica-
tions written in PHP.

The Simple Cloud API is an open-source project that makes it easier for developers
to use cloud application services by abstracting insignificant API differences. One
of the design goals of the project is to encourage innovation. To this end, the Simple
Cloud API can be used for common operations, while users can easily drop down
to vendor libraries to access value-add features. The Simple Cloud API is an
example of Microsoft’s continued investment in the openness and interoperability of
its platform. Currently, Microsoft Azure also supports the full Java stack including
open-source tools such as the Apache web server. An example of the Azure Services
Platform is given in the subsequent paragraph (Fig. 15.2).

DataPlex BI Reporting

Cloud Storage
(HA, DR, Sync, Scale, etc)

Others...

Fig. 15.2  Windows Azure and SQL services

266 F. Gagliardi and S. Muscella

15.1.10 � A Microsoft Cloud Interoperability Scenario

At the Gov 2.0 summit, Microsoft presented a cloud interoperability scenario that
takes advantage of the recently announced Toolkit for PHP with ADO.NET Data
Services to view public government data with Windows Azure and PHP [12]. This
scenario allows a Windows Azure application that exposes data in a standard way
(XML/Atom), and shows how you can simply “consume” this data from a PHP web
application. This scenario takes advantage of the Open Government Data Initiative
(OGDI) [13] and Microsoft’s Open Government effort, built on the foundation of
transparency, choice, and interoperability. Using open standards and API, developers
and government agencies can retrieve the data programmatically for use in new and
innovative online applications or mashups. Publicly available government data sets
have been loaded into Windows Azure Storage, and the OGDI team built a data
service that exposes the data through REST web services, returning data by default
in the Atom Publishing Protocol format (Fig. 15.3).

15.1.11 � Opportunities for Public Authorities

More governments are making a commitment to cloud computing in order to address
rising IT costs and making efficient use of labor, as well as for environmental

An application development, deployment and management fabric.

User programs web service front end
and computational & Data Services

Framework manages deployment and scale out

No need to manage VM images

Sever
1

Sever
2

Sever
3

Sever
4 Sever m Sever n

VM VMVM VM VM VMVM

F
ab

ric
C

on
tr

ol
le

r

Internet

Web Access Layer

Data & Compute
Layer

PaaS Dev/Deploy
 Fabric

App
Developer

App User

Programmed with
.Net
Visual Studio
PhP and Eclipse

Fig. 15.3  Azure platform as a service

26715  Cloud Computing – Data Confidentiality and Interoperability Challenges

responsibility and openness to innovation. Cloud computing offers a number of
benefits to government and public authorities, such as simplifying acquisition,
budgeting, policy planning, and architecture along with the technological benefits,
such as increased storage, automation, flexibility, mobility, and a shift in IT focus.
As economies continue to struggle, governments need to take a deeper look at their
expenses and make smarter, cost-effective decisions. In both London and Washington,
the definition (as well as possibly the development of a government cloud, nicknamed
G-Cloud) is constantly discussed. Therefore, open-source software is certainly los-
ing momentum and political appeal, while cloud computing is gaining press cover-
age and executive interest according to a recent Gartner report [14].

The US Government has been one of the leaders in outlining concrete plans to
implement cloud-like technologies in areas such as desktop management (i.e. remote
help desk) and secure provisioning, portals and collaboration, content and records
management, workflow management, business intelligence, a Software-as-a-Service,
as well as a data center that calls for government-to-government, government-to-
contractor, and contractor-to-contractor modes of service delivery.

A few barriers exist in that government’s sensitive and secret data must continue
to be maintained in government-owned, government-operated facilities. In May
2009, the EU launched a broad consultation on whether it should consider revising
the 1995 data protection directive. Cloud computing and new business models are
challenging government systems. Currently, around 90% of organizations in the EU
do not engage in transfers of data outside the region, but cloud computing is very
likely to change that. There are in fact a few examples of governments starting to
take advantage of the emerging technology.

15.1.12 � Future Market Drivers and Challenges

As the current landscape of cloud computing has been described, it is important to
understand where it is going in the future. Ultimately, the market will drive the
overall adoption, but it is equally important to outline what it will take to prove it
as a fully viable solution.

Just a short time ago, there was an issue with a lack of referenceable successes,
with few large players offering clouds. Amazon were leading the field, (with EC2,
S3, SimpleDB, CloudFront, and SQS), but with every passing month, larger IT
players have been unveiling their new cloud solutions, such as IBM BlueCloud,
Microsoft Azure, etc.

It is important, however, to define what are the catalysts for cloud computing in
terms of the provider, the user, the technology itself, and available business models.
The catalyst for business is to leverage clouds to get to market with new business
models as well as the generation of Web 2.0 startups, to receive a better reliability
through service-level contracts, availability of open standards to reduce lock-in, and
concrete solutions to data-security issues. Finally, the technology itself needs to be

268 F. Gagliardi and S. Muscella

able to scale to support massive enterprise applications, provide seamless support
for third party applications, and easily substitute in-house management and
monitoring tools.

The current opportunities are for the next generation of cloud computing
virtualization providers (e.g. 3Tera, Xen), computing giants with massive data
centers (e.g. Amazon), bridging providers and integrated Platform as a Service
(PaaS) (e.g. Google, Elastra), and for SaaS systems providers for databases, app
servers, and business intelligence (e.g. salesforce.com).

Overall, hyper-competitive markets are pushing the business to demand ever
faster time to market, reduced entry/exit barriers, while reducing IT costs, allowing
SMEs to have world-class enterprise application functionality at affordable price
points, and startups to build their infrastructure on clouds to gain cost advantages.
Existing companies are starting to consider migrating just to remain at par.

15.1.13 � Priorities Moving Forward

While many cloud providers’ solutions for extending applications between physically
distributed resources are still at the concept stage, the market should expect
significant developments over the coming months by hosting services to the
providers, which bridge the gap between dedicated application hosting and cloud-
based infrastructure services.

These two approaches have plenty in common, perhaps, the most important
being that the larger Grid infrastructures and Clouds run on shared infrastructure
accessed via the network, often remotely.

It is this common attribute that results in shared problems that both the Grid and
Cloud communities need to address, including, but not limited to, the portability of
services and data between grids or clouds, the secure access to and operation of
those services, the secure movement and storage of data, the need for location
awareness to cater for disparate regulatory requirements, unified management for
both internal and external platforms, etc.

15.2 � Conclusions

Standardization and interoperability are invaluable characteristics to a successful
application of distributed computing, either the already mature grid e-Infrastructure
efforts or the momentum around its cloud-focused counterparts in the industry.
As grids made the transition from academic and research exclusivity to potential
industry adoption, the role of standardization took precedence. The same must
be done for clouds, but being mindful that its arrival has taken quite a different path.
Contrary to the evolution of grid, cloud computing has seen its growth through

26915  Cloud Computing – Data Confidentiality and Interoperability Challenges

business interest as the practical Infrastructure as a Service (IaaS) model. The
challenge now is to see how this can be best adapted toward further strengthening
of e-Infrastructure and its e-Science communities.

One of the Ten Cloud Computing Predictions for 2009, by Michael Sheehan
[15], was the obvious conclusion that Cloud adoption will be significant in 2009.
Moreover, Sheehan also insisted that the government will play a much larger role
too. The French government’s mission is to bring the Cloud to their government
infrastructure. With the 2008 US Election, Barack Obama proved how critical
an online presence was to furthering the concept of change in many EU27
governments. Cloud computing certainly implies risks as discussed in this chapter,
but creates economies of scale that can benefit large as well as small government
organizations.

One of the major concerns in today’s society is still data security. Cloud providers
will give you a list of legal terminology about what will happen to the data in the
cloud and who it is invisible to, and the customer may request to lock down sets
of machines by building a firewall. Moreover, if the customer requires tighter
controls beyond the service offered by default due to regulatory issues, then this
becomes open to further discussion and no doubt ambiguous interpretation. If
the customer has publicly available data, then this is a non-issue, but is still an
area of further analysis. A recent Avanade study found that on a margin of five to
one, consumers placed a higher priority of security of their data in the cloud over
potential economic benefits and efficiencies [16]. These are not new issues; nev-
ertheless, some further challenges for the future in the scope of cloud computing
cover the analysis of internal data protection, communication, foundational secu-
rity between the provider and the customer, and virtualization security.

At a Cloudscape event organized in Brussels in January 2009 to explore the
cloud computing landscape and its impact on enterprise Information Technology in
collaboration with an EC-funded project OGF-Europe [17], some thought-provoking
conclusions were drawn to the extent that a follow-up was organized in February
2010 to address the points further. A clear need for grid/cloud standardized opera-
tion guidelines emerged from interactive discussions exploring enterprise feedback
on standards requirements.

Areas of further efforts among the e-Science and industry communities lie in
pursuing the clarification of grid/cloud taxation aspects while operating grids/
clouds, introducing guidelines for handling/guaranteeing privacy in clouds and
grids (liability issues), and in general providing guidelines for work across
legislative domains.

Finally, while Enterprise and Government are pioneering fields, it is expected
that industrial adoption will proceed apace as organizations seeking to gain
energy efficiency and offload expensive data center infrastructure to be replaced
by on-demand access to cloud resources. We anticipate that this field will be
cost-sensitive, and in spite of much fear about security, 80% or more of the
organizations’ IT implementation could be via cloud computing resources in
the future.

270 F. Gagliardi and S. Muscella

References

	 1.	 Section 1 How secure is your cloud? A close look at cloud computing security issues. This is
the first document in the “Secure Cloud Computing” series by Chenxi Wang, Ph.D. with
Jonathan Penn, Allison Herald

	 2.	 Privacy in the clouds: risks to privacy and confidentiality from cloud computing. Prepared by
Robert Gellman for the World Privacy Forum, Date February 23, 2009 World Privacy forum.
http://www.worldprivacyforum.org/cloudprivacy.html

	 3.	 Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the
protection of individuals with regard to the processing of personal data and on the free
movement of such data. http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/dir1995-
46_part1_en.pdf and http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/dir1995-
46_part2_en.pdf

	 4.	 Adoption of Council Conclusions of the future of ICT research, innovation and infrastructures
– 16128/09 of the 25th November 2009, Brussels, BE

	 5.	 http://www.w3.org/DesignIssues/GovData.html Putting Government Data Online by Tim-
Berners Lee

	 6.	 http://www.cloudsecurityalliance.org/
	 7.	 Privacy, Security and Identity in the Cloud Giles Hogben European Network & Information

Security Agency ENISA. http://www.enisa.europa.eu/
	 8.	 Cloud Computing Report Benefits, risks and recommendations for information security http://

www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/
	 9.	 http://cloud-standards.org. Every SDO has representatives that maintain the wiki updated
	10.	 Dave Bost, Developer Evangelist at Microsoft focusing on the Visual Studio tools and the

.NET application platform
	11.	 ZEND Framework – http://framework.zend.com/about/overview
	12.	 Jean-Christophe Cimetiere – Sr. Technical Evangelist, Microsoft. http://blogs.msdn.com/

interoperability/archive/2009/09/10/viewing-public-government-data-with-windows-azure-
and-php-a-cloud-interoperability-scenario-using-rest.aspx?CommentPosted=true#commentm
essage

	13.	 http://www.microsoft.com/presspass/press/2009/may09/05-07OpenGovDataInitiativePR.
mspx

	14.	 Is Cloud Computing Killing Open Source in Government? Gartner September 2nd, 2009
	15.	 Ten Cloud Computing Predictions for 2009, Written by Michael Sheehan on Dec 2nd, 2008.

Filed under: cloud computing, features, general, GoGrid, Hosting, Industry, Partners,
ServePath. Read more: http://blog.gogrid.com/2008/12/02/ten-cloud-computing-predictions-
for-2009/#ixzz0TOFX54F5

	16.	 http://www.avanade.com/us/_uploaded/pdf/pressrelease/uscloudsurveyreleasefinal053414.
pdf. Avanade is an IT consultancy joint venture between Microsoft and Accenture

	17.	 CLOUDSCAPE – A Workshop to explore the cloud computing landscape and its impact on
enterprise IT, January 2009 Multiple perspectives on cloud & Grid computing learn more at
www.ogfeurope.eu

http://www.worldprivacyforum.org/cloudprivacy.html
http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/dir1995-46_part1_en.pdf
http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/dir1995-46_part1_en.pdf
http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/dir1995-46_part2_en.pdf
http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/dir1995-46_part2_en.pdf
http://www.w3.org/DesignIssues/GovData.html
http://www.cloudsecurityalliance.org/
http://www.enisa.europa.eu/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/
http://cloud-standards.org
http://framework.zend.com/about/overview
http://blogs.msdn.com/interoperability/archive/2009/09/10/viewing-public-government-data-with-windows-azure-and-php-a-cloud-interoperability-scenario-using-rest.aspx?CommentPosted=true#commentmessage
http://blogs.msdn.com/interoperability/archive/2009/09/10/viewing-public-government-data-with-windows-azure-and-php-a-cloud-interoperability-scenario-using-rest.aspx?CommentPosted=true#commentmessage
http://blogs.msdn.com/interoperability/archive/2009/09/10/viewing-public-government-data-with-windows-azure-and-php-a-cloud-interoperability-scenario-using-rest.aspx?CommentPosted=true#commentmessage
http://blogs.msdn.com/interoperability/archive/2009/09/10/viewing-public-government-data-with-windows-azure-and-php-a-cloud-interoperability-scenario-using-rest.aspx?CommentPosted=true#commentmessage
http://www.microsoft.com/presspass/press/2009/may09/05-07OpenGovDataInitiativePR.mspx
http://www.microsoft.com/presspass/press/2009/may09/05-07OpenGovDataInitiativePR.mspx
http://blog.gogrid.com/2008/12/02/ten-cloud-computing-predictions-for-2009/#ixzz0TOFX54F5
http://blog.gogrid.com/2008/12/02/ten-cloud-computing-predictions-for-2009/#ixzz0TOFX54F5
http://www.avanade.com/us/_uploaded/pdf/pressrelease/uscloudsurveyreleasefinal053414.pdf
http://www.avanade.com/us/_uploaded/pdf/pressrelease/uscloudsurveyreleasefinal053414.pdf
http://www.ogfeurope.eu

271

Abstract  With the growing adoption of cloud computing as a viable business
proposition to reduce both infrastructure and operational costs, an essential require-
ment is to provide guidance on how to manage information security risks in the
cloud. In this chapter, security risks to cloud computing are discussed, including
privacy, trust, control, data ownership, data location, audits and reviews, business
continuity and disaster recovery, legal, regulatory and compliance, security policy
and emerging security threats and attacks. Finally, a cloud computing framework
and information asset classification model are proposed to assist cloud users when
choosing cloud delivery services and deployment models on the basis of cost, secu-
rity and capability requirements.

16.1 � Introduction

As organisations seek new ways of driving businesses forward, increasing demands
are now placed on computer networks to provide competitive edge and create new
opportunities at reduced cost. This has accelerated business and technological ini-
tiatives that promise to provide services at comparably low infrastructure and oper-
ating costs. The rapid growth of cloud computing is a good example.

This new model of service (cloud computing) offers tremendous reduction in
operating cost; unfortunately, it has also introduced a set of new and unfamiliar
risks. Most networks today are borderless, spanning across different network
estates, security domains and enterprise, whose security policies, security protec-
tion mechanisms and business continuity plans are different, varying and diverse.
Consequently, new security requirements are needed, new forms of protection strat-
egies become essential and existing practices may require reviewing.

C. Onwubiko (*)
Security & Information Assurance, Research Series Limited, 1 Meadway,
Woodford Green, IG8 7RF, Essex, UK
e-mail: cyril.onwubiko@research-series.com

Chapter 16
Security Issues to Cloud Computing

Cyril Onwubiko

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_16, © Springer-Verlag London Limited 2010

272 C. Onwubiko

To address the inherent risks in cloud computing, fundamental security issues
that exist in traditional networks must be evaluated in relation to cloud computing.
Risks to cloud computing delivery models, such as software as a service (SaaS),
hardware as a service (HaaS), platform as a service (PaaS) and infrastructure as a
service (IaaS) must be identified and discussed in detail. Interdependent risks and
cumulative risk arising from private, public, virtual private, localised and federated
clouds must be outlined and discussed. Issues of information ownership, trust, con-
fidentiality, integrity, privacy and anonymity must be addressed. It is pertinent to
note that understanding risks that exist in the cloud is fundamental to understanding
how best to treat risks inherent in cloud computing.

16.2 � Cloud Computing (‘The Cloud’)

Cloud computing is an emerging technological development that leverages the
Internet to provide unparalleled distributed computing service based on service-
oriented architecture (SOA) and virtualisation. Cloud computing appears to be
ubiquitous, dynamically scalable and on-demand, which can be purchased on a
‘pay-as-you-go’ basis without under or over provisioning or prior subscription.
According to NIST, ‘cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction [1,2]’. This implies that cloud computing offers on-demand self-ser-
vice, a highly scalable shared pool of network resource that offers broad network
access to users. These services are dynamic and affordable with minimal con-
sumer configurable interfaces.

There are five main attributes of cloud computing:

On-demand self-service•	
Ubiquitous network access•	
Location independence and homogeneity•	
Elastically scalable•	
Measured service•	

First, the cloud offers on-demand self-service; this means that the cloud can be
used as and when required without prior subscription. It does not require pre-
booking or ‘phased-delivery’ for the consumer; hence, there is no need for under
or over subscription in the cloud.

Second, the cloud offers almost infinite network access to vast infrastructure and
computing resources, such as storage facility, memory, processor, hosting and myr-
iad applications. Third, the cloud uses a shared pool of resources, platforms and
infrastructure residing on the Internet, which is located at various parts of the
world, making the cloud location-independent. The services offered in the cloud are
homogenous. The same service is provided exactly in the same way to all users.

27316  Security Issues to Cloud Computing

This is because of its multi-tenancy delivery model. Fourth, cloud computing
capabilities, such as storage, computing power, processing and hosting are elastic;
resources are pooled together to provide vast amount of computing power.
Finally, cloud computing services are measured; each service purchased or utilised
by a consumer is measured and billed accordingly.

With the economic downturn in 2009, cloud computing has become a viable
business and technological proposition, because of the significant reduction in both
infrastructure and operational costs that it offers when compared with the tradi-
tional IT services. The cloud offers huge economies of scale and enhances out-
sourcing and consumerisation. It is understandable that cloud computing is
attractive to users who range from government agencies, financial institutions,
individual and corporate users to cybercriminals. This opportunity to cohabit and
share a pool of resources with all consumers including cybercriminals brings to
bear a significant element of risk. Therefore, a cloud computing environment
requires an implicit level of trust as well as explicit level of vigilance and risk
management to ensure success [3].

Figure 16.1 is a cloud computing deployment and delivery model. It comprises
five cloud delivery models, namely, public or external cloud, community cloud,
agency cloud, private and hybrid clouds. The models consist of three service meth-
ods, namely, cloud software computing (SaaS), cloud platform computing (PaaS)
and cloud infrastructure computing (IaaS).

Fig. 16.1  Cloud computing deployment and delivery model

274 C. Onwubiko

A public or external cloud is a general-purpose cloud computing environment
managed by a cloud provider. The cloud provider could be external provider, such
as Amazon EC2, Google Apps, Salesforce, Rackspace, etc. that leases third-party
cloud resource to the consumer. However, a cloud could be public even when third-
party cloud resources are not used; the most important aspect of a public cloud is
its content. A community cloud is a cloud specifically consumed by a particular set
of community, such as financial institutions cloud, health services cloud, etc. An
agency cloud is a form of community cloud solely for the military, agency, or
defence institutions, such as the Defense Information Systems Agency (DISA)
cloud [4] and the NBC Federal Computing Cloud [5]. Agency clouds are not for
public consumption. They are regulated and operated by the agencies themselves.
A private (localised) cloud is an enterprise-owned cloud exclusively accessed for
its operation or activity. It is not shared or co-owned with another enterprise, such
as the Microsoft Azure on-premise platform cloud [5]. A hybrid cloud comprises
two or more clouds, such as a private cloud joining another vendor’s provisioned
public cloud. For current cloud offerings, see Fig. 16.2 [4].

Fig. 16.2  Current cloud market offering [4]

27516  Security Issues to Cloud Computing

The risks inherent in cloud computing are similar irrespective of the cloud model
in use; however, there are unique security and information assurance requirements for
each cloud deployment model. For example, security requirements for private clouds
are different from that of a public cloud. Private clouds are perceived to be more secure
than public clouds. Similarly, privacy concerns vary from private to public clouds.

To provide a realistic risk management to cloud computing, each cloud deployment
model must be evaluated in its own right. In this respect, a cloud security relationship
framework is proposed to provide this assessment (see Fig. 16.3). A cloud security
relationship model is a theoretical framework to evaluate cloud deployment and
delivery models based on security, cost and capability requirements.

16.3 � Understanding Risks to Cloud Computing

A major concern with cloud computing is that the cloud provider offers the
resources in the cloud, that is, the software, platform and infrastructure to the user
(cloud consumer). In addition, user data/information also reside with the cloud

Fig. 16.3  Cloud security relationship framework

276 C. Onwubiko

provider. The risk with this type of service is that user information could be abused,
stolen, unlawfully distributed, compromised or harmed. There is no guarantee that
user’s information/data could not be sold to its competitor. Unfortunately, this par-
ticular risk applies to all the three types of cloud delivery models, namely, SaaS,
PaaS and IaaS.

Other risks to cloud computing also exist, and range from privacy, data protection,
ownership, location and lack of reliable audit standard to data security procedure of
most pioneer cloud providers, such as Google, Amazon, etc. According to Rick
Gordon of Civitas Group, a concern with regard to cloud providers, especially
Google Apps includes the lack of reliable security audit standard, data lock-in and
Google’s opacity regarding its internal data security procedures [7].

In this section, risks to cloud computing are discussed with the view to outlining
technical, administrative and ethical controls to provide guidance to cloud users.

16.3.1 � Privacy Issues

Privacy even with traditional information security systems and networks is difficult
to satisfy, and is a challenging issue to cloud computing. Cloud computing has
significant implications for the privacy of personal information as well as maintain-
ing the confidentiality of business and government information [6]. Concerns over
privacy with current cloud computing offerings are apparent and real. For example,
in a letter from Pam Dixon, executive director of the World Privacy Forum to the
Los Angeles Mayor, Antonio Villaragosa, it was stated that, ‘our concern is that the
transfer of so many City records to a cloud computing provider may threaten the
privacy rights of City residents, undermine the security of other sensitive informa-
tion, violate both state and federal laws, and potentially damage vital City legal and
other interests [7]’. This concern is valid and true, especially with public clouds
where sensitive individual and corporate information is put in the hands of third-
party cloud providers, whose cloud infrastructure may not be regulated, and could
traverse through geographical borders that impact both legal and regulatory require-
ments of the information being transported or stored.

Further, information in the cloud is perceived to have weaker privacy gover-
nance over that held in a personal physical computer system [6]. Hence, cloud users
must be aware of the terms of contract they sign with a provider, and should be
informed of the provider’s privacy and security guidelines and practices.

We recommend that privacy and security requirements of the different forms of
cloud models are investigated and assessed, because not all cloud models raise the
same privacy and confidentiality issues. As shown in Fig. 16.3, each cloud model
offers unique security requirements, privacy capabilities and varying cost implica-
tions. For example, private or agency clouds are most suitable for protectively
marked materials or classified information, but are more expensive to operate,
while public clouds are suitable for personal non-confidential information such as
sharing photos or pictures with friends.

27716  Security Issues to Cloud Computing

Again, it is important that cloud consumers (individual or corporate) assess the
information requirements and understand the underlying regulatory and compli-
ance requirements of their assets before migrating such assets to the cloud.
Otherwise, they risk violating or undermining privacy, regulatory and compliance
requirements of such assets.

Finally, users must apply due diligence on each cloud provider they intend to
use, and must ensure that the necessary privacy laws are included in the service
contract issued by the cloud provider.

16.3.2 � Data Ownership and Content Disclosure Issues

Another issue to consider before migrating to the cloud includes ownership of
information or data residing on the provider’s cloud. The moment a user puts data
to the cloud, not only could the privacy of the data be lost, but also the ownership
‘authority’ over the data and right of disclosure could well be lost (by alienating
ownership to the cloud provider). Although the lawful ownership and right of dis-
closure remains with the originating data owner, this could change quite quickly.
Some providers retain the right of disclosure as data custodians, while others do
not. This practice is gradually changing depending on the terms of the contract,
which the provider issues to its customers.

There is a concern when the cloud provider becomes both the data owner
and the data custodian. Even with traditional IT services, it is best practice to have
separation of duties, where a different individual is the data owner, while another
individual or group is the data custodian. This shifting paradigm with the cloud
means that the cloud provider is both the data owner and data custodian for all data
stored or transmitted from their cloud, including data from ‘delinquent organisa-
tions’, such as cybercriminals and organised crime groups. This practice violates
the principle of separation of duties and job rotation; a fundamental principle of
information security best practices.

We recommend that cloud users protectively mark their information and explic-
itly specify the ownership of information in the service contract. The service con-
tract must be signed and indorsed by the cloud provider in form of a declaration.
Protective marking is an administrative control used to classify information assets
based on the degree of sensitivity afforded to that asset. For example, information
can be protectively marked as ‘TOP SECRET’, ‘SECRET’, CONFIDENTIAL, etc.

16.3.3 � Data Confidentiality

When a user puts information to a public cloud, what control does that user have
over the data, its confidentiality, integrity or availability? When we consider small
to medium-sized organisations or individual users, one could easily discuss the

278 C. Onwubiko

risks associated with cloud computing services. What happens to the government, the
enterprise in relation to the cloud? Can the cloud be used for government-protected
marked information? For example, ‘SECRET’ document for defence agencies, such
as for the CIA, MI5 or the MOD. I certainly do not think so, especially at this
current stage of the cloud. These agencies have their own clouds, such as the MOD
cloud, the DISA cloud, etc.; however, what is put in these clouds are still of great
concern. It is pertinent to note that cloud computing is not ideal for all use cases.
For example, protectively marked information asset up to the level of ‘SECRET’ or
‘TOP SECRET’ is not suitable for cloud computing (see Fig. 16.4). Similarly,
‘STRICTEST IN CONFIDENCE’ and ‘IN CONFIDENCE’ data may not be suitable
for the cloud.

Fig. 16.4  Information classification to cloud mapping

27916  Security Issues to Cloud Computing

We recommend a risk-management approach when evaluating information
assets to be migrated to the cloud, giving conscious attention to the security and
information assurance requirements of those assets.

16.3.4 � Data Location

Where does the data that an end-user has created on an MCSP’s system reside?
Location of end-user data is of great importance. For example, the EU Directive on
Data Protection (Safe Harbour [8,9]) stipulates countries where EU private and
personal data can and cannot reside or traverse.

The EU Directive on Data Protection of 1998 [9] is a comprehensive data
protection legislation that orders its member states to establish a legal framework
to protect the fundamental rights to privacy with respect to processing personal
data that has extraterritorial effect. It prohibits the transfer of personal data or
health records data to non-EU nations that do not meet the European ‘adequacy’
standard for privacy protection. The US and the EU share the goal of enhancing
privacy protection for their citizens [9]. Clearly, achieving regulatory and legisla-
tive compliance in the cloud requires concerted effort from both the user and the
provider, where the user knows the information requirements and is able to com-
municate that clearly to the provider, and in return, the provider is transparent and
thus willing to address the regulatory and legislative mandates required with
regard to the assets.

With the infrastructure as a service, the cloud provider can dynamically use loca-
lised infrastructures that exist outside the EU or US territories. This may contravene
or abuse fundamental privacy and legislative mandates, especially if the end-user is
not aware of where the information is held or transported to/from. This applies
specifically to EU and US cloud consumers, SMEs, government and enterprise who
may wish to use the cloud for delivering service. Other countries have other legisla-
tions that should be considered when using the cloud. Certain types of assets may
easily be abused with cloud computing, for instance, personal medical data (health
record data) are subjected to strict compliance act, such as the health information
privacy and portability act (HIPPA). A significant concern is that personal medical
data can be easily circumvented with the SaaS or IaaS models of the cloud. This
highlights some of the inherent risks that exist with cloud computing [10].

That being said, there are cloud providers that operate territorial cloud service.
For example, there are UK cloud providers that lease zoned UK only localised
resources. In addition, there are US and Canadian cloud providers that offer loca-
lised provincial cloud services.

Cloud users whose information assets require location-specific data storage or
transit requirements must confirm these with cloud providers that offer location-
based cloud service, and must ensure that they are included in the service contract
offered by the cloud provider.

280 C. Onwubiko

16.3.5 � Control Issues

It is not until recently that many cloud security interest groups, such as the Cloud
Security Alliance [11], the Cloud Computing Interoperability Group [12] and the
Multi-Agency Cloud Computing Forum [4] began to seek ways of delivering effi-
cient and effective controls in the cloud to ensure that information in the cloud are
secure and protected.

Currently, clouds are hugely uncontrolled, especially the public ones.
Recommendations like the use of legal, regulatory, compliance and certification
practices have been suggested in order to adequately control cloud services and
practices [3,11,12]. Unfortunately, maintaining compliance with regulatory and
legislative requirements in the cloud can be much more difficult to demonstrate. The
attributes of cloud computing as being location-independent, with unclear borders
and boundaries, providing shared pool of resources on a multi-tenancy architecture
further make achieving demonstrable regulatory security compliance untenable.

The legal landscape, regulatory compliance and certification are constantly
changing, and organisation must understand and evaluate current legal, regulatory
compliance needs of their information before moving them to the cloud.

16.3.6 � Regulatory and Legislative Compliance

Regulatory compliance and certification are security initiatives with significant
impact on information security practices [8]. Standards regulate how information
security management is being implemented, managed and conducted. For example,
ISO 27001–2005 is a security standard that recommends best practices for informa-
tion security management. Organisations seeking accreditation go through a regula-
tory compliance process. Compliant organisations are perceived to possess essential
drivers to earn trust, and hence, attract business relations with other organisations.
This proposition applies to cloud computing. In fact, obtaining certification to a
particular standard is not going to be the only driver, and the coverage of each
security accreditation or certification is anticipated to contribute towards establish-
ing trust. Furthermore, compliance to regulatory authorities will certainly earn
some ‘Brownie points’ for corporate organisations. For example, corporate organi-
sations that are regulated by the financial services authority (FSA) must seek advice
before using public clouds for their operations or risk of facing huge fines, and
could possibly lose their practicing license. There should be guidance on what
corporate financial institutions can put out in the cloud and what may not be per-
missible. As the cloud phenomenon unfolds and inherent risks understood, adequate
guidelines must follow.

The legal landscape of traditional IT is continuously changing. A significant
concern is that some of these legislations are territorial, even within a country, with
separate pieces of jurisdiction. For example, the California Security Breach
Information Act (SB-1386) legislation mandates Californian organisations that
maintain personal information about individuals to inform those individuals if the

28116  Security Issues to Cloud Computing

security of their information is compromised [13]. This piece of legislation stipu-
lates the disclosure of security breaches only in California. The application of
SB-1386 and other legislations in the cloud are unclear.

16.3.7 � Forensic Evidence Issues

Information security forensic evidence and e-discovery possess a challenge too.
In the cloud, what information constitutes legally acceptable forensic evidence?
How is such information received in relation to the different cloud deployment
models? If evidence is gathered from a public cloud, how authentic is that
information perceived to be compared with when similar information is obtained
from a private cloud? Similarly, with pre-trial discovery and e-discovery, as the
cloud provider is the data custodian, while the user is the lawful owner of the data,
who should provide pre-trial evidence in a court of law, and who is responsible with
respect to discovery and other litigation subjects? With copies of most information
at different clouds, which information/data constitutes an authentic copy of the
information that is admissible in a court of law?

It is pertinent to note that the different cloud deployment models offer varying
levels of security, privacy and acceptability; therefore, it is imperative that cloud
users must evaluate the security, legal, regulatory and legislative requirements of
their valued assets before choosing a particular cloud model, and a cloud vendor
or provider.

16.3.8 � Auditing Issues

Auditing for security management aims to evaluate policies, practices, operations
and technical controls of an organisation in order to assess compliance, detection,
protection and security forensics [14]. The need for regular security audits is essen-
tial, and should not focus only on the reactive audits done when an incident has
occurred, but also on proactive security audits done in order to assess whether
security controls, security processes, procedures and operations are adequate and
practical in protecting critical assets of the organisation. Two factors make demon-
strating security audit in the cloud a critical issue:

First, cloud providers must demonstrate their security audit procedure to their
customers. Second, the level of audit coverage being conducted must be acceptable,
bearing in mind the myriad of diverse and varied information assets that the cloud
providers are data custodians for.

Auditing security requirements in a cloud environment can be difficult and sig-
nificantly challenging [15]. One approach to addressing auditing issues in the cloud
is transparency from the cloud provider in managing information security. That is,
the cloud provider must make its customers aware of its audit processes and the dif-
ferent levels of audit coverage. In this way trust and good relationship between the
provider and its customers can be achieved.

282 C. Onwubiko

16.3.9 � Business Continuity and Disaster Recovery Issues

Cloud computing is dynamic and offers ubiquitous network access to vast amount
of significant resources, and these resources are meant to be available swiftly and
on-demand to legitimate users. Unfortunately, there have been cases when the
availability of data in the cloud has become a major concern. For example,
Amazon’s Elastic Compute Cloud (EC2) service in North America was temporarily
unavailable at significant times due to ‘lightning storm that caused damage to a
single power distribution unit (PDU) in a single availability zone [16]’. This
highlights the importance of disaster recovery and business continuity plans in
the cloud. The availability of resources in the cloud is of least importance to users
according to most surveys. This is because the cloud offers ubiquitous and
on-demand network access. Unfortunately, information in the cloud could still
be unavailable when needed due to natural disasters, vulnerability exploits and
deliberate attacks.

There are three reasons why cloud users must be concerned with the availability
of their valued assets in the cloud. First, most cloud providers rent computing and
data-centre infrastructures from other cloud providers. This means that when one
cloud infrastructure is affected (unavailable), most probably, other providers will
suffer similar losses, hindering the availability of resources to a wilder audience
much more possible than with the traditional IT networks.

Second, the possibility that a cloud provider can file for bankruptcy, where
the provider goes out of business with consequential financial liability to
offset makes the availability of cloud resources a serious issue to consider. Finally,
cross-vulnerability in the cloud due to the multi-tenancy implementation of cloud
infrastructures and services makes the availability of resources in the cloud an
important issue to consider.

In these respects, we recommend that users engage with their cloud providers to
understand their disaster recovery processes and procedures, and where possible,
make inputs as to how best this can be achieved. For instance, users may be pro-
vided backup copies of data on a monthly basis as part of the agreement. This
practice can be extremely helpful, for example, in the case of bankruptcy of a cloud
provider, or when natural disaster threatens the existence of a data centre. Further,
users must be aware of their provider’s business continuity plans, for instance,
whether the provider has hot-standby sites and whether resilience is built as an
abstraction to all layers of its services.

16.3.10 � Trust Issues

Trust in both the traditional IT services and cloud computing must be earned. Trust
is a major issue with cloud computing irrespective of the cloud model being
deployed. Nevertheless, the cloud like traditional IT services can be secured,
protected and dependable. It is believed that the cloud offers security advantages.

28316  Security Issues to Cloud Computing

For example, intruders do not have access to the source code and providers often
work hard to provide clean, unbreakable barriers between the customers [17].
However, this requires conscientious effort from both cloud providers and users; in
addition, cloud providers must be transparent about their security policies, audit
practices, data backup procedures and certification/accreditation. Once users are
comfortable with a particular provider’s practices, together with the service level
agreement (SLA) agreed upon, they are more willing to do business.

Nevertheless, cloud users must be open-minded and must not whole-heartedly
trust a provider just because of the written-down service offerings, without carrying
out appropriate due diligence on the provider and where certain policies are not
explicit, they should ensure that missing policies are included in the service con-
tract. By understanding the different trust boundaries, each cloud computing model
assists users when making decision as to which cloud model they can adopt or
deploy. For example, with infrastructure cloud computing, a great trust relationship
is created because user data backup is possible and applicable, where copies of a
user’s data are backed up. Similarly, there is a possibility for the user to create and
configure additional and customised access controls to protect its data. This level
of trust is not possible with software cloud computing, for instance.

16.3.11 � Security Policy Issues

Whose security policy governs the cloud, the user or the MCSP? Obviously, the
cloud provider’s security policy is what stipulates acceptance uses, specifies service
level agreements and governs the cloud environment. What if the security policy of
the MCSP is not acceptable to a cloud user, because the policy may be missing some
policies that the users consider essential towards achieving the security and informa-
tion assurance requirements for their assets? To ensure that information assets in the
cloud are adequately maintained, we recommend that cloud users must:

Carry out due diligence on the provider•	
Appropriately classify the information assets to determine their security, regula-•	
tory and compliance requirements
Consider the viability of each cloud model in relation to their information assets •	
requirements
Consider return on investment (RoI) of the cloud in relation to the security of the •	
asset

16.3.12 � Emerging Threats to Cloud Computing

New and unfamiliar threats to cloud computing are emerging. Examples include
cross-virtual machine (VM) exploits, inter-processor exploits and cross-application
vulnerability exploits. Although most of these widely publicised attacks to cloud

284 C. Onwubiko

computing are theoretical [18], it is possible that within the next couple of years,
these attacks may be realised. Therefore, precautionary measures must be put in
place; mitigation plans and risk treatment plans must exist to address emerging
vulnerability exploits and current attacks to cloud computing.

Above all, to appropriately profile cloud computing risks, each cloud service
and deployment model must be evaluated against its security requirements (see
Fig. 16.4).

16.4 � Cloud Security Relationship Framework

Managing security in the cloud is different from managing security in traditional IT
systems or networks. The difference is significant from the level of trust of machine
data to management of information in the cloud. Cloud computing is a new and
emerging technology, and hence, inherent and cumulative risks to cloud computing
are new, evolving and unfamiliar. Like any new technology, new and unfamiliar risks
exist. Therefore, conscientious effort must be dedicated towards understanding risks
that exist, in addition to finding appropriate ways of addressing such risks.

The current stage of the cloud is very immature. A lot of the offerings are geared
towards adopters with little to no risk and a lot to gain from low-cost, pay-as-you-go
resources [19]. Thus, current cloud computing deployments are not suitable for all
use cases. However, like other utility services, such as electricity, cloud computing
can be secured. To make the cloud secure, security must be built into every aspect
of the cloud starting from its foundation stage.

To understand risks associated with cloud computing, risks that exist with tradi-
tional IT must be properly evaluated (as discussed in Section 3), while new and
emerging risks to the cloud are investigated on a per cloud service and deployment
model basis. To assist with this assessment, a framework is proposed (see Fig. 16.3).
A cloud security relationship framework is a framework for assessing cloud com-
puting offerings (cloud service model, cloud deployment model and use cases) on
the basis of cost, security and capability. The cloud computing framework com-
prises three components, deployment, delivery and user. These components are
evaluated against three metrics, cost, security and capability.

Cost relates to the amount that users pay to use a particular cloud computing
service operating on a specific delivery model in a given deployment. A cloud
delivery model is a cloud computing service, for instance, SaaS, PaaS and IaaS,
where each delivery model provides a set of specific functionalities. A cloud
deployment model is a cloud computing type that offers a set of unique attributes
and coverage, such as private, public, hybrid, community, localised, virtual private
and external clouds. There is a considerable number of cloud computing models
currently being used and developed. These terminologies are used loosely in many
publications today; however, early taxonomies are provided in [20,21].

Security relates to the protection afforded to cloud computing services, such as
confidentiality, integrity and availability. It is difficult to quantify security offerings

28516  Security Issues to Cloud Computing

in the cloud. Thus, instead of using formal (mathematical) metrics as those discussed
by Pfleeger [22], we have used metrics (low, medium and high) that are in current
use and applicable to many use cases. In this study, low security is when one security
requirement (confidentiality, integrity and availability) can be achieved; medium
security is when two of the requirements are achievable, while high is when all the
three requirements can be achieved.

Capability relates to the variety of offerings available with each cloud computing
deployment. There is a direct relationship between cost and security of the cloud
deployment models, such as public, community, agency, hybrid and private. This
implies that private clouds provide ‘pre-requisite’ security requirements when com-
pared with hybrid or public clouds. Similarly, the cost implication for the same type
of service grows from public to private clouds, while the capability (service-offering
capabilities) is directly related to the cloud service type deployed. For example,
infrastructure cloud computing (IaaS) offers more capabilities than PaaS or SaaS.

It is pertinent to note that not all cloud computing deployment models (public,
private, agency, community and hybrid) raise the same security concerns, or offer
the same confidentiality, integrity, availability or privacy of data or information.
Certain cloud deployments are most appropriate to certain organisations. For exam-
ple, government, financial or health institutions are more inclined to hybrid or pri-
vate clouds than public clouds. Similarly, users transmitting or storing classified
information, such as confidential information, should use hybrid or private clouds
(see Fig. 16.4), while agencies, such as MOD, CIA or DISA, must use agency or
privately operated clouds.

The cloud security framework (see Fig. 16.3) must be used in conjunction with
the information assets classification model (see Fig. 16.4) when deciding which
information assets need to be mitigated to the cloud.

We have shown that based on security and privacy requirements of information
assets (confidentiality, integrity, privacy and impact), some assets are not suitable
for the cloud. For example, ‘SECRET’ and ‘TOP SECRET’ information assets
(information assets #14 and #15) are not suitable for the cloud (see Fig. 16.4).

Similarly, information assets #12 and #13 require minimum agency cloud, but
can also use private clouds. Information asset #13, for instance, is classified as
‘confidential’ and needs high confidentiality, high integrity, high availability and
privacy requirements. However, if this asset is to be compromised, then the impact
to the organisation will be critical. Therefore, based on the information require-
ments and impact level of this information asset, agency cloud, at the minimum, is
required to host, store and transport this asset.

Information assets #1–#6 can be hosted in a public cloud, and information assets
#6–#10 require a community cloud of some sort. For example, a financial commu-
nity cloud, if the information assets are owned by a financial institution, or a health
community cloud, if owned by a medical or health institution.

Note that while information asset #5, for example, may require at the minimum
a public cloud, this information asset may well be hosted in a private cloud too. The
zoning of information assets to clouds is done based on the minimum security and
privacy requirements of that information asset (see Fig. 16.4).

286 C. Onwubiko

16.4.1 � Security Requirements in the Clouds

A private (localised) cloud is a solely owned cloud, operated and used by an enterprise.
It may be regulated and governed like other clouds, and most importantly, it is for
‘restricted’ users only. Private clouds are more secure than public clouds, and there-
fore, private clouds are most suitable for transmitting classified information, such
as confidential and/or proprietary information. Information assets with lesser secu-
rity requirements, such as personal information may still use a private cloud (see
Fig. 16.4). It is pertinent to note that the use of a private cloud offers no guarantee
as to the security or privacy of the information assets that it stores or transports. For
example, the use of Microsoft Azure on-premise cloud platform does not provide
any guarantee to the security and compliance of information that is stored or trans-
ported using this cloud. We recommend that organisations seeking to use the cloud
for classified information or regulated transactions should use a private cloud, but
must do so bearing in mind that the necessary security requirements of that infor-
mation asset are constantly assessed and reviewed. Furthermore, private clouds
come with a prize; for instance, the cost to rent, deploy or operate a private cloud
is comparably and considerably higher than a public cloud.

A public cloud is an open cloud maintained by a cloud vendor for the general
use of everyone including cybercriminals. A public cloud is most probably the most
currently used cloud, such as Salesforce, Amazon EC2 and Amazon web services
(see Fig. 16.2, [4]). A public cloud is relatively safe and offers a wide range of
capability at reduced cost.

Agency clouds, like private clouds, are perceived to be secure and reliable
because they are privately owned by the military or defence agencies. Hence, rigor-
ous and complex security requirements are thought to be applied. Defence agency
cloud may require separate legal, regulatory and security compliance measures
different from those of public clouds. For example, the DISA cloud is subject to
government legislation, while UK government clouds would be subject to CESG
information assurance compliance and protective handling.

A community cloud is governed by the regulatory controls of that community,for
example, health and financial institutions clouds. Integrated (hybrid) clouds combine a
set of requirements from two or more co-joining clouds. These requirements are bound
to vary depending on the specific requirements of the co-joining clouds. It is an illusion
to think that hybrid clouds provide ‘high’ security. Each cloud must be assessed in its
own right to determine its privacy, security and regulatory policies and practices.

16.5 � Conclusion

Cloud computing is an emerging technology that offers unparalleled distributed com-
puting resources at affordable infrastructure and operating costs. The cloud requires
conscientious and diligent attention from both users and providers due to the inherent
risks associated with its operating paradigm, such as ubiquitous network access,
multi-tenancy service delivery, location independence, homogeneity and openness.

28716  Security Issues to Cloud Computing

In this chapter, cloud computing has been explained. Three of the widely used
cloud services, namely, software computing, platform computing and infrastructure
computing, and five of the deployment models, namely, private (localised), public,
community, agency and hybrid clouds have been discussed.

Cloud computing, like existing utility services such as electricity, water and
telephone, can be secure, safe and reliable; however, this can be achieved when
security issues that exist with traditional IT services are evaluated in relation to
cloud computing. Unfortunately, cloud computing offers varying levels of security
and privacy based on the cloud model being deployed.

The proposed cloud security framework to assess cloud offerings provides a
systematic assessment of cloud computing services based on cost, capability and
security. It has been shown that the three cloud service models offered unique secu-
rity requirements. Similarly, the capability of the deployment models (public, com-
munity, agency, private and hybrid) has been found to be unique and varied.

As organisations use the framework and information classification model pro-
posed in this chapter to evaluate cloud services and information requirement
respectively, we recommend that they do so by knowing that not all information
assets should be migrated to the cloud.

About the Author

Dr. Cyril Onwubiko is a CLAS Consultant at Cable and Wireless, where he is
responsible for providing information assurance to information assets of varying
business impact levels (ILs) in accordance with the HMG security policy frame-
work. Cyril is also currently the chair of the Security and Information Assurance
Committee, E-Security Group at Research Series.

Prior to C&W, Cyril was an Information Security Consultant at British Telecom
(BT), providing strategic information security undertakings. Earlier, Cyril worked
at COLT Telecommunications Group for 8 years, participating in several projects,
while helping COLT develop their IP VPN service – IP Corporate, a Pan-European
IP VPN service for managed customers. Cyril also assisted COLT to roll out their
enterprise-MPLS VPN core and was a focal engineer supporting SWIFT. He is
experienced in VPN Security, Security Information and Event Management
(SIEM), Data Fusion, IDS and Computer Network Security, and knowledgeable in
Information Assurance, HMG Security Policy Framework (SPF) and Risk
Assessment and Management.

Cyril holds a Ph.D. in Computer Network Security from Kingston University,
London, UK, a Masters of Science degree (M.Sc.) in Internet Engineering from the
University of East London, London, UK and a Bachelors of Science and Technology
degree (B.Sc.), first class honours, in Computer Science and Mathematics from
Federal University of Technology, Owerri. He is the author of two books, ‘Security
Framework for Attack Detection in Computer Networks’ and ‘Concepts in
Numerical Methods’.

288 C. Onwubiko

References

	 1.	 Mell P, Grance T (2009) Draft NIST working definition of cloud computing. http://csrc.nist.
gov/groups/SNS/cloud-computing/index.html. Accessed 16 Sept 2009

	 2.	 Mell P, Grance T (2009, August 12) Effectively and securely using the cloud computing para-
digm, NIST

	 3.	 Kaufman LM (2009 July/August) Data security in the world of cloud computing. IEEE Sec
Priv 7(4):61–64

	 4.	 Greenfield T (2009) Cloud computing in a military context – Beyond the Hype, Defense
Information Systems Agency (DISA), DISA Office of the CTO. http://www.govinfosecurity.
com/regulations.php?reg_id = 1432. Accessed 20 Sept 2009

	 5.	 NBC Federal Cloud Playbook (2009) National business center, Department of the Interior,
Washington DC. http://cloud.nbc.gov/PDF/NBC%20Cloud%20White%20Paper%20
Final%20(Web%20Res).pdf. Accessed 23 Sept 2009

	 6.	 Microsoft Azure Services, http://www.microsoft.com/azure/services.mspx. Accessed 23 Sept
2009

	 7.	 Gellman R (2009) Privacy in the clouds: risks to privacy and confidentiality from cloud com-
puting. http://www.worldprivacyforum.org/pdf/WPF_Cloud_Privacy_Report.pdf. Accessed
17 Sept 2009

	 8.	 Claburn T (2009) Google Apps contract in LA hits security Headwind, http://www.informa-
tionweek.com/news/showArticle.jhtml?articleID=218501443. InformationWeek. Accessed
20 July 2009

	 9.	 Onwubiko C, Lenaghan A (2009, March) Challenges and complexities of managing informa-
tion security. Int J Elect Sec Digit Forensic IJESDF 3(2). ISSN (Online): 1751-9128 – ISSN
(Print): 1751-911X

	10.	 Safe Harbour (1998) European commission’s directive on data privacy and protection legisla-
tion, http://www.export.gov/safeharbor/SafeHarborInfo.htm. Accessed 17 Sept 2009

	11.	 Onwubiko C (2008) Security framework for attack detection in computer networks. VDM
Verlag, Germany

	12.	 Cloud Security Alliance (2009), http://www.cloudsecurityalliance.org/. Accessed 19 Sept 2009
	13.	 Cloud Computing Interoperability Forum (2009), http://www.cloudforum.org/. Accessed 17

Sept 2009
	14.	 SB-1386, The California Security Breach Information Act (2002) SB1386 amending civil

codes 1798.29, 1798.82 and 1798.84. http://en.wikipedia.org/wiki/SB_1386. Accessed 20
Sept 2009

	15.	 Onwubiko C (2009), A security audit framework for security management in the enterprise.
Commun Inform Sci 45:9–17, Springer. ISSN 1865-0929 (Print) 1865-0937 (Online)

	16.	 Chaput SR (2009) Compliance and audit, security guidance for critical areas of focus in cloud
computing, Cloud Security Alliance

	17.	 Cohen R (2009) Lightning knocks out amazon’s compute cloud. Cloud Comput J. http://
cloudcomputing.sys-con.com/node/998582. Accessed 11 June 2009

	18.	 Viega J (August 2009) Cloud computing and the common man. IEEE Comput
42(8):106–108

	19.	 Ristenpart T, Tromer E, Shacham H, Savage S (2009) Hay, you, get off of my cloud: exploring
information leakage in third-party compute clouds. ACM Computer Communications
Security Conference CCS’09, November 2009

	20.	 Cheesbrough P (2008, Dec) Into the cloud, lessons from the early adopters of cloud comput-
ing. Information Age

	21.	 Youseff L et al. (2009) Toward a unified ontology of cloud computing. http://www.cs.ucsb.
edu/~lyouseff/CCOntology/CloudOntology.pdf Accessed 15 Sept 2009

	22.	 OpenCrowd (2009) The OpenCrowd cloud taxonomy. http://www.opencrowd.com/views/
cloud.php. Accessed 26 Sept 2009

	23.	 Pfleeger SL (May/June 2009) Useful cybersecurity metrics. IEE IT Pro J 11(3):38–45

289

Abstract  Despite the excitement surrounding the cloud, a relatively small percentage
of organizations have actually begun incorporating cloud computing into their
technology portfolios. Of the many obstacles to adopting the cloud model of deliv-
ery and consumption of computing resources, the number one concern, from users
to CIOs/CTOs, is security. The lack of strong security controls can resonate through
the cloud, opening all of the applications and services that are running across the
cloud to exploitation. In this chapter, we examine cloud security, focusing our dis-
cussion on gaps within the existing ISO 27002 security controls when applied to
cloud computing. These gaps are used to build a list of potential security concerns
that may not be addressed by traditional (non-cloud) data center policy and proce-
dures. Using the results of this gap analysis, a set of recommendations on how to
incorporate security into the cloud is provided. Additionally, case studies of both
public- and private-cloud provider security mechanisms are presented.

Abbreviations

AWS	 Amazon Web Services
CIO	 Chief Information Officer
CTO	 Chief Technical Officer
EC2	 Elastic Compute Cloud (Amazon EC2)
FIMSA	 Federal Information Security Management Act
GLBA	 Gramm–Leach–Bliley Act
HIPAA	 Health Information Portability and Accountability Act
ISO	 International Organization for Standardization
IT	 Information Technology
NIST	 National Institute of Standards and Technology
RAM	 Random Access Memory

J.P. Durbano (*)
Northrop Grumman 1840 Century Park East Los Angeles, CA 90067-2199, USA
e-mail: james.durbano@ngc.com

Chapter 17
Securing the Cloud

James P. Durbano, Derek Rustvold, George Saylor, and John Studarus

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_17, © Springer-Verlag London Limited 2010

290 J.P. Durbano et al.

SLA	 Service Level Agreement
SOX	 Sarbanes–Oxley

17.1 � Introduction

Cloud computing represents an exciting evolution of application and infrastructure
solutions, prompting Information Technology (IT) departments around the world to
investigate what the cloud can do for their organizations. Despite the excitement sur-
rounding the cloud, a relatively small percentage of organizations have actually begun
leveraging cloud computing, citing concerns such as vendor lock-in, lack of acceptable
service-level agreements (SLAs), and limited governance procedures. Of the many
obstacles to adopting the cloud model of delivery and consumption of computing
resources, the number one concern, from commercial users to developers to CIOs/
CTOs, is security [1]. These concerns are motivated by a variety of factors including:

1.	 Handing over control of hardware resources to a third party
2.	 The fact that other companies (including competitors) may also utilize the same

cloud platform
3.	 Meeting the requirements of existing regulations

The lack of strong security controls can resonate throughout the cloud, opening all
of the applications and services to exploitation. Put simply, a single vulnerability
can contaminate the entire cloud. Providing a cloud environment with strong,
demonstrable security controls is desired by all cloud users. In fact, certain user
communities, such as those subject to regulatory compliance, must maintain strong
security controls in order to consider the cloud a viable platform. For example,
government customers must satisfy FISMA [2], healthcare providers are bound by
HIPAA [3], publicly traded companies follow SOX [4], and financial institutions
are subject to GLBA [5].

To secure the cloud, we begin by applying traditional data center security tech-
niques. However, the very nature of cloud computing (i.e., multitenant, geographi-
cally distributed, virtualized, etc.) introduces new security challenges. A structured
approach to identifying these security issues includes an analysis of the new tech-
nologies introduced by cloud computing and a gap analysis against current stan-
dards, such as the ISO 27002 security controls.

In this chapter, we examine cloud security. It is impossible to present a complete
overview of cloud security issues and possible resolutions in the context of a single
chapter, and the reader is referred to the excellent work being performed by orga-
nizations such as the Cloud Security Alliance [6]. For this reason, we focus our
discussion on gaps within the existing ISO 27002 security controls when applied to
cloud computing. These gaps are used to build a list of potential security concerns
that may not be addressed by traditional (noncloud) datacenter policy and proce-
dures. Using the results of this gap analysis, a set of recommendations on how to
incorporate security into the cloud is provided.

29117  Securing the Cloud

17.1.1 � What Is Security?

Before we can discuss how to secure the cloud, we must first define what is meant
by “security.” What does it mean to have a “secure” cloud? What aspects must be
addressed by any cloud security solution?

For the purposes of this chapter, we state that a “secure” cloud is one that
addresses the following information security principles: confidentiality, integrity,
availability, identity, authentication, authorization, and auditing. Representative
questions from potential cloud adopters include:

•	 Confidentiality: Can anyone else see my data when it is in the cloud?
•	 Integrity: Can anyone else modify my data when it is in the cloud?
•	 Availability: Will my data/applications always be up and running? What if the

cloud provider goes out of business?
•	 Authentication: When people access my data and applications, how does the

cloud ensure that they are who they claim to be?
•	 Authorization: How does the cloud ensure that people can only access the data

and applications that they are allowed to access?
•	 Auditing: How can I verify that all of these items are consistently addressed?

Now that we have sufficiently scoped our definition of security, we examine the existing
security controls to identify gaps in coverage associated with cloud computing.

17.2 � ISO 27002 Gap Analyses

ISO 27002 (formerly ISO 17799) “establishes guidelines and general principles for
initiating, implementing, maintaining, and improving information security manage-
ment in an organization” [7]. Although the standard offers a high-level description
for providing information security, it does not include detailed information on how
the security controls should be implemented.

By comparing the ISO 27002 security controls against the technologies and use
cases of cloud computing, a number of security gaps were identified and are dis-
cussed below. Because cloud computing extensively leverages virtualization tech-
nologies, much of the discussion is focused on virtualization gaps.

This information is intended to provide a high-level overview of some of the
challenges associated with securing the cloud. There are additional gaps against the
ISO standard that are not discussed and many other issues to consider. The inter-
ested reader is referred to [6] for more details.

Because ISO 27002 is organized around “families” of related controls, our dis-
cussion follows this organization. In this section, we address the following ISO
27002 families:

Asset Management•	
Communications and Operations Management•	

292 J.P. Durbano et al.

Information Systems Acquisition, Development, and Maintenance•	
Information Security Incident Management•	
Compliance•	

17.2.1 � Asset Management

The goal of Asset Management controls is to protect organizational assets. Within
this family, gaps were identified in the following: Asset Tracking.

Traditionally, physical access is required to insert new servers into the network. In
a cloud data center, virtual environments can be provisioned without the need for
physical access to the network. Thus, it may be possible to have rogue virtual servers
on the network. Controls must be introduced to track these new virtual assets across
the network to make sure appropriate security measures are in place.

Also, it is important to develop a consistent naming scheme for servers on the
network in order to maintain accurate logs and to track events. Naming schemes for
data center hosts are typically location- and application-centric. However, these
schemes are not always applicable to virtual servers, which migrate from server to
server and even across physical sites. Similarly, servers may be shared by multiple
applications, making application-based naming ineffective.

Finally, in a virtualized data center, there will be virtual devices that may come
and go as instances are modified. Instances are simply cloud resources, and could
represent virtual machines, software-as-a-service modules, storage units, etc.
Examples of virtual devices include network interfaces, consoles, serial ports, USB
ports, floppy, CD ROMs, and storage systems. These virtual devices could be used
to gain unauthorized access to the system or to copy data on/off the instances.

17.2.2 � Communications and Operations Management

The goal of Communications and Operations Management controls is to maintain the
availability and integrity of information and equipment. Within this family, gaps were
identified in the following controls: Change Management, Capacity Management,
System Utility Access Control, Patch Management, System Audits, Media Destruction
and System Reuse, Data Encryption, Logging and Monitoring, and Backups.

Change Management: Existing data center change control processes are simplified
by the fact that many times individual hosts are assigned exclusively to an applica-
tion. In a cloud environment, one physical server typically runs many virtual
machines and is responsible for a number of business tasks. Thus, a change to a
single host may impact multiple applications within the data center.

Capacity Management: There are three primary issues associated with capacity
management in the cloud. First, the cloud environment must be effectively sized.
One of the benefits of using a cloud environment is the ability to rapidly provision
new instances. As such, there must be mechanisms in place to determine the number

29317  Securing the Cloud

of instances the existing infrastructure can handle without impacting business
tasks.

Second, all applications running within the same physical segment of the cloud
are, in effect, competing with each other for the same CPU, memory, storage, and
networking resources. Because of this, it may be possible for a single application
to cause a denial-of-service attack within the cloud by demanding a large amount
of resources (thereby negatively impacting other applications).

Finally, an application ‘X’ running in a cloud may be able to gather information
about the state of other applications due to the number of resources available to appli-
cation ‘X’. For example, if application ‘X’ notices that available CPU, disk, or network
resources have been reduced, it may be able to deduce that the other applications on
the cloud are running at a higher level than normal. This information might be useful
to a malicious individual trying to gather information about the state of the cloud.

System Utility Access Control: Cloud computing will result in new utilities and
management consoles that must be used in a secure manner. These are unlike tra-
ditional system administration tools, since they effectively provide administrator
capabilities (e.g., create, destroy, and move) to “standard” users. These tools must
support controls to prevent misuse.

Patch Management: There are two primary concerns associated with applying
patches in a cloud environment: patching the underlying “cloud” infrastructure and
patching individual instances. New controls will need to be put into place to patch
the underlying host operating system (hypervisor) without impacting the virtualized
servers running on that host. Instances may need to be migrated to an alternative
host, especially if rebooting is required. Also, individual instances may be offline
when patches are applied and thus will need to be patched immediately when
brought online. Instances will need to be scanned when brought online to make sure
they are not missing any patches.

System Audits: Traditionally, physical systems are audited when first built and put
into production. In a cloud environment, virtual instances of operating systems may
be built and put into production with little or no oversight. Procedures will need to
be modified to include audits at the creation of the system and every time a virtual
system comes back online after having been modified.

Media Destruction and System Reuse: New controls will be needed to guarantee
that, upon destruction, the instance is indeed removed completely from the cloud
environment. This includes all of the file systems, memory paging files, and meta-
data. For the most critical data, such as classified government information, the
persistent storage may need to be physically removed and destroyed.

Data Encryption: A malicious user copying off a dormant image of an instance can
view not only the file system associated with the image but also the volatile mem-
ory image that is stored to disk. Passwords and other confidential data, normally
encrypted on disk but not in memory, may end up stored on disk in an unencrypted
format. New controls are required to encrypt an instance while it is stored on disk
and as it is being migrated between servers.

294 J.P. Durbano et al.

Logging and Monitoring: With the introduction of the cloud, a new operating
system, the hypervisor, must be monitored. Additionally, individual logs from
physical servers and virtualized instances will need to be gathered, processed, and
aggregated into a centralized location. The distributed nature of the data processing
across the cloud will require sophisticated log processing to correlate information
across multiple logs from many sources in different log formats.

Backups: The backup of a single physical resource may contain information
from a number of instances. Policies and procedures must ensure that no data leaks
can occur between instances.

17.2.3 � Information Systems Acquisition, Development,
and Maintenance

The goal of Systems Acquisition, Development, and Maintenance controls is to
prevent information loss and errors, as well as unauthorized modification or access.
Within this family, gaps were identified in the following controls: Message Integrity
and Technical Standards.

Message Integrity: The introduction of new tools, user interfaces, and APIs to sup-
port and interact with the cloud will introduce new control messages across the
network. Such messages will be used to create, launch, and deprovision cloud
resources, as well as to implement and verify various security controls. As such,
these messages are obvious targets for attack and must be protected to ensure that
they cannot be altered, duplicated, or deleted.

Technical Standards: Cloud computing is beginning to leverage new technologies
that require changes in how software is developed, tested, deployed, and managed.
Existing controls, policies, and procedures will need to be modified to handle these
new types of software to prevent poorly written and untested software from being
introduced into production. Additionally, new standards are required for hypervisor
operating systems.

17.2.4 � Information Security Incident Management

The goal of Information Security Incident Management controls is to ensure that,
when security incidents occur, a consistent process is followed to remedy the situ-
ation. Within this family, gaps were identified in the following controls: Reporting
Security Events and Collection of Evidence.

Reporting Security Events: With the introduction of the hypervisor, there are new
security events that must be logged, reported, and possibly investigated (such as
moving an instance across physical resources). Existing procedures will need to be
expanded to handle these new security events.

29517  Securing the Cloud

Collection of Evidence: With virtual servers, the controls and procedures in which
evidence is gathered must be modified. This could vary from taking the physical serv-
ers offline (and migrating off any nonimpacted instances) to simply hibernating and
cloning the affected instances. Performing digital forensics on virtual machines has
important implications that have yet to be fully explored. When a virtual machine
is powered off, its disk image remains available to the host operating system.
This exposes the instance to potential tampering in a manner that does not exist with
physical machines. Defining acceptable methods for collecting evidence in a virtual-
ized environment will be essential to performing incident response and forensics.

17.2.5 � Compliance

The goal of Compliance controls is to ensure that systems comply with all relevant laws,
regulations, and any other constraints imposed on the system. Within this family, gaps
were identified in the following controls: Technical Compliance and Audit Tools

Technical Compliance: Compliance issues are paramount when operating within a
highly regulated environment. Just as with traditional data centers, auditors will
demand that cloud environments remain compliant. The physical location of data
will be of particular importance in the cloud, especially in the context of data privacy,
business continuity planning, incident response, and forensics.

Audit Tools: Audits must identify rogue instances on the network and other suspi-
cious activity or control failings. New tools are required to verify that all instances
are in compliance. These compliance checks must be run automatically against
instances immediately after provisioning, after maintenance, and again when
decommissioned.

17.3 � Security Recommendations

In the previous section, we identified a number of security gaps against the ISO
27002 standard that are unique to virtualized systems and cloud computing. In this
section, we provide a list of 20 recommendations (summarized in Table 17.1) that
attempt to address many of these gaps. Although some of these recommendations
are not unique to cloud environments, they become more critical to address when
working in a cloud. This is by no means an exhaustive list of steps necessary to
protect a cloud environment. Instead, it is meant to provide the reader with some of
the many actions that must be taken to ensure a reliable, secure cloud.

	 1.	 Provide globally unique names to every instance in the cloud that allow key
instance attributes to be identified. From the name, one should be able to iden-
tify the application as well as the owner. All instances created across the cloud
should be assigned a name provided by the cloud. This is a globally unique

296 J.P. Durbano et al.

identifier that is used to cross-reference information about the instance. Instance
names are kept for the life of the cloud to preserve records and logging integ-
rity. If instance names are to be viewed by unprivileged personal or processes,
then the instance name itself should not reveal any useful information about the
application or the data being stored within the instance. A user-defined name
(i.e., “alias”) may be permitted for convenience, but the globally unique name
will be the standard identifier used within the cloud.

	 2.	 Record resource locations, both physical and virtual, throughout an instance’s
entire lifecycle to enable traceability. Records of physical resources and data
that were used or generated by an instance should be maintained from creation
to destruction. This is important for successful incident response and digital
forensics. See Recommendation 16 for additional details.

	 3.	 Do not implicitly trust the cloud or any instances in the cloud; every interaction
in the cloud demands authorization and authentication. Neither the cloud nor

Table 17.1  Summary of cloud computing security recommendations

Recommendations

  1.	 Provide globally unique names to every instance in the cloud that easily allows key
instance attributes to be identified

  2.	 Record resource locations, both physical and virtual, throughout an instance’s entire
lifecycle to enable traceability

  3.	 Do not implicitly trust the cloud or any instances in the cloud; every interaction in the cloud
demands authorization and authentication

  4.	 Encrypt instances and data when stored to disk and while migrating between servers
  5.	 Restrict dynamic utilization of resources to predetermined levels to prevent an “internal”

denial-of-service attack
  6.	 Virtually “shred” retired instances and data when no longer needed
  7.	 Assign priorities (i.e., SLAs) to every instance in the cloud to ensure appropriate

availability and resource utilization
  8.	 Utilize a single management, logging, and monitoring system capable of supporting the

entire cloud
  9.	 Restrict console access (physical and virtual) to users with a defined business need
10.	 Create new instances according to defined, tested, and approved specifications
11.	 Execute applications across multiple physical servers to improve reliability
12.	 Provide centralized authentication and authorization services
13.	 Provide a centralized key management system to allow the cloud to communicate sensitive

information
14.	 Digitally sign control messages within the cloud in order to prevent tampering and

unauthorized use
15.	 Restrict data ingress/egress points in the cloud to mitigate the introduction of malicious

software and removal of private data
16.	 Record the current state and lineage records (from creation to destruction) of physical and

virtual resources
17.	 Isolate suspicious instances and replace with alternate instances
18.	 Scan the cloud for unauthorized instances in order to identify, isolate, and remove them
19.	 Audit resource utilization records to detect suspicious activity
20.	 Audit instances at “life” events, such as creation, migration, hibernation, and startup, to

ensure compliance

29717  Securing the Cloud

any instances should trust each other. When an instance stores any data within
the cloud, it should encrypt the data. Similarly, the cloud should not trust any
particular instance. This includes limiting the amount of cloud resources that
are usable by any particular instance (i.e., to prevent a denial-of-service attack).
See Recommendations 4 and 5 for additional details.

	 4.	 Encrypt instances and data when stored to disk and while migrating between
servers. All instances should be encrypted by the cloud provider when being
stored to disk or in transit from one physical server to another across the network.
This is to prevent unauthorized access to the information stored within the
instance. Additionally, individual instances should take their own precautions and
encrypt sensitive information, including virtual memory (RAM), that may persist
on disk (e.g., through paging files or if the instance is hibernated to disk).

	 5.	 Restrict dynamic utilization of resources to predetermined levels to prevent an
“internal” denial-of-service attack. Automatic growth should be capped at a
predetermined level. A cloud administrator can manually override this limit
after a review. Without this limit, it may be possible for one business applica-
tion to consume vast amounts of resources on the cloud and effectively cause a
denial-of-service for all other applications.

	 6.	 Virtually “shred” retired instances and data when no longer needed. When there
is no longer a business use for an instance or data, it should be removed from
the cloud and disposed of properly. The image on the file system should be
virtually shredded (i.e., overwritten with random data).

	 7.	 Assign priorities (i.e., SLAs) to every instance in the cloud to ensure appropriate
availability and resource utilization. When a new instance comes online within the
cloud, it should be allocated a business criticality. This rating is used to determine the
order in which resources are allocated across applications within a cloud. Those appli-
cations with a higher business criticality will have first rights to cloud resources.

	 8.	 Utilize a single management, logging, and monitoring system capable of sup-
porting the entire cloud. The cloud should have a singular management inter-
face to control and check the status of the various aspects of the cloud. The
implementation of this management interface could be centralized or distrib-
uted, allowing for multiple consoles that provide the same information.
However, any one console should be able to display information about the
entire cloud. Logs and events across all instances should be consolidated and
presented in an aggregated manner.

	 9.	 Restrict console access (physical and virtual) to users with a defined business
need. Access to device consoles (physical or virtual) within the cloud should be
restricted to users with a defined business need. The ability to start and stop an
instance on the network should be restricted to the owner of the instance and
authorized delegates.

	10.	 Create new instances according to defined, tested, and approved specifications.
New instances should be built, ideally through an automated process, to pre-
defined, tested, and approved technical specifications (such as templates).
Arbitrary instances should not be allowed onto the cloud without going through
an approved process that includes defining a technical specification.

298 J.P. Durbano et al.

	11.	 Execute applications across multiple physical servers to improve reliability.
Distributing a business task in an intelligent manner across a number of physi-
cal servers improves the reliability of the task, since it is no longer reliant on
any one server.

	12.	 Provide centralized authentication and authorization services. Authentication,
the verification of the identity of a process or individual, should be handled by a
centralized service within the cloud. By centralizing the authentication of users
and processes, it is easier to detect suspicious activity, such as failed logins.
This also reduces the number of copies of sensitive data, such as usernames and
passwords, across the cloud.

	13.	 Provide a centralized key management system to allow the cloud to communicate
sensitive information. Centralized key management provides a mechanism for
the cloud to securely communicate sensitive information. Segregation of this key
management from the cloud provider, and by roles within the same provider, is a
worthwhile consideration because of the separation of access and enhanced level
of data privacy that can be provided. At a minimum, each administrative user on
the cloud would be assigned a public/private key pair that could be used to facili-
tate secure communications. This key management infrastructure should be used
for distributing initial super user credentials and for managing instances.

	14.	 Digitally sign control messages within the cloud in order to prevent tampering
and unauthorized use. The key infrastructure described above should be used to
encrypt all messages, such as the control messages to create, destroy, or other-
wise modify instances on the cloud. If needed, these control messages would be
encrypted in addition to being signed. Time stamping of all control messages
should be required to prevent replay attacks.

	15.	 Restrict data ingress/egress points in the cloud to mitigate the introduction of
malicious software and removal of private data. Interfaces where data can be
copied to and from the cloud should be restricted to administrator use and mon-
itored. This includes network and storage media interfaces. Physical access to
media (e.g., tapes, disk drives, USB interfaces) should be restricted to prevent
unauthorized data access. Cloud storage clients should use approved network
interfaces to upload, download, and access cloud data. Network data ingress
and egress should be monitored for malicious software and unauthorized data
transfers.

	16.	 Record the current state and lineage records (from creation to destruction) of
physical and virtual resources. As instances are brought online and destroyed,
it is important to keep a list of all approved instances. This list will be used to
audit the cloud, ensuring that there are no rogue instances running. These
records should include the physical location of each instance, state (e.g., run-
ning, suspended, isolated, destroyed), and owner. Historical records of instances
should be maintained after an instance is removed from service.

	17.	 Isolate suspicious instances and replace with alternate instances. If suspicious
activity is noticed, the offending instance should be frozen and replaced with an
alternate instance. The suspect instance would then be isolated from the rest of

29917  Securing the Cloud

the cloud for analysis. It may also be necessary to isolate the physical server
used by the suspicious instance. In this case, all instances currently running on
the same hardware must also be isolated for inspection and transitioned to new
physical resources.

	18.	 Scan the cloud for unauthorized instances in order to identify, isolate, and remove
them. The introduction of rogue instances is a significant concern, and the cloud
should be scanned frequently to ensure only legitimate instances exist. Any
instance that is not on the list of authorized instances should be removed from
the cloud and isolated. It may also be necessary to isolate the physical server
used by the suspicious instance. In this case, all instances currently running on
the same hardware would have be isolated for inspection and transitioned to
new physical resources.

	19.	 Audit resource utilization records to detect suspicious activity. Resource utili-
zation is an important tool to identify suspicious activity on the cloud. An audit
of the total resource usage, including memory, disk, CPU, and network activity,
across all instances on the cloud, can be used to locate suspicious instances.
This data should also be compared against historical records to identify poten-
tial anomalies.

	20.	 Audit instances of “life” events, such as creation, migration, hibernation, and
startup, to ensure compliance. After an instance is brought to life on the cloud,
it may go through various life events, such as hibernation, a move across physi-
cal hardware platforms, or an increase/decrease in available resources. At each
life event, the instance should be assessed for compliance with the cloud’s
security requirements. If the instance is no longer in compliance, it should be
isolated.

17.4 � Case Studies

Many of the 20 recommendations proposed above are actively being applied by
both public and private cloud providers. In this section, we describe some of the
security features offered by two particular providers, Amazon.com and a Fortune
100 company, in order to show alignment with our recommendations.

17.4.1 � Private Cloud: Fortune 100 Company

The first case study is for a private cloud built for a Fortune 100 company.
Although a private cloud, the need for security and privacy is not removed; proprietary
information is still hosted in the cloud and must be protected. Table 17.2 identifies
7 of our 20 security recommendations that this company has incorporated into
their security model.

300 J.P. Durbano et al.

17.4.2 � Public Cloud: Amazon.com

The next case study is Amazon Web Services (AWS) Elastic Compute Cloud
(EC2). Amazon acknowledges that maintaining security and privacy in a cloud
environment is more complex than when managing a single datacenter. Table 17.3
identifies 6 of our 20 security recommendations that Amazon has incorporated into
their security model. Detailed security information for Amazon is beyond the scope
of this chapter, and the interested reader is referred to [8].

17.5 � Summary and Conclusion

Of the many obstacles to adopting the cloud model of delivery and consumption of
computing resources, security ranks at the top of the list [1]. The lack of strong
security controls can resonate through the cloud, opening all of the applications and
services that are running across the cloud to exploitation.

Table 17.2  Fortune 100 customer private cloud security features alignment with cloud security
recommendations

No. Recommendation Private cloud implementation

  3 Do not implicitly trust the cloud or
any instances in the cloud; every
interaction in the cloud demands
authorization and authentication

A hardware appliance is used to
provide multiple security contexts
and restrict communication between
tenants.

  9 Restrict console access (physical and
virtual) to users with a defined
business need

Separate controls are provided to users
to enable management (e.g., VM
creation/deletion/sizing) that do not
involve console access.

10 Create new instances according to
defined, tested, and approved
specifications

Templates are provided to users in
order to instantiate preconfigured
VMs.

11 Execute applications across multiple
physical servers to improve reliability

Users are free to launch VMs across
dozens of servers to support their
high availability needs

12 Provide centralized authentication and
authorization services

A centralized Active Directory service
provides these services.

15 Restrict data ingress/egress points in the
cloud to mitigate the introduction of
malicious software and removal of
private data

All network traffic (i.e., user-entered
data) flows through the same
firewall; only administrators can
bypass this mechanism and access
is tightly controlled.

19 Audit resource utilization records to
detect suspicious activity

Every VM is monitored for resource
“spikes” (e.g., memory, processor,
network); triggers are configured to
notify administrators.

30117  Securing the Cloud

First and foremost, the cloud is a data center and therefore traditional data center
protections should be applied. It is not necessary to “start over” with security in the
cloud. Many of the existing protections can and should be applied to the cloud.
However, there are a number of gaps in existing coverage because of the unique
aspects of cloud computing. In this chapter, we identified a number of these gaps (as
compared against the existing ISO 27002 security controls). From these gaps, we
provided 20 recommendations to help alleviate security concerns.

This chapter was intended to serve as an introduction to some of the many issues
surrounding security in the cloud. There are additional gaps against the ISO standard
that were not discussed and many other security issues to consider. Fortunately,
groups such as the Cloud Security Alliance are actively investigating these issues.
Also, this chapter focused on the ISO controls, but similar analyses could be
performed against other controls (e.g., NIST 800-53) and regulatory documents
(e.g., SOX, GLBA) unique to communities of interest.

Table 17.3  AWS security features alignment with cloud security recommendations

No. Recommendation Amazon implementation

  3 Do not implicitly trust the cloud or
any instances in the cloud; every
interaction in the cloud demands
authorization and authentication

Every AWS interaction requires a “signed” API
call (see also recommendation no. 14).

  6 Virtually “shred” retired instances
and data when no longer needed

When customer storage is no longer used, every
block of data is automatically wiped. AWS
also uses a proprietary disk virtualization
layer to ensure customer data remains private
when virtual disk blocks are returned to
resource pool.

  8 Utilize a single management,
logging, and monitoring system
capable of supporting the entire
cloud

AWS utilizes bastion hosts for cloud
management.

  9 Restrict console access (physical
and virtual) to users with a
defined business need

Administrative access, both physical and
virtual, is strictly controlled according to
legitimate business requirements. Those
access privileges are immediately revoked
when an employee no longer has a need for
access. Each administrator is assigned unique
cryptographically strong SSH keys. Access
to bastion hosts is logged and audited on a
regular basis.

12 Provide centralized authentication
and authorization services

AWS utilizes bastion hosts for cloud
management.

14 Digitally sign control messages
within the cloud in order
to prevent tampering and
unauthorized use

Customers are issued a unique key. This key, or
an authorized X.509 certificate, must be used
to sign all Amazon EC2 API calls. Signing
API calls ensures that control messages
within the cloud are authorized and prevents
tampering. API calls in transit are encrypted
with SSL.

302 J.P. Durbano et al.

There is certainly a tremendous amount of work remaining to “secure” the
cloud. However, it is important to note that every new computing paradigm has
brought with it unique security challenges. The Internet is an excellent example of
this; certainly, allowing remote users and computers to access internal resources has
proved incredibly challenging to protect. However, the Internet has changed how
we do business, communicate, and live our lives. Therefore, the goal of security is
to mitigate risk to an acceptable level. Business is centered on risk management and
cloud computing will be treated as any other business decision. If the community
can develop controls to address the issues outlined in this chapter, then businesses
will move to the cloud for the benefits that it offers.

References

1.	 IDC Enterprise Panel (2009) http://cloudcomputing.sys-con.com/node/1048317. Accessed Aug
2009

2.	 Federal Information Security Management Act (2009) http://csrc.nist.gov/groups/SMA/fisma/
index.html. Accessed Aug 2009

3.	 Health Insurance Portability and Accountability Act of 1996 (2009) http://www.hhs.gov/ocr/
privacy/index.html. Accessed Aug 2009

4.	 Sarbanes–Oxley Act of 2002 (2009) http://en.wikipedia.org/wiki/Sarbanes-Oxley_Act.
Accessed Aug 2009

5.	 Gramm–Leach–Bliley Act (2009) http://www.ftc.gov/privacy/privacyinitiatives/glbact.html.
Accessed Aug 2009

6.	 Cloud Security Alliance (2009) http://www.cloudsecurityalliance.org. Accessed Aug 2009
7.	 ISO/IEC 17799:2005 Information Technology Security Techniques (2009) http://www.iso.org/

iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/information_
security.htm. Accessed Aug 2009

8.	 Amazon Web Services Security, Overview of Security Processes (2009) http://s3.amazonaws.
com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf. Accessed Dec 2009

Part IV
Cloud Feedback

305

Abstract  Service-Oriented Architecture (SOA) has demonstrated the value of
defining a decoupled policy layer for applications. This design pattern promotes a
declarative-style approach to policy enforcement and offers a basis for reuse of rule
sets. When an intermediary applies policy to a communication stream, it has util-
ity beyond the simple application of authentication and authorization. In this role,
policy is the language to articulate all actionable functions on a protocol stream,
including (but not limited to) general cryptography, message transform, content
validation, routing, orchestration, service level agreement enforcement, counters,
audit, event management, and monitoring. Policy thus becomes the underpinning
for the security and management of applications and data. This chapter is about
the application of decoupled policy enforcement technology to cloud computing. It
explores the use of the SOA Policy Enforcement Point (PEP) as a policy gateway in
the cloud and shows this to be an effective security model for cloud services.

18.1 � Introduction

Security of applications and data remains the primary concern among early adopt-
ers of cloud technology [3, 11, 24, 28]. This is not surprising, as the cloud com-
munity has struggled with articulating a comprehensive and cohesive security
model. Early efforts from organizations such as the Cloud Security Alliance show
promise [4], but cloud has fundamental challenges around trust that technology
alone will not overcome. In this chapter, we demonstrate that a design pattern and
associated technology that matured in the Service-Oriented Architecture (SOA)
space, the intermediary SOA Policy Enforcement Point (PEP), can form the basis
of an effective security model for applications and data residing in clouds.

K.W.S. Morrison (*)
Layer 7 Technologies, 1200 G Street, NW, Suite 800, Washington, DC 20005, USA
e-mail: smorrison@layer7tech.com

Chapter 18
Technologies for Enforcement and Distribution
of Policy in Cloud Architectures

K.W. Scott Morrison

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_18, © Springer-Verlag London Limited 2010

306 K.W.S. Morrison

SOA builds on earlier formalized approaches to distributed application develop-
ment and integration, and indeed contributes to other emerging methodologies [29].
Arguably, it is the most successful paradigm for large-scale application development
among heterogeneous systems. Cloud applications are borrowing heavily from
SOA methodologies and philosophical stance [12], so clearly successful techno-
logical solutions developed under SOA are worthy of consideration for migration
to cloud architectures [14]. Indeed, many of the security challenges solved by SOA
architects now appear in cloud deployment [20].

The enforcement of policy governing access to services – which at its simplest
covers only authentication, authorization, and audit – can be complex to implement
because of the diversity in application platforms and architecture. Thus, the best
practice for policy enforcement is to decouple this from services. This strategy has
a number of favorable outcomes. It allows for the consistent management and
enforcement of policy across a broad spectrum of services; it offers the opportunity
for reuse; it simplifies necessary integration with identity infrastructure; and finally
it transcends limitations imposed by the existing languages and libraries. As a side
effect, this approach allows modeling of policy as an aspect of an application or
service module. This promotes a declarative approach to rule sets, offering respon-
sive change and no direct coupling to compiled and linked application builds.

The purpose of this chapter is to propose the deployment of SOA PEPs into cloud
environments as a means of providing a flexible and robust security and monitoring
layer for cloud-based applications and data. It will specifically explore how differ-
ences between cloud environments and on-premise IT (the traditional deployment
locale for SOA) affect the SOA PEP. Where appropriate, it will suggest ways to
overcome issues caused by characteristic differences in the cloud environment.

This chapter will restrict its view to SOA PEPs used in intersystem communica-
tion, under application-layer protocols such as SOAP and the related WS-* embel-
lishments. This is not to diminish the role of Web browser to server communications
in cloud scenarios (indeed, at present this constitutes the bulk of the transaction
volume in cloud computing). However, Web-oriented policy enforcement is largely
a solved problem and the existing implementations transfer to cloud-based deploy-
ments with little challenge, as evidenced by the growing adoption among SaaS
providers of security models based on SSL and SAML, OpenID, or OAuth. This
chapter will instead acknowledge the increasing importance of application-to-
application XML-based traffic in enterprise-centric cloud computing and focus on
the specialized issues faced in governing these transactions both within cloud
providers and across the public Internet.

18.2 � Decoupling Policy from Applications

The capabilities and constraints of an architectural model drive the scope of the policy
used to manage system entities residing in it. The Web, for example, benefited greatly
from a highly constrained architectural model [9]. All resources can be addressed

30718  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

through the URI [2]; this identifier is relatively unambiguous, visible, and inexpensive
to parse within the HTTP. HTTP offers few options for identity claims and SSL provides
a decoupled security layer protecting transmission. The high degree of constraint and
rigor that defines the Web allows policy to consist of little more than confidentiality
and integrity, authentication, authorization, and some audit – all elements that promote
a clear separation between Web application and policy enforcement.

Web architecture is the basis of Web services. However, in contrast to its founda-
tion, Web services are less constrained, vastly more complex, and suffer from an
approach to standardization that is highly distributed. The basic processing and
security models offer a breadth of scope that leaves considerable underspecification
[17]. This has made implementation in application servers complex and prone to
issues with interoperability.

In the SOA community, one approach to these challenges has been to separate
security and monitoring functions into a PEP decoupled from the application ser-
vices themselves. Policy, which is a concrete language for asserting the require-
ments that constitute the run time governance of services, is the logical place to
accommodate the more diverse needs of Web services and to articulate a strict
message-processing model for enforcement points. Policy enforcement thus takes
on a much more significant role in facilitating service-oriented communications
than for the conventional Web.

The canonical model for decoupled policy enforcement promotes a separation of
concerns between the system entity responsible for enforcement, the Policy
Enforcement Point (PEP), and the system entity responsible for decision-making,
the Policy Decision Point (PDP), recognizing that the latter is often a centralized
resource shared among many lightweight enforcement instances [30]. This has
been well described in the context of Web applications [16], but the model is of
similar value when applied to Web services transactions.

18.2.1 � Overlap of Concerns Between the PEP and PDP

The essential tension in this model is between the desire to have centralized,
authoritative decision-making and the practical need for distributed enforcement.
The PDP requires visibility of key elements of a transaction to render decisions
effectively; the PEP has full visibility, but it cannot practically relay this entire
context to the PDP. Identity-centric PDPs should be in proximity to directories and
serve as unambiguous authority for decision-making. To meet performance, secu-
rity, and reliability demands, PEPs should reside with applications. The communi-
cation between PEPs and PDPs must reflect an optimization of data necessary to
render an effective decision without significantly degrading transactional through-
put. This has ramifications for cloud deployment.

In the conventional Web, the policy model segments cleanly because of the lim-
ited scope of policy in the architecture. Web PEPs are responsible for enforcing
privacy and integrity expectations of policy locally; to escalate an access control

308 K.W.S. Morrison

decision, the PEP simply bundles identity claims, intended actions, and target URI
and relays this to a PDP.

Web services transactions, in contrast, blur the distinction between these system
entities because a lot of the decision-making demands additional message context
that is not practical for a PEP to relay to a central PDP. Thus, SOA PEPs retain
considerable internal decision-making responsibility. This independence is a cru-
cial factor when deploying into cloud-based environments, where communication
with a centralized PDP (which may reside on-premises instead of within the cloud)
could be impractical for reasons of security or latency. Distribution of authority
comes at a cost of increased policy management and provisioning.

18.2.2 � Patterns for Binding PEPs to Services

There are two common deployment patterns for PEPs: as agents, which integrate
directly into the application container and as intermediaries, which are independent
of the application container and often reside on a separate physical or virtual host.
There are tradeoffs associated with each approach that have particular ramifications
in the context of cloud deployment. The important consideration here is how to
secure the point of interface between the PEP and the relying party service (which
in general resides inside an application server container). This defines the trust
model between these entities.

18.2.3 � Agents

The agent-based model of PEP deployment uses a plug-in that integrates directly
into the execution model of the application container. The point of interface is an
application server API.

There are a number of reasons that make this strategy attractive. The tight bind-
ing between the PEP and the application server execution context means that vali-
dated identity claims can be propagated directly into the application, using
technologies such as JAAS in Java application servers or thread impersonation in
systems supporting a high degree of integration between OS and application server
(such as Microsoft environments). Collapsing this into a single execution context
trivially provides security and establishes trust across the last mile – the hop
between the PEP and the application. Agents distribute security processing along
with applications, thereby benefiting from scalability strategies associated with the
application and avoiding potential security bottlenecks.

However, there are issues with this approach. The tight, code-level binding between
PEP and application server has its own challenges. With the exception of the Java
servlet filter API, there are no standardized and widely adopted interfaces to applica-
tion server execution context. This implication is that organizations with a large number

30918  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

of heterogeneous systems (including simple version and patch differences between
like-servers) find agent-based PEPs difficult to deploy broadly and consistently.

In practice, this leads to a lowest-common-denominator approach to functionality
in agents. For simple Web application agents, requiring little more from policy than
authentication, authorization, and audit, this is sufficient; however, it has limited
agent applicability for Web services PEPs, as these require advanced policy pro-
cessing capabilities. Furthermore, introducing third-party code into application
servers injects manageability risks. This has fostered a pejorative association with
agents in the commercial marketplace, leading some vendors to explicitly promote
their “agent-less” architecture.

The colocation of a PEP and an application server may be concealing other
potential risks. Binding the PEP to a generalized application server install makes
this critical security layer subject to the integrity of the underlying OS. Hardening
modern operating systems is a complex and highly specialized task, and the best
practices may be compromised to accommodate server needs or simply from a lack
of appreciation of their importance. If an attacker successfully compromises the
OS, the entire security model collapses, rendering the PEP superfluous.

Agents have been widely successful in conventional Web servers, both on-
premise, in SaaS applications, and in generalized cloud deployment of Web appli-
cations. In these cases, HTTP servers tend to be monocultures, de-emphasizing
diversity issues with the agent interface. The limited demands of Web policy also
allow Web agents to be lightweight and simpler to package with server
installations.

18.2.4 � Intermediaries

The intermediary model delegates PEP processing to an independent unit that can
simultaneously serve one or more downstream relying parties. It operates as a
policy-driven reverse-proxy to these applications. The point of interface here con-
sists of basic network (e.g. TCP) and application layer (e.g. HTTP) protocols.
These of course benefit from standardization and widespread support – this matu-
rity makes deployment essentially universal.

The conventional on-premise SOA deployment of PEP intermediaries consists
of hardened, performance-optimized appliances that are physically separate from
application servers. This model invests PEPs with a high degree of trust; they serve
as an independent policy layer that fully gates all communications to and from less
policy capable internal services. PEPs are tuned for high-performance processing
of common traffic profiles, particularly XML-based transactions where significant
benefit is realized by leveraging purpose-built acceleration chips for essential
operations such as schema validation, transform, and query. Intermediary PEPs are
rarely a performance bottleneck because of the vertical scalability benefits of such
optimizations and the horizontal scalability potential that comes from placing addi-
tional units in parallel.

310 K.W.S. Morrison

The intermediary model has the benefit of a network hop to clearly define layering
between policy and service. However, in the cloud, the underlying networks are
inherently untrustworthy; this adds considerable complication to the security model
between the PEP and relying party, demanding that it becomes more explicitly
protected than with agents. The following table describes this:

Issue Details Solution

Trust model Relying party must trust PEP. Trust of PEP security tokens
(username/password, X.509 certs,
Kerberos, etc.)

Subject declaration PEP must propagate validated
principal identity.

Use of authoritative vouching
mechanism, such as SAML
tokens, or various proprietary
approaches (IBM’s LTPA or TAI,
custom headers, etc.)

Privacy and
integrity

Securing the communications
between PEP and its
relying party.

SSL/TLS or message-based security
models such as WS-Security

Relying party server
resiliency

Make relying party
inaccessible except through
PEP.

Internal and external firewall rules to
reject connections other than to/
from PEP. Highly restrictive local
access control

The commercial sector markets intermediaries for Web servers as Web applica-
tion firewalls. Despite their advantages, this product category sees less deployment
than agents-based solutions, primarily because of the ease with which agents can
handle the more limited policy requirements of the Web.

Intermediaries, in contrast, are the dominant solution for SOA Web services.
Here, the lack of definition and constraints on the architecture demand much
greater functionality from policy and thus greater sophistication from PEPs than the
limited operating environment of an agent can uniformly support. Web services is
fundamentally an approach to integration – an insight that implies a potential diver-
sity of service provider hosts that make agent integration impractical.

18.3 � PEP Deployment Patterns in the Cloud

The term cloud computing suffers greatly from industry hype, ambiguity, and over-
load of meaning. NIST offers a reasonably comprehensive definition that character-
izes cloud in terms of essential characteristics, service, and deployment models [18].
NIST acknowledges that community debate is continually refining our understanding
of the term, and they have updated their paper in response to evolving perception.

There is wide acceptance of the three cloud service models NIST describes.
These can be characterized not just in terms of functionality offered to customers, but
also by where the boundary of control lies in the stack between customer-managed
and provider-managed elements (where the stack defines layers including host and
network infrastructure, operating systems, applications, data, etc.). The opportunities

31118  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

for deployment of SOA PEPs into the cloud are largely a function of where these
control boundaries lie. Cloud-based PEPs are virtual appliances that consist of a
policy execution engine operating under a security-hardened and performance-
optimized operating system. Thus, deployment of virtual PEPs in the cloud requires
a customer-accessible hypervisor execution environment.

18.3.1 � Software-as-a-Service Deployment

Software-as-a-Service (SaaS) offers no real opportunities for SOA PEP deployment.
SaaS implementations are thin-client Web applications operated entirely by the pro-
vider, but open to minor configuration by the customer, such as Salesforce.com or
Google GMail. Policy enforcement for Web applications, by virtue of its limited
scope (the security model simply consists of basic authentication, sometimes SAML
SSO and federation, and SSL/TLS transport protection), is generally integral to the
host application servers and is therefore under complete control of the provider.

SOA PEPs, however, do have a role to play in securing access of on-premise
services by SaaS applications. This is a conventional, edge-of-network PEP deploy-
ment in the on-premise DMZ, implemented using either hardware or virtualized
SOA PEPs.

18.3.2 � Platform-as-a-Service Deployment

Like SaaS, Platform-as-a-Service (PaaS) offers no current opportunity for deployment
of virtual PEP appliances. Although PaaS relaxes the boundaries of control to offer
customers access to an application deployment environment, the container-based
execution model – such as Google’s AppEngine – is generally too restricted to support
the diverse connectivity and operating requirements of a mature SOA PEP code base.

18.3.3 � Infrastructure-as-a-Service Deployment

Infrastructure-as-a-Service (IaaS), in contrast to SaaS and PaaS, offers the greatest
degrees of freedom of control to the customer, and thereby an opportunity for virtu-
alized PEP deployment. IaaS offerings such as Amazon’s Elastic Compute Cloud
(EC2) shift the boundaries of customer control to an abstracted hypervisor, which
can host a virtualized PEP and virtualized, subordinate SOA services under PEP
management. By providing finely grained, policy-based control over all communica-
tions to or from a cloud-resident service, the PEP allows a cloud customer to reassert
control over IaaS-resident applications. This higher level of visibility and control
serves to offset the loss of lower-level, physical controls necessarily surrendered to
the cloud provider. This deployment model is the focus of this chapter (Fig. 18.1).

312 K.W.S. Morrison

18.3.4 � Alternative Approaches to IaaS Policy Enforcement

There is a number of existing approaches to securing services in IaaS clouds. Both
simple Web security and VPNs offer the advantage of simplicity, generality and
familiarity. However, both suffer from significant limitations in their scope that
make virtual PEPs, which consolidate a broader range of capabilities under policy
control, a much more attractive choice.

18.3.5 � Basic Web Application Security

Simple security models – consisting of basic credentials in HTTP, interface to con-
ventional LDAP directories for authentication and authorization, and SSL for con-
fidentiality and integrity – are widely supported in application servers hosting rich
Web services. But application servers do not uniformly or consistently support
more sophisticated message-based security models, SLAs, threat detection, orches-
tration, content-based routing, load distribution, etc. – all valuable functions in
SOA messaging environments with diverse service consumers and producers.

Fig. 18.1  Virtual PEPs deployed in the cloud provide security and management for applications
in the cloud. When paired with on-premise PEPs, they can create a secure tunnel between applica-
tion in the internal network and cloud instances

31318  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

SOA PEPs, in contrast, consolidate and parameterize all of these capabilities
under a policy that is bound to each individual service.

18.3.6 � VPN-Based Solutions

In mid-2009, Amazon introduced its Virtual Private Cloud (VPC) offering as a
solution to securely integrate EC2 with on-premise enterprise networks. VPC con-
sists of a standards-based VPN server and an undisclosed mechanism for isolating
EC2 instances to a specific customer domain. Other vendors, such as CohesiveFT,
have promoted VPN solutions for securing communications to the cloud.

VPN-based solutions have the advantage of providing generalized confidenti-
ality and integrity for all tunneled protocols. This has the distinct advantage of
supporting virtually all communication protocols and therefore access to applica-
tions that are not service-oriented. But VPNs suffer from a lack of constraint
with respect to service entitlements. VPNs secure networks, not applications.
In environments with a significant trust imbalance – such as between on-premise
IT and a cloud provider – VPNs can potentially offer an open vector for attack
if a system hacker compromises a cloud-resident application or operating
environment.

SOA PEPs put channel (or message) encryption subordinate to the entire execu-
tion context of policy, which can incorporate authentication, authorization, threat
detection, optimized content validation, SLA enforcement, load distribution, and
audit. Because policy is ultimately bound to individual services, this severely limits
the attack surface available to compromised applications.

18.4 � Challenges to Deploying PEPs in the Cloud

The NIST definition illustrates that cloud computing is characterized by five essen-
tial characteristics, including resource pooling and rapid elasticity. PEPs deployed
into IaaS clouds face unique challenges around performance, security, and manage-
ment because of the underlying architecture that supports these characteristics. The
following sections examine these challenges.

18.4.1 � Performance Challenges in the Cloud

The commoditization of processing cost in the cloud is attractive, but there are
special considerations that go into making effective use of this. For PEPs deployed
in IaaS facilities, these include fault tolerance, scalability, clustering, generalized
acceleration, and content encoding.

314 K.W.S. Morrison

18.4.2 � Strategies for Fault Tolerance

SOA PEPs achieve fault tolerance through system redundancy; however, traditional
methods for providing independent, high-availability failover may not function in
the cloud. Failover techniques that make use of gratuitous ARP – such as Linux-HA –
will certainly be restricted because of the risk of IP hijacking by an instance.

A better approach is to load balance incoming HTTP traffic across two or more
PEPs using conventional HTTP application delivery controllers. This basic infra-
structure is commonly available in cloud installations because it is the basic scaling
strategy for conventional Web applications, which at present constitute the majority
of cloud provider’s business. Load balancer failover makes more economic use of
deployed resources than a running instance in standby as failover occurs with no
interruption of service. This also provides the basis for a practical scalability model.

18.4.3 � Strategies for Scalability

Elasticity is a basic characteristic of cloud computing, which offers an opportunity
to better manage PEPs operating under traffic load that is unpredictable and in a
continual state of flux. As load increases, new PEP instances can launch on-
demand; as it decreases, underutilized instances can terminate (to use Amazon
nomenclature). This offers a distinct advantage over on-premise SOA PEP deploy-
ments with fixed capacity.

As with fault tolerance, for HTTP-based transports, the existing HTTP load
balancers can distribute traffic across the breadth of the running instances. Vendors
such as Citrix have pioneered a model under which the HTTP load distribution
system controls application instance launch. This should focus on PEP instances,
which in turn control the launch of applications under their policy control, thus
creating a cascade pattern of elasticity.

Elasticity, however, does introduce new challenges with provisioning of PEP
instances on launch, and the potential for loss of critical state information on termi-
nation. Clustering is a strategy that addresses some of these issues.

18.4.4 � Clustering

Clustering can overcome some provisioning and operational challenges when
deploying multiple PEPs simultaneously. In addition to providing a means for shar-
ing configuration and policy information between nodes, clustering offers a fast
channel for synchronization of time-critical information such as shared counters or
coordination against replay attacks exploiting the WS-Security model.

However, traditional application clustering technologies may not be deployable
in cloud environments. Clustering assumes a locality of deployment to reduce

31518  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

latency, and potentially to allow propagation of broadcast or multicast protocols for
synchronization. In on-premise computing, it is common to group PEPs on a single
rack and integrate these through a switch allowing physical control over such a
distribution. Cloud environments offer no such deployment specification. PEP
instances may be geographically isolated, resulting in isolation by router boundar-
ies or at a minimum multiple switch hops that will not propagate this traffic.
Amazon, for example, abstracts their operating environment into coarse divisions
they call availability zones. These roughly map to distinct data centers within an
operating region; however, Amazon does not publically provide deeper architec-
tural details of how these are organized.

PEPs thus need to operate independently and synchronize exclusively off shared
persistent storage. Amazon was the first public cloud provider to create a range of
persistence mechanisms as services, including Simple Storage Service (S3),
SimpleDB, Elastic Block Storage (EBS), and Relational Database Service (RDS).
As a continuum, they illustrate the spectrum of tradeoffs between scalability, reli-
ability, availability, trustworthiness, and traditional versus cloud-centric architec-
tural models. Issues to consider for PEPs are unpredictable latencies that may affect
time-sensitive operations such as replay detection or policy synchronization. For
example, the use of shared underlying infrastructure, such is the case with EBS,
may provide highly nondeterministic performance. Similarly, the underlying data
propagation realities that account for Amazon’s eventual consistency strategy may
prove difficult to reconcile with the PEP need for high-performance access to a
persistent store.

18.4.5 � Acceleration Strategies

Optimization is always an exercise in balancing tradeoffs. In SOA PEPs, the com-
putationally expensive operations are XML processing and basic cryptographic
calculations. Appliance-based SOA PEPs use custom hardware to accelerate these
that is not applicable in virtualized environments. An important design tradeoff is
therefore to sacrifice low-level optimization for the overall gains realized through
elastic scalability in cloud environments.

18.4.5.1 � Accelerating Message Processing

Specialized hardware can accelerate low-level XML processing, including
XSLT, XML Schema validation, and XPath query into documents [13, 26].
Similarly, regular expression parsing benefits from application in specialized
hardware.

However, a new generation of software-based, highly optimized libraries is
emerging. These include pure software approaches (Excentric Works), and optimi-
zation that utilizes the existing architecture in commodity chips [5].

316 K.W.S. Morrison

18.4.5.2 � Acceleration of Cryptographic Operations

Cryptographic operations, such as RSA key operations, also see benefits from
hardware acceleration. This hardware may integrate higher-level protocol optimiza-
tion (such as SSL acceleration), FIPS-compliant cryptographic algorithms, and
Hardware Security Module (HSM) protection of keys (nCipher, Sun, Safenet).
HSM modules in particular find wide application in military and intelligence
markets.

FIPS-compliant software cryptographic libraries are widely available (RSA,
Certicom), and drawing on the benefits of elastic deployment can offset crypto-
graphic optimizations.

Protection of key material is an open problem for clouds. In private clouds, it is
conceivable to interface with a physical HSM shared between virtual images. In
public clouds, a software-based secure key store is the only alternative. This has
inherent risk as virtual images may leave behind residual disk images on termina-
tion, potentially exposing key stores to scavenging and brute force decryption.

18.4.6 � Transport Content Coding

Message content compression can be economically advantageous between on-
premises computing facilities and cloud providers. HTTP includes content coding
[8], but only on the response message; this is insufficient for bidirectional SOAP
messaging (or highly parameterized REST requests). A similar nonstandard model,
also leveraging algorithms like zlib, gzip, and compress (or dictionary substitutions
of common SOAP idioms), could extend to requests. However, the challenge is that
PEPs at either end must synchronize compression parameters out of band, or utilize
proprietary negotiation protocols.

18.4.7 � Security Challenges in the Cloud

The great challenge with PEPs deployed in the cloud – and indeed, in all distributed
computing – is the secure propagation of identity context between tiers. Privacy and
integrity may act in support of this fundamental issue.

18.4.8 � The PEP Air Gap

The virtual PEP deployed in the cloud acts as a policy air gap between the external
Internet and internal applications. It deliberately breaks transport semantics into
ingress and egress segments, kept separate and mediated through policy. This affects

31718  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

all transport layers, including TCP, SSL, and message transport such as HTTP or
message-oriented middleware (MOM). With the latter in particular, the policy air
gap may break QoS characteristics (such as transactional context, guaranteed one
time delivery, end-to-end delivery reliability, etc.) unless explicitly propagated
using protocols like XA.

Propagation, however, may not be entirely desirable in cloud environments. The
policy-mediated air gap is an important design pattern because it establishes a clear,
customer-managed demarcation between the inside of the cloud and the outside
Internet. Both sides have a distinct set of security challenges and demand different
approaches to threat mitigation and establishment of trust.

The air gap pattern also serves as a reminder to application designers to build for
resiliency. Cloud providers are highly visible and accessible, making these natural
targets for system cracking attempts. Recent attacks against public cloud-resident
applications such as Bitbucket (Nohr 2009) underscore the need to recognize that
all cloud services may be subject to continuous assault and should be hardened in
the manner of traditional DMZ-based applications – notwithstanding the protective
capacity of the PEP. This is not a typical design imperative for on-premise SOA
applications.

18.4.9 � Binding PEPs and Applications

As with any multi-tenant facility, the internal cloud network must be considered a
hostile environment. All communications to or from application instances must
pass through the PEP security and management layer. There are two strategies to
bind PEP and managed application in the cloud: intermediary isolation and the
protected application stack.

18.4.9.1 � Intermediary Isolation

In the intermediary isolation model, a single PEP can simultaneously protect one or
more virtualized cloud application instances. The PEP runs in its own virtual
instance; this is self-contained, hardened against attack, and optimized for high
throughput.

The challenge here is providing last mile security and isolation of the application.
Protect the hop between the PEP and each application instance with SSL with mutual
certificate authentication. Application servers universally support SSL and it is appro-
priate for such point-to-point transmissions in a single hop, synchronous environ-
ment. Use of WS-Security message-oriented security models is not recommended as
this does not add any value for such a localized transmission and suffers from
increased processing overhead, complexity, and uneven support. An exception to this
is some WS-Security token profiles, as these solve trust problems in a standardized
framework. If there is a need to propagate a statement describing attributes, entitlements,

318 K.W.S. Morrison

or an act of authentication on the PEP, utilize the SAML sender-vouches model [19].
Application server support for SAML is growing, but for many it remains an unfor-
tunate gap. External firewall rules (called security groups in Amazon’s Cloud Front)
should block access to the internal application. Internal firewalls on the application
instance should block all connections, except those originating from the PEP
addresses protecting it and from explicit administrative hosts.

The administrative overhead of this bidirectional binding can be considerable if
the number of PEP or application instances routinely changes in response to trans-
action volume. Policies in the PEP must register application hosts to route requests
to, using internally addressable IP addresses. Each time an administrator deploys a
new application instance, policy will need to change across all PEPs. Launch of a
new PEP forces a change to the internal firewall rules and the trusted SSL client list
on each application instance to allow connections. At present, this has no satisfac-
tory solution. Use of technology such as Rightscale’s framework for on-demand
application configuration may address some of these issues.

18.4.9.2 � The Protected Application Stack

In the protected application stack (or colocation) model, PEPs and applications are
coresident in a single virtualized image. The application thus inherits hardening of
the base operating system applied for the PEP. Internal firewall rules allow only the
PEP ingress or egress communications; the application therefore cannot initiate or
accept external communications except by proxy through the PEP.

This model differs subtly from the agent model. It does not integrate PEP and
application into a single process space through an API. Instead, the point of inter-
face between these remains the network layer using local host connections. It also
inverts the application hierarchy: the application is now subordinate to the secure
container of the PEP. The OS is hardened with the perspective and expertise of a
PEP architect, rather than that of an application server.

VM colocation trivially solves last mile issues because it confines this hop within
the security context of the hardened operating system. As a side effect, the binding
between PEP and application is static, thus greatly simplifying elastic deployment.

There are disadvantages to this approach. The initial configuration is more complex
because of the potential for conflict between installation and operational expectations
of the PEP code base and the application. There is also some risk of compromise to
the underlying OS hardening to accommodate application resource requirements. This
runs counter to the design intentions of an appliance-based security PEP.

18.4.10 � Authentication and Authorization

The fundamental challenges around authentication and authorization in cloud
deployments concern the strength of security tokens and the accessibility of identity

31918  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

information for the purpose of validation or attribute retrieval. These challenges
conspire to suggest a particular approach to access control in the cloud. This
approach promotes a shift away from identity-centric authorization, toward autho-
rization based on evaluation of a broad range of transaction characteristics.

Cloud-based PEPs are unlikely to have access to corporate directories or conven-
tional IAM systems to validate security tokens (the latter being tightly bound to
directories). Few organizations make these internal systems directly accessible
outside their firewall. Even with a VPN bridging on-premise and the cloud, the
latency incurred for access makes their use highly impractical.

Directories and IAM systems are certainly deployable in the cloud (though sub-
ject to many of the same issues explored here). PEP themselves may have internal
directories that are valuable for development and test, but may not be practical for
production deployment. However, the real risk with any cloud-resident directory is
that it creates a new identity silo that is independent of existing on-premise identity
stores. This is clearly undesirable.

Cloud-based PEPs must function independently. They must validate tokens
against trust models locally; this collapses much of the traditional functionality of
a PDP into PEP basic services, expressed through local policy. This influences both
the token types that are practical to use in the cloud and the approach to service
authorization.

Weak security tokens – such as user name and password pairs – have no place
in the cloud. Public cloud providers are highly visible and accessible targets for
system crackers. Brute force attacks against basic access control are trivial to
implement and a positive result can often compromise an entire application and its
data. Anecdotally, in our own recent deployments of applications on Amazon, we
have observed random attack rates exceeding 8,000 attempts in the initial 72 hours
of operation. These are largely naive password guessing attacks that may fail to
gain access, but succeed in locking out legitimate access. Amazon recognizes this
threat and mandates a public key-based, mutual authentication approach to govern
access to the root shell of virtual instances. This overrides the traditional basic
authentication mechanisms on Unix images.

Every policy governing access to cloud services should adopt a similar approach.
It is reasonable to assume that any service residing in the cloud – not just the root
shell – will be subject to continuous password guessing attacks. Policies therefore
must not assert requirements for basic security token types. WS-Security Username
Token Profile [22] and HTTP basic authentication, even using highly randomizing
password rules, introduce unacceptable risk. Preferred are multifactor authentica-
tion schemes using physical devices that cycle through one time passwords (there
are a number of manufacturers of these devices, and Amazon now supports a simi-
lar offering). No standardized bindings exist to Web services, so these may require
proprietary bindings to HTTP or customized WS-S security tokens to function.

Certificate-based authentication mechanisms – including approaches that lever-
age PKI such as SAML – are a stronger approach. This provides a strong authenti-
cation model that offers a higher level of assurance to parties in a transaction. In
addition, certificate extensibility offers authoritative statements from trusted third

320 K.W.S. Morrison

parties about attributes associated with a key holder. This can help to decouple
authorization from pure identity – which may be impractical to administer at
remote cloud sites – and move toward access decisions based on evaluation of a
broad number of characteristics – such as organizational unit, membership, rank,
etc. In combination with other transactional characteristics communicated by the
sender, this can become the basis of formalized authorization models such as Role-
based Access Control (RBAC) (RBAC 2009), and Attribute-based Access Control
(ABAC) [15].

SSL/TLS offers optional client-side certificate authentication (in addition to
server authentication and channel confidentiality and integrity) [6, 10]. WS-Security
x509 Certificate Token Profile [23] articulates a means to sign message contents,
binding this to a certificate. Commercial PEPs may include integral CA capabilities
for creating and managing certificates.

Certificates associated with identities are typically long lived (usually on the
order of years); nevertheless, it remains important to evaluate their current validity.
On-premise SOA deployments could often overlook certificate revocation because
of in-place security mechanisms and procedures. Cloud-based PEPs, however, by
virtue of their global accessibility, must be rigorous in applying revocation checks.
This implies regular CRL updates or use of the OCSP protocol. Both are practical
in the cloud, but both can place a very high processing cost on clients. CRLs gener-
ated by the U.S. Department of Defense have grown so large and unwieldy that
simple distribution and evaluation has become largely impractical [7, 27], neces-
sitating a move to OCSP despite its added latency.

Certificates are also not practical containers for authoritative statements about
ephemeral attributes or entitlements. SAML tokens, in contrast, support these.
SAML has the benefit of offering short lifetime of the assertion (solving revocation
issues by forcing an aggressive timeout), a binding to subject evidence (such as key
pairs), and providing a means to make statements about acts of authentication,
authorization, and arbitrary name/value attributes. Profiles exist describing the use
of SAML in HTTP and for Web services.

SAML provides a means to make explicit declarations about authorization. This
allows central, on-premise administration of entitlements, issued by a local Security
Token Service (STS), relayed with a message to a cloud-based PEP, and evaluated
under the trust model in effect. This has the advantage of centralized administration
for both on-premise and cloud entitlements.

Despite this, it is a more common practice in cloud architectures to impose a
separation of concerns between authentication and authorization. In this model,
initial validation of identity claims is made in the enterprise, and thus, close to
authoritative directories. Authorization, in contrast, is moved close to services to be
enforced on cloud-based PEPs.

There are various approaches for articulating entitlements for suitable for
remote, cloud-based evaluation. Native PEP policy can express authorization rules;
this approach has the advantage of direct association with services. XACML [21]
is a more standardized, albeit complex, alternative. In general, XACML is admin-
istered and evaluated in a centralized, cloud-based PDP, accessible to all PEPs

32118  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

using the XACML Request element embedded into SOAP messages. It is also pos-
sible to locally encapsulate XACML within PEP policy context.

Most SOA PEPs also provide the ability to accept Kerberos security tokens in
message or transport [23]. In practice, Kerberos has less practicality to the cloud
because of the high administration cost of local key management and integration
into ticket services.

Finally, while much of this last section concerned validation of sender identity,
server-based authentication is also critically important to the client, particularly for
clients sending a message to applications hosted in public cloud-provider. SSL and
the WS-Security message security model both address this as side effects of the
privacy and integrity policy.

18.4.11 � Clock Synchronization

Clock synchronization is very important when using short-lived security tokens like
SAML or Kerberos tickets. Even minor time deviations between token issuers and
PEPs can cause approval problems. Virtual instances inherit their clock from the
host, and unpredictable clock skew was a common issue with early virtualization
technologies. Virtual cloud PEPs should synchronize clocks regularly with an
authoritative time source shared by all participants in a transaction.

18.4.12 � Management Challenges in the Cloud

A number of open issues exist around management of PEPs deployed into IaaS
facilities. These center around secure persistence, provisioning, and visibility issues
in high latency environments (such as those that exist between on-premise opera-
tional consoles and cloud providers).

18.4.13 � Audit, Logging, and Metrics

Auditing, logging, and accumulation of metrics are important operations in any
application infrastructure. In the cloud, these face challenges associated with per-
sistence and collection.

Audits record events of significance; they are distinguished from logs, which
document day-to-day operational information. Elements of policy often generate
audits explicitly to record important runtime transaction events, such as detection
of an attack signature, or even recording of entire message content. Audits also
record noteworthy events in the operational lifecycle of the PEP – an update to
policy is a typical example. The high value of audit data demands persistence and

322 K.W.S. Morrison

integrity. Logs, in contrast, have immediate relevancy for diagnostic purposes, but
less long-term value for forensics. As a result, logs commonly rotate automatically
over old entries to keep the collection size within reasonable bounds.

Persistence of logs and audits in cloud providers is problematic. Audits (and
optionally logs) must stream to long-term resilient storage instead of local disks
that will be lost on instance termination. Syslog is one accepted mechanism to do
this. Audits, however, should also be cryptographically secure to prevent disclosure
of sensitive message contents (such as security credentials), and to guard against
alteration. This can be computationally expensive to apply at run time.

Audit volumes can be very large. Data transfer costs between cloud providers
on-premise faculties can be very high [1], making streaming or export of audit and
log data to existing tools impractical.

Metrics collection may also produce very large data volumes. It is often neces-
sary to record historical transaction rates for purposes of future load planning, so
most SOA PEPs maintain sliding counters describing each service under their man-
agement. Depending on the time granularity of the bin, these data structures can
become extremely large. Regular transfer to on-premise storage can incur consider-
able cost. Leveraging inexpensive local cloud storage can offset this, as evaluation
of this data generally involves a rollup inside a reporting engine that can reside in
the cloud.

Other existing SOA PEP alerting mechanisms may also be infeasible in the
cloud. Policy-driven alerts that use SNMP to communicate with on-premise man-
agement infrastructure may be impractical because of security risks and latency.
SMTP-based altering, common in on-premise SOA, may not be feasible to imple-
ment in the cloud. Cloud providers do not want their platforms to become a launch-
ing pad for spam traffic, so may block outgoing SMTP traffic. Furthermore, there
are anecdotal reports of organizations blacklisting mail from Amazon AWS IP
ranges because of the threat of spam [25].

A final issue is event correlation between infrastructure elements during forensic
investigation. In traditional on-premise SOA, logs from routers, load balancers, and
conventional firewalls provide extremely valuable data to operators investigating
issues, such as an attack or transaction failure. These data are not available to cus-
tomers in the cloud.

18.4.14 � Repositories

One of the challenges of virtualized cloud environments is the ephemeral nature of
the operating environment. Centralized policy and configuration repositories pro-
vide an important service in cloud environments to manage this. They function as
the system of record – that is, the central authoritative source for policy and con-
figuration that can be pushed to PEP enforcement points. Repositories must lever-
age long-term, scalable storage in cloud environments to mitigate potential loss of
data on instance termination.

32318  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

Commercial SOA registry/repository offerings, such as those from SoftwareAG,
HP, and IBM, take on management of all the metadata associated with services. These
incorporate workflow around asset creation and authorization, environment migra-
tion, and deployment of policy and service into production. At present, these are not
cloud-centric. Turnkey cloud management and security solutions, such as RightScale
and Symplified, implicitly have some of these capabilities in their offerings, but these
are not general cloud registry/repositories. The generalized cloud policy registry/
repository will become an important infrastructure component for cloud-based PEPs,
but at present, there are no commercially successful implementations of this.

18.4.15 � Provisioning and Distribution

Policy naturally assimilates dependencies on local information that may change as
the policy moves between environments. Consider a migration from development,
to QA, and finally into production environments: the IP addresses change, as do
dependencies on external systems such as PDPs, representations of identity, etc.

Elastic computing exacerbates the dependency problem. Policy content may
change in response to variation in traffic volume. Some of these changes are deter-
ministic and thus solvable using simple mappings applied to policy documents. At
present, there is no comprehensive and standardized solution to this challenge.

18.4.16 � Policy Synchronization and Views

Synchronization of policy between PEPs in the on-premise DMZ and PEPs
deployed in the cloud is an open issue. The existing protocols address some simple
aspects of security. SSL/TLS, for example, incorporates a negotiation mechanism
that converges on a cipher suite common to both parties. A similar approach is
required for other aspects of policy.

WS-Security Policy (Nadalin et al. 2007) provides a means for a service pro-
vider to declare a means to secure a transaction using either SSL or WS-S message-
based security. Its scope includes confidentiality, integrity, and security tokens.

This approach provided the much-needed declarative policy around security, but
much work remains. There is a need for a standardized approach to negotiate a
reciprocal policy contract (like SSL does), as well as declaration of traditionally
out-of-band parameters of policy such as transport compression. In the absence of
this, synchronization of policy remains largely a manual operation.

The determination of appropriate policy views for a client, based on factors such
as identity and entitlements, is an open area of research. All policies contain ele-
ments not intended for client consumption, such as authorization rules or internal
routing. Accurate and secure resolution of suitable externally facing views of policy
is an unresolved problem in need of further investigation.

324 K.W.S. Morrison

18.5 � Conclusion

Too often, technological trends focus on what is new and fail to learn the lessons of
the past. In the cloud community today, there is a misperception that SOA largely
failed and that cloud will be the approach that successfully drives down IT costs
and increases agility in the enterprise. In truth, cloud advocates can – and should
– learn from the lessons of SOA. There is much to gain from recognizing cloud
computing as an evolutionary step and a logical deployment model for services
developed under the principles and guidance of SOA.

The adherents of SOA are careful to promote the discipline not as technology,
but as an architectural approach. Technology may not be a perfect realization of the
philosophical goals of SOA; however, it is a pragmatic lens through which one can
explore the more practical aspects of the discipline, especially when applied to an
emerging sector like cloud computing. This chapter was about such a technology.

This chapter proposed the use of SOA PEPs, a security technology with proven
value in on-premise SOA, as a means to secure and manage application services
residing in the cloud. We found that a number of new challenges arise from the
changes in control and operating environment that is inherent to cloud computing.
The approach shows promise, though there remain open areas for research, particu-
larly around cloud-based policy repositories and provisioning of PEP instances.
Nevertheless, a run time, cloud governance architecture, based on the existing vir-
tualized PEP infrastructure, is a practical and pragmatic approach.

Acknowledgments  This author acknowledges the many valuable discussions with Jay Thorne,
Director of Development, Tactical Team at Layer 7 technologies.

References

	 1.	 Armburst M et al (2009) Above the clouds: a Berkeley view of cloud computing. Electrical
Engineering and Computer Sciences University of California at Berkeley. Technical Report
No. UCB/EECS-2009-28. 10 Feb 2009

	 2.	 Berners-Lee T, Fielding R, Masinter L (2005) RFC 3986 Uniform Resource Identifier (URI):
Generic Syntax. IETF

	 3.	 Brodie S (2008) Barriers to cloud computing adoption. http://blog.skytap.com/2008/06/barri-
ers-to-cloud-computing-adoption/. Accessed 20 June 2010

	 4.	 Brunette G et al (2009) Security guidance for critical areas of focus in cloud computing V2.1.
Cloud Security Alliance

	 5.	 Cameron R, Herdy K, Ehsan A (2009) Parallel bit stream technology as a foundation for XML
parsing performance. In: Proceedings of the international symposium on processing XML
efficiently: overcoming limits on space, time, or bandwidth. Balisage Series on Markup
Technologies, vol. 4 (2009), Montreal, Canada

	 6.	 Dierks T, Allen C (1999) The TLS Protocol version 1.0. RFC 2446
	 7.	 Fickes M (2005) Validating DOD. Government Security Magazine. http://govtsecurity.com/

mag/validating_dod/. Accessed 20 June 2010
	 8.	 Fielding R, Getty J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T (1999) Hypertext

transfer protocol – HTTP/1.1, IETF

32518  Technologies for Enforcement and Distribution of Policy in Cloud Architectures

	 9.	 Fielding RT (2000) Architectural styles and the design of network-based software architec-
tures. Ph.D. thesis, University of California, Irvine

	10.	 Frier A, Karlton P, Kocher P (1996) The SSL 3.0 Protocol, Netscape Communications Corp.
	11.	 Hollis C (2009) Barriers to private cloud adoption. http://chucksblog.emc.com/chucks_

blog/2009/06/barriers-to-private-cloud-adoption.html/.Accessed 20 June 2010
	12.	 Langley K (2008) Cloud computing: get your head in the clouds. http://www.productionscale.

com/home/2008/4/24/cloud-computing-get-your-head-in-the-clouds.html/. Accessed 20 June
2010

	13.	 Leventhal M, Lemoine M (2009). The XML chip at 6 years. In: Proceedings of the interna-
tional symposium on processing XML efficiently: overcoming limits on space, time, or band-
width. Balisage Series on Markup Technologies, vol. 4 (2009), Montreal, Canada

	14.	 Linthicum D (2009) Cloud computing and SOA convergence in your enterprise: a step-by-
step guide. Addison–Wesley, Reading, MA

	15.	 Lingyu W et al (2007) A logic-based framework for attribute based access control. In: Proceedings
of the 2004 ACM workshop on formal methods in security engineering, Washington DC, USA

	16.	 Maler E et al (2003) Assertions and protocols for the OASIS security assertion markup lan-
guage (SAML) V1.1. OASIS Standard, September 2003

	17.	 McIntosh M et al (2009) Basic Security Profile V1.1 Web Service Interoperability
Organization

	18.	 Mell P et al (2009) NIST Definition of Cloud Computing. NIST Computer Security Division.
http://csrc.nist.gov/groups/SNS/cloud-computing/. Accessed 20 June 2010

	19.	 Monzillo R et al (2006) Web services security: SAML token profile 1.1. OASIS Standard
Specification

	20.	 Morrison KS (2009) Steer safely into the clouds: why you must have cloud governance before
you move your apps. Layer 7 Technologies

	21.	 Moses T (2005) eXtensible access control markup language (XACML) version 2.0. OASIS
Standard

	22.	 Nadalin A et al (2006) Web services security: username token profile 1.1. OASIS Standard
Specification

	23.	 Nadalin A et al (2006) Web services security: Kerberos token profile 1.1. OASIS Standard
Specification

	24.	 Ness G (2009) The 3 major technology barriers to cloud computing. http://seekingalpha.com/
instablog/275505-gregory-ness/3681-the-3-major-technology-barriers-to-cloud-computing/.
Accessed 20 June 2010

	25.	 Reese G (2009) Cloud tips: sending email from an EC2 instance. http://broadcast.oreilly.
com/2009/01/sending-email-from-ec2.html/. Accessed 20 June 2010

	26.	 Salz R, Achilles H, Maze D (2009) Hardware and software trade-offs in the IBM DataPower
XML XG4 processor card. In: Proceedings of the international symposium on processing
XML efficiently: overcoming limits on space, time, or bandwidth. Balisage Series on Markup
Technologies, vol. 4 (2009), Montreal, Canada

	27.	 Van Cleave D (2003) MITRE helps the air force implement PKI. The Mitre Digest May 2003
	28.	 ZDnet Interviews (2009) Experts highlight barriers to cloud adoption. http://news.zdnet.co.uk/

internet/0,1000000097,39661584,00.htm/. Accessed 20 June 2010
	29.	 Service-Oriented Architecture (2009) http://en.wikipedia.org/wiki/Service-oriented_architecture

Role-based Access Control. http://en.wikipedia.org/wiki/Role-based_access_control. Accessed
20 June 2010

	30.	 Yavatkar R et al (2000) A framework for policy-based admission control RFC2753 Internet
engineering task force

327

Abstract  Over the last 5 years, the digital media sector has undergone a radical
change in its business model. An industry once focused on broadcasting to a fixed
published schedule must now support an on-demand usage model across a wide
range of fixed and network devices using a variety of content formats. This media
revolution has brought significant changes to user viewing patterns and demanded
significant changes in the broadcaster’s business model. In turn, this has resulted
in significant changes to the content creation workflow and radical changes in the
infrastructure that is used to support digital media creation, distribution, delivery
and archive. For the last 7 years, the Belfast e-Science Centre (BeSC) has worked
with the British Broadcasting Corporation (BBC) to research emerging network-
centric technology and their applications within the broadcasting sector. This
work pioneered the use of grid technology within the broadcasting sector and
evolved, over the last 4 years (the PeRvasive Infrastructure of Services for Media
(PRISM) project), into piloting a cloud-based media infrastructure that supports
traditional and network-centric access to BBC content. The PRISM media cloud
has services and test users across the United Kingdom and brings together owned
and on-demand resources to support its user content access services. The service
cloud is deployed on demand using owned and on-demand resources, and oper-
ates as a dynamic market selecting services based on need and usage criteria. In
this chapter, we describe the PRISM cloud and the market ideas that underpin its
operation.

T. Harmer (*)
Belfast e-Science Centre, the Queen’s, University of Belfast, Belfast, UK.
e-mail: t.harmer@besc.ac.uk

Chapter 19
The PRISM On-demand Digital Media Cloud

Terry Harmer, Ron Perrott, and Rhys Lewis

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_19, © Springer-Verlag London Limited 2010

328 T. Harmer et al.

19.1 � Introduction and Background

Digital media has become a pervasive part of people’s lives. Once video was transmitted
to the home and viewed on a television. The focus for the broadcaster was on creat-
ing programmes to be broadcast according to a well-defined broadcasting schedule;
creating an attractive schedule was an important part of the broadcaster’s business
model to ensure success. There were generally few television stations and each
targeted a broad audience with peak adult viewing and targeted programmes for
children. There has been a rapid expansion in the number of television channels,
such as CBeebies children’s channel or the Science Fiction channel, which target
increasingly narrower audiences.

In addition, it is now the norm for video to be available on-demand from a range
of content providers such as established television broadcasters, offering for exam-
ple new catch-up services such as the British Broadcasting Corporation’s (BBC’s)
iPlayer [6], or newer content providers such as YouTube [14]. This on-demand
content is available at home using set-top boxes from cable or satellite providers,
and via broadband network connections directly to network enabled in-home
devices. It is commonplace that media is downloaded on-demand to a networked
device at home or on the move when required; or it might be downloaded to a
device and stored for future use. New companies and a new economy have been
established that sell and deliver content directly to a user for use on their networked
device using the network as the sales and delivery platform, such as Apple’s iTunes
Store or Amazon’s Download service.

This media revolution has led to significant changes in the way the industry
operates and the resulting workflows. A traditional broadcaster, such as the BBC,
must now support a range of user access mechanisms, or platforms, in their day-to-
day operation. Their traditionally small number of (schedule-driven) linear broad-
casting channels has increased rapidly, from two channels 5 years ago to seven
channels today, and they sit alongside cable, satellite, online news services and
content on-demand services, and support conventional and high-resolution mate-
rial. Each of these platforms requires content and metadata management, and they
often have different content control access rights. For example, online content from
the BBC’s iPlayer is available for 7 days after transmission and only within the UK.
A broadcasting infrastructure must manage these platforms efficiently and cost-
effectively in the cost-sensitive media domain.

What makes digital media an interesting domain to work in is that it is a golden
example that combines large-scale data requirements, millisecond-based quality of
service (QoS) requirements and high security needs because (to the broadcaster)
digital content is its lifeblood. Thus, for example, digital media combines data needs
that are currently larger (and rising faster) than that projected for the Large Hadron
Collider [1] and must support many millions of users all with high degree of reli-
ability. For any new technology, the digital media domain is a demanding one.

The Belfast e-Science Centre has been working with the BBC for 7 years,
researching the use of emerging technology within the broadcasting domain. Initially,
BeSC and the BBC pioneered the use of grid technology [2] within the broadcasting

32919  The PRISM On-demand Digital Media Cloud

chain for traditional terrestrial broadcasting in the Gridcast project [3]. More recently,
we have been working with a wider range of partners1 to demonstrate the use of
network-centric applications and cloud infrastructures to create dynamic, highly scal-
able infrastructures to support the multi-platform digital media infrastructure

In this chapter, we discuss the evolution of our early cloud work within the Gridcast
project into the dynamic service cloud that is used to support on-demand content access
within the PeRvasive Infrastructure of Services for Media (PRISM) project. The PRISM
infrastructure has been in field deployment for over 2 years to support a test consumer
group. It provides content access via a set-top box to streamed or downloaded content
from the BBC, or streamed content directly to networked enabled devices, such as
mobile phones, computers and games consoles. The PRISM infrastructure uses auto-
deployment and auto-scaling and has no human operators managing the service infra-
structure – infrastructure is auto-provisioned when required and failed services are
re-deployed automatically when failure is detected. This automation acts as a market of
resources that are capable of hosting services and services that need compute resources.

19.2 � A Media Service Cloud for Traditional Broadcasting

Traditional terrestrial broadcasting is a complex operation – traditional broadcast-
ers, like the BBC, are usually collections of affiliate or regional broadcasters that
operate sometimes to the same broadcasting schedule and sometimes modified ver-
sions of a core broadcasting schedule. The infrastructure is most often built to
assume the distribution of live content from a controller location. In the simplified
example of Fig. 19.1, as discussed later, three of the BBC’s regional networks
(BBC Northern Ireland or BBCNI, BBC Scotland and BBC Wales) are fed from a
large-scale store of content centralised in London.

Content for the common core, or network, schedule is distributed at its sched-
uled broadcast time (as-if-live) to the affiliates for distribution to the supported
platforms. Broadcast automation manages content delivery to the broadcast plat-
forms that are supported. If content is not being broadcast at the scheduled network
time, then it is recorded at the affiliate for time-shifting and that content is managed
locally. The core network infrastructure is designed to support live and high-quality
video transmission – which will always be an important part of the broadcasting
infrastructure requirements.

19.2.1 � Gridcast the PRISM Cloud 0.12

The traditional broadcasting infrastructure model, outlined above, gives a robust
and reliable infrastructure – however it does reduce the flexibility of the business

1 Partners in the later work included Qinetiq plc and BT plc.
2 The diagrams here depict the services as clouds are from the initial technical discussions with
the BBC in the summer of 2003.

330 T. Harmer et al.

as it makes customisation and consumer market targeting more difficult for the
affiliates. In the Gridcast project, we created a cloud infrastructure to support the
traditional broadcasting activities that were deployed and in test use in autumn
2003 – it was written using the Globus Toolkit Version 3, developed initially in GT3
Alpha1 and it tracked GT3 development to an architecture release to coincide with
that Globus toolkit release (Fig. 19.2).

The Gridcast infrastructure consisted (from today’s perspective) of a collection of
service clouds that provided the outward presence of the affiliate broadcaster and the
associate core network control. The services permitted remote technical service sharing
and the coordination of content output – one of the early motivations was in line with
the grid ideas of permitting resource sharing and optimisation of infrastructure usage.

The support of schedule-based broadcasting is implemented by content being
shared from the central repositories or the broadcasters themselves to the point of
use. Thus, for example, the scheduling services for BBCNI would request a copy
of the content to support its scheduled output – live output, such as for news
programmes, is shared using a live network feed. This architecture thus defined a
typical IT focused content sharing network with collections of repositories
sharing content.

Fig. 19.1  BBC nations and regions infrastructure

33119  The PRISM On-demand Digital Media Cloud

However, sharing is not just a simple matter of copying content. Content sharing
must be performed securely and the Gridcast infrastructure had a role-based secu-
rity model that used role-annotated X509 digital certificates [5] to denote the rights
of a requesting user – and thus all requests for content where made using secure
service exchange that validated these user credentials. Each individual content item
within the infrastructure could have an associated security policy that defined who
could copy the material and indeed where it could be stored and for how long. In
practice, the rights to content were defined by a few large-scale content policies
based on the genre of the content; for example, a policy that defined news content
or one for drama. A content policy could require that content was shared in a rights-
protected fashion and thus demand a key to unlock it for viewing.

In addition to security considerations, content sharing across the Gridcast infra-
structure was managed to support scheduled broadcasting – storage within the
regional broadcast locations is limited and the content is not required for extended
periods by the individual affiliates. The Gridcast content movement was organised
by a transport broker that was driven by the broadcast schedule and the quality of
service required by that schedule, as depicted in Fig. 19.3.

The Transport Broker is charged with organising content movement within the
broadcast organisation to ensure that each affiliate has the content required when it
is required and in the correct broadcasting format – if a required format did not exist
when requested, then it would be created in time for the required sharing of that
content. Within the infrastructure, we integrated a collection of transport types that
varied from open source, such as GridFTP [7], proprietary content delivery net-
works to live switched feed. The selection by the transport broker was made using
a market-driven approach – each transport offers its QoS for a transaction and

Fig. 19.2  (a) Broadcaster Cloud. (b) Broadcaster Services

332 T. Harmer et al.

defines an associated cost of delivering that QoS and the broker chooses based on
the required QoS and the cost defined by the requester.

This content-sharing approach brings significant business benefits to the broad-
caster and its affiliate broadcaster enabling them to construct reactive schedules tai-
lored to the needs of the target audience. Further, sharing can be from copies of
content held across the broadcaster community and not just the central content reposi-
tories, enabling load sharing of content requests across the broadcasting infrastruc-
ture. The Transport Broker API evolved within the Gridcast infrastructure towards the
end of the project (2004) to manage the various content stores within the broadcast
infrastructure as a collection of content storage clouds, as depicted in Fig. 19.4a.

Fig. 19.3  A content broker for content sharing

Fig. 19.4  (a) A content cloud. (b) The Gridcast service cloud.

33319  The PRISM On-demand Digital Media Cloud

The transport broker’s role is then to provide a simple and implementation-
independent view of available content – effectively the broker gives the view that it
had access to all content and in any format that was required, and its underlying
services moved content to support this view and external technical services enable
content processing when required, Fig. 19.4b. This cloud implementation enabled
automatic load balancing of content transfers and also the pre-emptive format con-
version and placement of content to satisfy predicted content requests.

This (as we view it now) cloud approach also extended to the organisations and
the technical services within the broadcasters – effectively creating a location-
independent collection of broadcaster clouds. A broadcaster cloud managed the
output for a particular broadcaster and cooperated with its affiliates. This approach
enabled the broadcasting cloud’s role to be changed dynamically. Thus, all broad-
casters could act independently, or act to the same schedule or to change the role as
to which broadcaster was managing the core schedule – bringing resilience to the
broadcast infrastructure. A more detailed discussion of the architecture, the sup-
porting broadcasting services and a broadcasting service management infrastruc-
ture can be found in [3, 9].

19.3 � An On-demand Digital Media Cloud

Gridcast was focused on issues internal to a broadcaster – the sharing of content
and technical services that enabled the broadcaster to fulfil its business role. This is
still a significant issue to a broadcast and indeed any technical organisation.
However, as discussed earlier, a mainstream broadcaster must manage this tradi-
tional broadcasting role along with managing access via satellite, digital terrestrial
broadcasting and increasingly on-demand content access – each of which places
different requirements on the broadcast infrastructure.

In addition, the broadcasting economy has changed significantly over the last
3 years. The broadcaster would have once expected in-house resources to manage the
content workflow from commissioning through to delivery to the consumer; today,
the broadcaster must interact with an increasingly diverse collection of service pro-
viders, each delivering one component of the final product (e.g. post-production,
subtitle, playout, etc.) Each of these service providers must be integrated within the
content workflow and be part of the broadcast content management infrastructure.
In essence, there is a content economy, as depicted in Fig. 19.5, where content is
traded and shared across broadcasters and service providers.

It is commonplace for broadcasters to cooperate in sharing technical resources
and content. Basic technical services might be contracted to third-party specialist
media companies, delivery of content to platforms might be managed by a broad-
cast company, such as Red Bee in the UK who provide playout services for a num-
ber of broadcasters, and web content managed by a web streaming specialist. This
diverse economy places significant emphasis on managing relationships between
economy members.

334 T. Harmer et al.

In Fig. 19.6, the high-level service architecture for the PRISM infrastructure is
depicted. At the core of the architecture is a cloud store that manages all content
within the infrastructure – this cloud store is a development of the one used within the
Gridcast infrastructure and is a managed, loosely coupled collection of individual
cloud stores that provide a single view of all available content. The user has a collec-
tion of devices on which content may be accessed. These devices use commercial
gateway providers to provide content for a user – so a satellite box is necessary for
access content from satellite transmissions, a broadband network box provides access
to the Internet, etc. The role of the infrastructure is to enable managed access to the
content that is available to the user enabling multi-platform content access.

Within a broadcaster, broadcast control staff interact with the content cloud to
manage the availability of content – for example, broadcasting schedulers manag-
ing content release or legal specialists reviewing and commenting on content prior
to its release. The content cloud is supported by local in-house and third-party ser-
vice providers that enable content to be prepared and refined for release – for
example, providing content conversion or specialist quality control services.

To the broadcaster, a platform is managed by a content provider that has an
established (and often contractual) relationship with that broadcaster to provide
content to users – this relationship will define when content will be made available,
for how long it is available and in what form it is provided by the broadcaster and
by the provider to the user. The exchange of content may also require the exchange
of supporting metadata to enable the content to be indexed and classified by the
provider – for example to enable its designation to be suitable for particular age
groups or to enable user searches for locating particular content.

The traditional ways to manage this type of business relationship would require
human control of the transfer or (more recently) using automated content manage-
ment workflows as part of content development lifecycle management. In the
PRISM infrastructure, the focus is on automation and fine-grained control of
behaviour and the approach is to control behaviour using content policies that focus
on individual content management and expected behaviour given operations and
events on that content. A content policy is a Security Access Mark-up Language
(SAML) [10] document that specifies who exercises control over content, the
operations that can be performed and by which type of user, and any consequent
action that should be performed if an operation succeeds or fails. Each user and
service within the infrastructure is identified by a security credential that identifies

BBC

Broadcaster A

Broadcaster B

Streaming
Company

Independent
Producer

Post
Production
Company

Playout
Company

Fig. 19.5  A media economy

33519  The PRISM On-demand Digital Media Cloud

them and their role within the infrastructure – for example, specifying an individual
as a scheduler for particular content. Individual content can have a specific content
policy and extend, restrict or relax generic content policies for the group or genre
of content it belongs to. Thus, a global broadcast policy might be defined, which is
refined by an affiliate broadcaster; this in turn is refined by its genre and specialised

Fig. 19.6  Content provider infrastructure

336 T. Harmer et al.

by the individual content. Content policies can be changed dynamically and can
include actions that should be performed when a policy itself is changed – enabling
a highly dynamic environment to be created.

Thus, the relationship between a broadcaster and a content provider is an action
within a content policy – for example, when content is made available, an action
with a content policy might define that it is automatically shared with particular
content providers, or simply define that it is available to share. The means of sharing,
the format and the timing of sharing are also defined by policies within the cloud
store. This policy-driven approach also manages content sharing and processing by
external service partners. For example, when content is to be transcoded, a content
policy may define that it is done by a third-party company and define how the trans-
fer to the service company is to be performed. This might mean that a physical copy
of the content is created and dispatch by courier requested, or more generally within
the infrastructure that the Media Dispatch Protocol [12] is used to auto-negotiate and
initiate the transfer of content directly to the chosen content service provider.

19.4 � PRISM Cloud Implementation

An implementation of a broadcasting infrastructure presents a significant challenge
in that it includes activities that are scheduled and predictable, and activities that
are demand-driven and unpredictable. In delivering content to users, a minimum
QoS is expected; otherwise, users will not use the content services. And, yet, the
predictable and scheduled activities required by a broadcaster within the infrastruc-
tures must be maintained.

In addition, a broadcast infrastructure includes fixed assets, potentially mobile
assets and an increasing need to scale the infrastructure dynamically to meet user
demand. Thus, large-scale content stores will be in fixed and defined locations
within broadcast locations – for example, the BBC may implement a single, centra-
lised large-scale content store with smaller stores available within affiliate broad-
casters or even at the premises of its production partners. This situation is further
complicated by specialist service equipment being clustered around these content
stores to support content processing – where the locality to the content reduces the
need to move large-scale content across congested networks. A solution must live
with this reality and permit these fixed assets to be supplemented to support pre-
dicted and unpredicted spikes in demand – for example, the rush of users requesting
content for a new programme shortly after it is released.

19.4.1 � Cloud Resources

The PRISM infrastructure is defined as a collection of resource clouds that can be used
to support services within the media infrastructure. The cloud is composed of fixed

33719  The PRISM On-demand Digital Media Cloud

service assets that provide defined functionality and utility assets that can be used to
support these fixed assets – these utility assets can be services, compute resources and
storage resources, and be owned or bought on demand, as depicted in Fig. 19.7.

This model enables the media cloud to scale as demand increases and to occupy
a low resource footprint when demand is low – thus, for example, at night when
most of the affiliate broadcasters are operating the same broadcasting schedule and
user on-demand usage is low, the individual affiliate services can be shut down and
their resources are released, with all affiliate services operated by a single broad-
casting service and online infrastructure reduced. (The PRISM auto-deployment
system will power-off owned resources or will release utility resources to reduce
the infrastructure cost as needed.)

The API to these various clouds is uniform and defined using the libcloud library
[4], which provides a standard and simple model for resource end-to-end manage-
ment. The library uses a find (to locate a suitable resource) operation, reserve (to
hold a resource) operation, instantiate (to make a resource available) operation and
discard (to release a resource) operation model. The find operation takes a collec-
tion of restrictions that define resource properties – these enable selection based on
resource characteristics through to location and cost.

Fig. 19.7  A resource cloud

338 T. Harmer et al.

This multi-provider cloud approach has shown to offer a flexible and highly
resilient infrastructure. For example, if the broadcaster has no in-house infrastructure
available, then the infrastructure is allocated entirely on utility resources – the only
weak link is the physical connection to the broadcast platforms. As demand increases,
the availability of utility resources enables the services to scale to meet this demand.

19.4.2 � Cloud Service Deployment and Management

The PRISM service cloud is managed by the Debut auto-deployment and management
infrastructure (an overview of Debut is given in [9]) that provides service, virtual
machine and application deployment, monitoring and scaling. Debut operates as a
cloud broker in selecting resources for services/storage/applications, as a deploy-
ment layer and as a monitor and SLA layer for deployed resources. Each deployment
block (in Debut terms), which is one or more applications/services/stores, defines its
deployment requirements – following the libcloud model these are defined as restric-
tions that specify basic items such as version of software, trusted software providers
and host operating system, infrastructure requirements such as network bandwidth
and firewall requirements, and locality requirements such as particular location. The
restriction framework is a generic one and can easily be extended by a user to specify
particular needs in a deployment. The restrictions are used to select the resources
that are suitable for a deployment from the clouds that are being managed.

The Debut deployment layer performs software deployment driven again by
restrictions that specify the kind of environment, such as bare metal or virtual con-
tainer type, on a selected resource and either notify a user of the allocated location
or link this location into other applications that use the deployed software, and thus
enable a large-scale infrastructure to be composed as a series of deployments. The
management layer also performs automatic service scaling and enables SLA
requirements such as response time or load factors on applications or services that
will trigger automatic scaling of an application/service/store.

19.5 � The PRISM Deployment

The PRISM infrastructure is currently supporting a non-public content access trial
with users able to access content from a range of locations and devices as illustrated
in Fig. 19.8.

At its core, the PRISM infrastructure has a cloud that implements the traditional broad-
casting infrastructure, as outlined earlier, that provides digital media content in terms of
audio from radio broadcasts and video from TV broadcasts. This infrastructure also pro-
vides access to live streaming broadcasts for all of the supported BBC channels.

A content cloud implements a large-scale media store with associated process-
ing capabilities and metadata indexing and search capabilities. The content store for

33919  The PRISM On-demand Digital Media Cloud

supporting a traditional broadcast channel has been extended to publish content
automatically along with its metadata to the on-demand content cloud. This publi-
cation is controlled by automatically applied content policies outlined earlier.

Content is accessed through content access services that provide authenticated and
multiple protocol content use. The content services support direct access to media by
devices using an open collection of metadata search and content transport services. In
addition, the content access services support a web interface with thumbnail-based
browsing and searching based on TV Anytime metadata [12]. For example, it is pos-
sible to search for a programme based on artist, title, description, language, subtitling,
audio description and approximately 1,000 fields that describe the nature and lifecycle
of the media content. In the current user trial, the infrastructure is actively accessed by
different devices types including a prototype set-top box developed for the BBC; com-
puters using a range of web browsers; mobile phones or computer games consoles.

The infrastructure requires user authentication when using the content services.
The services use a range of access protocols such as Open ID [8], Shibboleth [11]
and X509 certificates. For most users in the trial, Open ID has been the authentica-
tion mechanism of choice as it enables their current online accounts, at Google,
Hotmail, Facebook, etc., to provide user authenticated access services. Once
authenticated, the access services assign a user a profile that controls their access
to content. Thus, the service provides role-based views of content that control all
aspects of use from ability to search and the content that can be searched, to the
type of delivery mechanism that can be used, such being able to download and
whether the media is rights protected when downloaded.

Fig. 19.8  The deployed PRISM cloud

340 T. Harmer et al.

The search and content services are designed to be multi-format and multi-pro-
vider. The search query language is designed to aggregate results taken from a
range of online providers as well as the content metadata taken from the broadcast-
ing cloud. Thus, a user query can specify that searching should be across the
PRISM content cloud, YouTube, Flickr as well as web sites, such as BBC News.
The content services provide direct access to content within the PRISM cloud and
mediated access to other providers enabling the client services to have a single
point of access to content.

Over the 1.5 years of deployment, the infrastructure has managed more than 1.5
PetaBytes of content along with supporting processing and metadata.

19.6 � Summary

The PRISM cloud has evolved over 3 years into a limited, non-public, dynamic content
on-demand infrastructure that is supporting a trial collection of consumers. The infra-
structure has managed more than 1.5 PetaBytes of data currently and its content archive
grows by 30 hours of content every day. The cloud approach has proven to give a highly
reliable and scalable infrastructure, which can cope with equipments and network loss
– for example, the infrastructure has coped with losing one of its large-scale content
stores by automatically deploying backup resources to on-demand providers.

19.7 � Content Note

The PRISM project is an R&D project and as such it is not a statement of BBC
technology direction or internal infrastructure requirements – it is an experimental
infrastructure that is evaluating approaches and technologies and how they might
be used within a broadcasting infrastructure.

Acknowledgements  The authors acknowledge the support of the UK Technology Strategy
Board under grant TP/3/PIT/6/l/15656, the EPSRC under Platform Award EP/F066139/1 and our
co-researchers in QinetiQ plc and BT plc.

Many people have worked on this project and the authors wish to highlight the role of Christina
Cunningham, Stephen Craig, Chris Chambers, David Butler, Tanya Beech, Gerry Robinson and
the development teams at Belfast e-Science, BBC Research and Innovation, QinetiQ ISTAR, and
BT (Ireland).

References

	 1.	 http://lhc.web.cern.ch/lhc/
	 2.	 Foster I, Kesselman C (1999) The grid: blueprint for a new computing infrastructure. Morgan

Kaufmann, San Francisco, CA. ISBN 1-55860-475-8

34119  The PRISM On-demand Digital Media Cloud

	 3.	 Harmer TJ (2007) Gridcast – a next generation broadcast infrastructure? Clust Comput
10:277–285. ISSN: 1386-7857

	 4.	 Harmer TJ et al (2009) Provider-independent use of the cloud. In: 15th international Euro-Par
conference, Delft, The Netherlands, August 25–28, 2009, pp 454–465. ISBN: 978-3-642-
03868-6

	 5.	 Housley R, Ford W, Polk W, Solo D (1999) Internet X.509 public key infrastructure certificate
and CRL profile. IETF-Network Working Group, The Internet Society, RFC 2459

	 6.	 http://www.bbc.co.uk/iplayer
	 7.	 Kettimuthu R et al (2007) GridCopy: moving data fast on the grid. In: Proceedings of the

fourth high performance grid computing (IPDPS 2007), Longbeach, CA
	 8.	 http://openid.net
	 9.	 Perrott R, Harmer TJ, Lewis R (2008) e-Science infrastructure for digital media broadcasting.

IEEE Comput 41(11):67–72
	10.	 http://saml.xml.org
	11.	 http://shibboleth.internet2.edu
	12.	 SMPTE (2007) Media Dispatch Protocol, SMPTE Standard 2032-1-2007. http://www.smpte.

org/. Accessed 20 June 2010
	13.	 http://www.youtube.com

343

Abstract  Cloud computing is an important next step in the trend toward inexpen-
sive and universal access to information and sophisticated computing resources that
help close the digital divide between the computer haves and have-nots. In cloud
computing, the end-users can access fully functional software and services online
at little or no cost using inexpensive computers or mobile communication devices
that connect them via the Internet. Innovative service providers no longer need to
own and maintain development or production infrastructures and can automatically
scale their production operations to meet growing demand much more easily and
economically than possible with internal data centers, traditional hosting, or man-
aged services arrangements. The cloud’s inherent ability to dynamically scale up or
scale down the infrastructure commitment as demand changes on a pay-as-you-go
basis has a positive impact on the service provider’s overhead costs, energy costs,
and in reducing its carbon footprint.

Cloud economics as presented in this chapter refers to the economic forces, busi-
ness drivers, and structural issues affecting the broad costs and benefits of adopting
the cloud technologies or the creation of private or public utility clouds. Here, cloud
economics also deal with the economy inside the cloud, which includes monetiza-
tion, charging, billing, and taxation of products and services inside the cloud.

20.1 � Cloud Computing Reference Model

The cloud can be divided into three major verticals, namely, the cloud user, the cloud
vendor, and the original cloud provider (OCP) as shown in Fig. 20.1. The cloud vendor
is an organization that has a local tax registration and offers the cloud services to the
cloud user with guaranteed quality of experience (QoE) and quality of service (QoS)

A.K. Talukder (*)
Geschickten Solutions, Bangalore, India
e-mail: asoke.talukder@gmail.com

Chapter 20
Cloud Economics: Principles, Costs,
and Benefits

Asoke K. Talukder, Lawrence Zimmerman, and Prahalad H.A

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_20, © Springer-Verlag London Limited 2010

344 A.K. Talukder et al.

within the framework of a service level agreement (SLA). A cloud vendor can be a com-
pute, storage and application brokerage and clearing house that provides prenegotiated
access to the cloud services such as infrastructure as a service (IaaS) provider, platform
as a service (PaaS) provider, and software as a service (SaaS) provider [1]. The IaaS
service provider offers the physical computing hardware that includes the processing
power through a set of central processing units (CPUs) in a cluster. IaaS will also provide
the online memory (Random Access Memory – RAM) and the disk storage. The PaaS
provider is responsible for supplying and managing all the middleware platforms neces-
sary to enable the software to run over the cloud. Finally, the SaaS provider will offer the
software applications that will be used by the end-user.

The cloud vendor offers the QoE and the QoS that the end-user requires; the cloud vendor
will provide the data security and meet the regulatory and legal requirements as required by
the user or the regulators. The cloud vendor ensures that SaaS, PaaS, and IaaS are available
to the end-user as services that are elastic and can scale up or scale down on demand. The
cloud vendor also guarantees that the cloud service is fault-tolerant and is available on a
continuous basis with proper security that includes confidentiality, integrity, availability,
authentication, authorization, accounting, and anonymity (CI5A) [2]. The cloud vendor will
charge the end-user for the consumed cloud resources based on the QoE.

At one time, energy companies used to manufacture power transmit it from
generating stations to the distribution center, and finally deliver it to a household for
a fee. The same was also true with telecommunications vendors who used to own
the entire infrastructure starting from customer premises equipment to the transmis-
sion line. However, today many telecom and energy resellers are virtual operators
who do not own any infrastructure. They use energy and telecom infrastructures
from different providers to offer better QoS, cheaper tariffs, or value-added services.

Facilities

Hardware

Facilities

Integration & Middleware

Data Metadata Content

Application

API

Presentation Modality Presentation Platform

Infrastructure
as a Service

Platform as
a Service

Software as
a Service

Connectivity & delivery

API

Facilities

Hardware

Facilities

Connectivity & delivery

API

Integration & Middleware

Q
o
E

&

Q
o
S

S
E
C
U
R
I
T
Y

User/
Customer/
Device

M
I
D
D
L
E
W
A
R
E

Original Cloud ProviderCloud VendorCloud User

FacilitiesFacilities

Data Metadata

Connectivity & delivery

FacilitiesFacilities

Connectivity & delivery

Fig. 20.1  The cloud reference model

34520  Cloud Economics: Principles, Costs, and Benefits

This helped competition and improvement in service quality with new job creation
and economic opportunities. Similarly, in the cloud, the cloud vendor is a virtual
organization that offers the last-mile services to the end-user. It may not even own
any cloud infrastructure – it will source cloud resources from various original cloud
providers such as SaaS, PaaS, or IaaS from different parts of the world to offer the
cloud services that meet certain SLA. The original cloud provider such as an IaaS,
PaaS, or SaaS can also become a cloud vendor by offering guaranteed services qual-
ity and meeting local tax requirements.

In many cases, the small and medium enterprises (SMEs) or a household will
interact only with the cloud vendor at the last-mile and may not even know the origi-
nal cloud providers. The service model for the cloud vendor will mainly be driven
by the end-to-end services they provide based on QoS, SLA, and QoE. These ser-
vices may be the entire computing environment starting from software application
to data storage and management or even simple resources such as four processors
for 1 hour. The service can be private or public and accessible through any network
whether wire-line or wireless. The pricing of the resources by the original cloud
provider will be driven by some fixed price derived from raw computing power and
the storage (memory and disk), whereas the pricing of the cloud service to the end-
user will depend on the SLA and QoE the user perceives.

Currently, many large cloud providers are actively recruiting vendors and resellers
of their services. Like any value-added reseller sales channel, the providers are look-
ing to leverage the vendor’s sales efforts, client relationship management expertise,
and value-added services such as cloud application development or customization,
legacy system integration, etc., to increase the provider’s revenues and to maximize
the utilization of their facilities. Cloud vendors will create new economic opportuni-
ties that promise to increase innovation and entrepreneurship in the delivery of the
cloud services that will directly impact the QoS and QoE of the end-users.

20.2 � Cloud Economics

Cloud economics as presented in this section refer to the economic forces, business
drivers, and structural issues affecting the costs and benefits of adopting the cloud
technologies.

20.2.1 � Economic Context

As this chapter is being written, every enterprise in the world is facing a global
economic recession that has profoundly affected all developed countries as well as
those developing countries that develop products sold in those markets. Uncertain
times also bring opportunities, but taking advantage of strategic opportunities typi-
cally must now be done quickly without additional capital funds or corporate
resources.

346 A.K. Talukder et al.

In addition, for information technology (IT) managers, energy cost management
is not a small issue1. The challenge today is to increase computing power utilisation
with lower energy consumption. In addition, the maintenance of legacy enterprise
data centers absorbs the majority of IT budgets and IT managers are looking for
ways to create increased capacity and flexibility within their current computing
facility and hardware footprint, thereby lowering costs and increasing their return
on assets (ROA). There has been increasing attention paid to alternatives that pro-
vide the pay-as-you-go options, unlimited scalability, quick deployment, and the
minimal maintenance requirements. Cloud computing is a paradigm that promises
to meet all these requirements.

20.2.2 � Economic Benefits

Occasionally used to refer to the economics of cloud computing, the term
“Cloudonomics” was coined by Joe Weinman in a seminal article entitled “The 10
Laws of Cloudonomics” [4]. While far from being a comprehensive or exhaustive
list of economic factors, his “10 Laws” serve as a useful starting point in our discus-
sion. He examined the strategic advantages provided by public utility cloud ser-
vices over private clouds and traditional data centers. He posits that public utility
clouds are fundamentally different from traditional data center environments and
private clouds. For individual enterprises, cloud services provide benefits that
broadly fall into the categories of lowering overall costs for equivalent services
(you pay only for what you use), increased strategic flexibility to meet market
opportunities without having to forecast and maintain on-site capacity, and access
to the advantages of the cloud provider’s massive capacity: instant scalability, paral-
lel processing capability, which reduces task processing time and response latency,
system redundancy, which improves reliability, and better capability to repel botnet
attacks. Further, public cloud vendors can achieve unparalleled efficiencies when
compared with data centers and private clouds because they are able to scale their
capacity to address the aggregated demand of many enterprises, each having differ-
ent peak demand periods. This allows for much higher server utilization rates,
lower unit costs, and easier capacity planning netting a much higher return on assets
than is possible for individual enterprises. Finally, because the location of the pub-
lic cloud vendor’s facilities are not tied to the parochial interests of the individual
clients, they are able to locate, scale, and manage their operations to take optimum
advantage of reduced energy costs, skilled labor pools, bandwidth, or inexpensive
real estate.

These are not the only benefits that have been identified. Matzke [5] suggests
that the levels of required skills or specialized expertise along with the required

1 IBM cites a study [3] that reports that US data center managers are anticipating a 35% increase
in energy expenses over the next 4 years.

34720  Cloud Economics: Principles, Costs, and Benefits

economies of scale drive the optimum choice for resourcing IT initiatives. For him,
the availability of scalable skills combined with other economies of scale are
among the compelling benefits of cloud computing2. This is especially true for
enterprises that are located in labor markets that have very few or only very expen-
sive IT staff resources available with the requisite skills.

20.2.3 � Economic Costs

The costs associated with cloud computing facing early adopters include the
potential costs of service disruptions; data security concerns; potential regulatory
compliance issues arising out of sensitive data being transferred, processed or
stored beyond defined borders; limitations in the variety and capabilities of the
development and deployment platforms currently available; difficulties in moving
proprietary data and software from one cloud services provider to another; integra-
tion of the cloud services with legacy systems; cost and availability of program-
ming skills needed to modify legacy application to function in the cloud
environment; legacy software CPU-based licensing costs increasing when moved
to a cloud platform, etc.

20.2.4 � Company Size, Economic Costs, and Benefits
of Cloud Computing

The economic costs or benefits of implementing cloud services vary depending on the
size of the enterprise and its existing IT resources/overheads including legacy data cen-
ter infrastructure, computer hardware, legacy software, maturity of internal processes,
IT staffing, and technical skill base. These factors determine the strategic costs and
benefits that accrue to individuals and corporations depending on their relative size.

In the past, large corporations have had an advantage over small corporations in
their access to capital and their ability to leverage their existing human, software,
and hardware resources to support new marketing and strategic initiatives. However,
since the advent of cloud computing, the barriers to entry for a particular market or
market segment for a startup company have been dramatically reduced and cloud
computing may have tipped the balance of strategic advantage away from the large

2 Those with low requirements for economy of scale and skills can be addressed with on-site
resources. Initiatives with low scalability requirements but higher skill requirements can be han-
dled through traditional outsourcing arrangements. Projects with high scalability requirements but
low skill scalability requirements can be addressed through collocation or traditional hosting
arrangements. Finally, projects that require both economies of scale as well as scalable skills are
best addressed by cloud computing all other things being equal [4].

348 A.K. Talukder et al.

established corporations towards much smaller or startup companies. A small,
dedicated, and talented team of individuals can now pool their individual talents to
address a perceived market need without an immediate need for venture capital
funds to provide the necessary IT infrastructure. There are a number of cloud pro-
viders who provide software development environments that include the requisite
software development tools, code repositories, test environments, and access to a
highly scalable production environment on pay-as-you-go basis.

Also contributing to this trend is the open-source movement. While licensing
issues, support, and feature considerations may dissuade larger enterprises from
using open-source software in the development and deployment of their proprietary
products, the availability of open-source software in nearly every software category
has been a boon to SMEs, the self-employed, and startups.

As these small companies grow into midsize and large companies, they face
changing cost equations that modify the relative costs and benefits of cloud com-
puting. For instance, at certain data traffic volumes, the marginal costs of operating
with a cloud provider’s infrastructure may become more expensive than providing
the necessary IT infrastructure in-house. At that point, there may be advantages of
a mixed-use strategy in which some of the applications and services are brought
in-house and others continue to be hosted in the cloud. The following tables will
identify the differences that SMEs and large enterprises face in both the benefits
and costs of cloud services (Tables 20.1 and 20.2).

20.2.5 � The Economics of Green Clouds

The development of green data centers and green clouds is shaped by two important
factors. The first is a global awareness of the devastating potential of climate change
due to human activity primarily through carbon emissions. The second is the rising
costs of energy. These two factors have focused IT infrastructure planning and
decision-making on energy cost reduction, dynamic resource allocation strategies,
and have moved green issues from the category of nice-to-do to strategically impor-
tant for all midsize and large corporations. In 2008, IBM did more than 30 energy
assessments around the world and found that 60–70% of the energy used in the data
centers was used for indirect purposes such as cooling and lighting the facilities with
only 30–40% of the energy being used directly by the computing hardware [3].

Public cloud providers locate their data centers where bandwidth, cheap energy,
abundant water for cooling, and proximity to markets are optimal. Google [6] and
other cloud providers have focused on creative approaches to efficient resource
usage including not only electricity usage but also water recycling and equipment
recycling upon disposal. Through purchasing servers and other equipment designed
to minimize energy usage, these cloud providers minimize the non-computing energy
overhead and maximize their utilization rates through the dynamic allocation of

34920  Cloud Economics: Principles, Costs, and Benefits

Table 20.1  Economic benefits of cloud adoption

Economic
benefits

Small and medium
enterprises (SMEs) Large enterprises

Strategic
flexibility

Critical in getting quickly to
market. Cloud services
allow startups to rapidly
develop and deploy their
products as long as they
can use the open source or
proprietary development
platforms of the cloud
providers. As the cloud
market offerings mature,
there will be many more
platform options available.

Cloud services can provide large
enterprises the same strategic benefits
as startups for new initiatives as long
as legacy software integration and
data issues are not significant. With
appropriate software development
talent, operating units can rapidly
develop and market test new
innovations without putting additional
strain on IT budgets, staff, or hardware.
Longstanding internal IT management
policies and standards may have to be
re-examined and modified to allow this
to happen.

Cost reduction Pay-as-you-go pricing may
be critical if operating
capital or venture capital
funding is not available.
With cloud services,
growth can more easily be
funded through operating
revenues and there may
be tax advantages to
converting what would
have been longer-term
depreciation expenses
to fully loaded current
expenses.

Cloud services provide the same cost
benefits for isolated and exploratory
initiatives. Instant availability and
low setup costs for new development
and deployment environments allow
operating units to explore new
initiatives quickly at low cost without
increasing internal IT hardware
or staff overheads. For high data
traffic volumes, it may become more
economical to bring the operations
in-house. Because maintaining legacy
hardware and software absorb the
majority of IT costs, large corporations
may see significant costs savings
by selectively moving noncritical
applications and processes to external
clouds.

Software
availability

Software as a Service (SaaS)
and Platform as a Service
(PaaS) provide necessary
software and infrastructure
at low entry cost.
Limited online version
functionality may be more
than offset by dramatic
cost savings.

Existing volume licensing of legacy
desktop and process-integrated
enterprise software may make the
status quo more attractive if end-user
retraining, process modifications, and
other change costs are high. Legacy
desktop software may have more
features and functionality than is
currently available in SaaS versions.
But the legacy software licensing costs
may dramatically increase if it is hosted
in a private cloud environment.

(continued)

350 A.K. Talukder et al.

Table 20.1  (continued)

Economic
benefits

Small and medium
enterprises (SMEs) Large enterprises

Scalability One of the most dramatic
benefits for SMEs and
startups. If successful,
applications designed
to autoscale can scale
endlessly in a cloud
environment to meet the
growing demand.

Large enterprises with significant
hardware, legacy software, and staff
resources can benefit from cloud
scalability by identifying CPU-
intensive processes such as image
processing, PDF conversion, and video
encoding that would benefit from the
massively scalable parallel processing
available in clouds. While this may
require modifying legacy applications,
the speed benefits and reduced local
hardware requirements may far
outweigh the software modification
costs.

Skills and
staffing

While the proper design of
cloud applications requires
high-level software
development skills, their
maintenance and support
is vastly simplified in
the cloud environment.
Cloud providers handle all
maintenance and support
issues for both hardware
and platform software
at costs that are either
bundled into the usage
fees or available in various
configurations as premium
services. This allows
significant cost savings
through reduced staff
overheads.

Because the majority of enterprise IT costs
goes to support legacy applications and
hardware, the greatest staffing benefits
will be seen in new cloud initiatives
that do not add to the staffing burden.
Longer term, as the enterprise begins
to analyze cloud technology potential
for its legacy operations, retraining of
existing staff or bringing in new staff
with cloud technology skills will be
necessary to take advantage of the new
paradigm. Thus, some investment will
have to be made before large-scale or
long-term benefits will be seen. The
staffing investment may be significant
if the enterprise is attempting to create
a private cloud to handle dynamic
resource allocation and scalability across
its operating units. In this case, it may
face significant staff investment as well
as the required hardware, software, and
network investment to implement and
maintain their private cloud.

Energy
efficiency

Because SMEs can
dramatically reduce or
eliminate local servers,
cloud computing provides
direct utility cost savings
as well as environmental
benefits.

Even very large enterprise IT data centers
cannot achieve the energy efficiencies
found in the massive facilities of public
cloud providers even with aggressive
high-density server and virtualization
strategies. In periods of economic
downturns, green initiatives typically
cannot compete for scarce capital funds.
By employing a mixed strategy that
off-loads applications and processing
to external clouds when feasible, IT
managers are able to minimize their
energy costs and carbon footprint.

(continued)

35120  Cloud Economics: Principles, Costs, and Benefits

computing resources. This combination of lower energy overhead amortized over a
much higher server utilization rate allows cloud suppliers to provide computing
services far more efficiently with a much smaller energy and carbon footprint.

Because of the scale of operations of large cloud providers, they are able to
achieve efficiency rates and server utilization rates that are unachievable in even
large corporate data center operations. Thus, cloud computing holds the promise of
not only providing attractive cost savings at the enterprise level but also may con-
tribute to the larger societal objectives of energy efficiency and environmental
protection and sustainable development.

20.3 � Quality of Experience in the Cloud

To retain and recruit customers in the cloud, the experience of the customer has to
be managed in a very sensitive fashion. In the cloud, experience will be measured
in terms of experience in a virtual environment (VE) [8] where challenges will
relate to user-agents and devices, the virtualized environments used, the presence
attributes, and the tasks to be performed. Experience assurance (AE) in the cloud
will deal with a community of vendors, providers, and partners; where the cloud
vendor will empower the customer – the customer will be able to choose and mea-
sure the perceived value of a service. In addition, the cloud vendor must be proac-
tive – communicating a problem before the customer discovers it; also, a
remediation must be in place before customer asks for it. Experience happens
through moment of truth (MoT), when people meet people; therefore, the cloud
vendor must be in constant touch with the customer and also must improve based
on the feedback from the customer.

To ensure security and service quality in the cloud, a cloud vendor has to go
beyond its own domain of control. This becomes even more complex when the cloud
vendor is a virtual organization and does not own service infrastructures. For exam-
ple, to provide a secure and fault-tolerant service, the cloud vendor must ensure that
all the original cloud providers in the value-chain agree on some level of security

Table 20.1  (continued)

Economic
benefits

Small and medium
enterprises (SMEs) Large enterprises

System
redundancy
and data
backup

This is a large benefit for
SMEs, the majority of
which are poorly prepared
for hardware failures and
disaster recovery [3].
Cloud storage can reduce
downside risks at low cost.

Because cloud technologies distribute both
data storage and data processing across
potentially large number of servers, the
likelihood of data loss due to hardware
failure is much lower than in most large
private data centers. The cloud data
storage can provide a cost effective
supplemental back-up strategy.

352 A.K. Talukder et al.

Table 20.2  Economic costs of cloud adoption

Economic costs
Small and medium
enterprises (SMEs) Large enterprises

Data security SMEs are better able to use
third-party services such
as payment processing
to handle secure
transactions.

Data is an enterprise’s most important IT
and operating asset. Current uncertainty
regarding the security of the data assets
stored in public clouds is one of the most
significant barriers in cloud adoption.
Large enterprises may not want their data
stored in countries where intellectual
property piracy is prevalent. Some
companies may not want their data stored
on equipment used by their competitors.

Data
confidentiality

SMEs face the same data
confidentiality issues as
large enterprises.

One of the advantages of cloud computing
and storage for confidentiality is that
the data transfer and storage algorithms
encrypt the data into units that are difficult
to reconstruct without the specialized
algorithms/keys if the data are intercepted
in transfer or the cloud security is
compromised.

Data regulations SMEs face the same
regulatory data
location issues as large
enterprises.

Depending on the company’s industry,
there may be significant regulatory
issues regarding data location. Data that
identifies the individual in certain health
and financial contexts are subject to US
regulations. Similarly, the EU has laws
that restrict the transfer of certain data
outside of its borders.

Data integrity The data integrity and
reliability of cloud
suppliers may be higher
than that provided by
the existing internal
systems.

Cloud technologies are relatively new and
storage and data transfer algorithms slice
the data into small units, which are stored
and transferred dynamically within the
storage region. Estimating and factoring the
risks of potential data corruption of mission
critical data at this early stage of cloud
implementation may be difficult leading
to nonadoption, especially if the existing
internal systems, processes, and protocols
are working.

Data transfer
costs

For new initiatives that do
not require the transfer
of legacy data to the
clouds, transfer costs
are minimal. Getting
locked into a particular
cloud service provider
is currently a market
concern due to the lack
of open standards among
the providers.

Moving the existing data sets to clouds requires
data integrity check to ensure that all of the
data has been transferred fully and that it has
not been corrupted. For very large data sets,
this may represent significant staff costs.
Cloud vendors typically charge data transfer
costs. If the data set is large and there is
significant data churn due to transaction
processing, it may be more cost-effective to
look at more traditional hosting options.

(continued)

35320  Cloud Economics: Principles, Costs, and Benefits

Table 20.2  (continued)

Economic costs
Small and medium
enterprises (SMEs) Large enterprises

Integration costs
and legacy
application
reengineering

In startups and small
companies, potentially
little or no integration is
required between cloud
applications and legacy
applications.

Potentially significant costs to have new
cloud applications interact with legacy
applications or to modify legacy
applications to offload processing to
cloud-based components. Conversely,
there may be advantages to reengineering
legacy applications and hosting them in
a public cloud when integrating Web 2.0
functionality with legacy applications.

Software
licensing

Cloud services (SaaS, PaaS)
provide significant
software licensing cost
savings for startups and
small companies.

Migrating large enterprises to cloud based
SaaS may not be cost-effective relative
to the existing enterprise licensing
agreements. Depending on the licensing
agreements for third-party software,
especially if licensing fees are based
on the number of CPUs using the
software, hosting legacy applications
in a cloud environment may involve
significantly increased licensing costs or
noncompliance with the agreements if the
software is installed on a machine image
used for autoscaling as the user demand
increases.

Cloud availability
– “rolling
brownouts”

Unavailability of the
cloud services or slow
performance due to
heavy traffic is a serious
concern when choosing
a cloud vendor.

Same as with SMEs. Currently, even
large vendors have experienced slow
performance or suspended service due to
overwhelming utilization.

Customer’s QoS
Requirement

QoS achieved by
Service Provider

QoS perceived by
Customer

QoS offered by
Service Provider

Alignment gap

Execution gap

Perception gap

Value gap

Customer Service Provider

Fig. 20.2  Viewpoints of quality of service

policy and QoS guarantee. The cloud vendor can learn from telecom industry and
implement the ITU Recommendation G1000 [9] where QoS is expressed on a service-
by-service basis. For QoS to be truly useful across the industry, it must be meaningful
from four viewpoints, which are illustrated in Fig. 20.2. These viewpoints are:

354 A.K. Talukder et al.

Customer’s QoS requirements•	
Service provider’s offerings of QoS (or planned/targeted QoS)•	
QoS achieved or delivered•	
Customers’ survey ratings of QoS (perceived QoS)•	

To address these viewpoints in a timely manner, the cloud vendor can consider the
grade of service (GoS) used in telecom traffic engineering [10]. The GoS deals with
resource instead of services – it deals with number of controls to provide a measure
of adequacy of a group of resources under specified conditions. The key point to
conform to GoS standards is to apportion individual values to each network element
in a fashion that the target end-to-end QoS is obtained.

The challenge here is that the GoS and QoS have different interpretations. While
the QoS views the situation from the customer’s point of view, the GoS takes the
provider’s point of view. To resolve the ambiguity, it is necessary to introduce ser-
vice level agreement (SLA) in this context. An SLA is a contract between a customer
and the cloud vendor to define QoE. The purpose of SLA will be to ensure that QoE
is understood in the same manner by the customer and the cloud vendor. Also, it can
be implemented in the cloud using definitions and rules [11]. Furthermore, the SLA
defines what is to happen in case the terms of the contract are violated [12].

The security challenges in the cloud will be higher and more complex compared
with what the world has seen earlier. The major difference is that a user does not
have full control of the infrastructure and the people who manage the data and the
cloud infrastructure. Many security attacks that were not possible in a private net-
work will be possible in the cloud owing to its large attack surface. Therefore, in
addition to standard security offered by the cloud providers, there will be separate
end-to-end security services provided by the cloud vendor.

To realize QoS, QoE, and security, we propose the cloud service quality man-
ager (CSQM) architecture as shown in Fig. 20.3. There are six entities in this
architecture.

1.	 Access requestor (AR)
2.	 Policy decision point (PDP)
3.	 Policy repository (PR)
4.	 Policy enforcement point (PEP)
5.	 Cloud decision point (CDP)
6.	 Service Quality Manager (SQM)

The access requestor (AR) is an endpoint device or user-agent seeking access to
some service or resource from the service provider. The policy decision point
(PDP) is a system where a policy decision related to security requirement or QoS
requirement is made. Typically, the policies fall into two main categories: general
policies that are applicable to all the users; specific policies that are applicable to
an individual user, a particular service, or a group of users or services defined in an
SLA. The SLA is designed to meet certain key performance indicators (KPIs) based
on certain key quality indicators (KQIs). Policies are stored in policy repository
(PR). The PR will coordinate with other databases such as inventory for services,
resources, and GoS. The policy server will host the PR and evaluate the policy

35520  Cloud Economics: Principles, Costs, and Benefits

conformance through the PDP. The policy enforcement point (PEP) is responsible
for enforcing a policy. Because policy may not directly be understood by all equip-
ments or applications, it is necessary to translate these policies into service-specific
configuration rules and enforce through activation and control systems. The cloud
decision point (CDP) captures, interprets, and decides about the events received
from the cloud vendor and original cloud providers like SaaS, PaaS, and IaaS.
These events are alarms, performance, and security data collected in proactive and
reactive fashion. A CDP works like a sensor that processes various events and sends
them to the PDP for review and policy enforcement. All these policy servers and
CDPs will be managed by the cloud service quality manager (CSQM).

20.4 � Monetization Models in the Cloud

In the cloud, there are four different models of monetization:

1.	 Each and every service is priced and charged to the consumer. IaaS and PaaS
will fall in this category – IaaSs and PaaSs will monetize the services they offer.
All single tenancy resources will fall into this category – in single-tenancy a
resource can be used by only one user at any given point in time – here demand-
-supply-driven pricing will prevail. Some SaaS services will also fall in this
category – this model for SaaS will evolve from the earlier model of application
service provider (ASP). This model is quite successful in the wireless networks
where network operators are in control of the network and therefore all the
services that are offered through these networks are monetized. Monetization of

•••

••••

Policy
Enforcement
Layer

Policy Server

Policy Repository

Policy
Decision Point

Charging
Configuration

Billing
System

System
Configuration

Systems

Service
Configuration

Services

Policy
Decision
Layer

Access
Requester
Layer

Trouble Ticket

Client
(requester 1)

Client
(requester 2)

Cloud
Decision

Pont

Cloud
Decision

Pont

SLA/KQI/KPI

Sensors (Alarm,
Probes,
Performance,
Bandwidth, Flow,
Error,
Malwarecatcher
IDS, etc)

Customer Care

Self-care

Inventory for

Services,
Resources

Virtualization
Configuration

ProvisioningVendor &
Provider

Layer

SaaS

PaaS

IaaS

Cloud
Vendor

QoS and
Security
Layer

CSQM

Cloud Vendor

Fig. 20.3  The cloud service quality management architecture

356 A.K. Talukder et al.

SaaS will be transaction-based. Even a multitenancy object will be converted
into single-tenancy object through digital rights management (DRM).

2.	 The second model of monetization will be offering part of the service free and part
of the service as chargeable. Here, the free part of the service will mainly be match-
making platforms, such as job sites portals, dating sites, search engines, or the
virtual travel agents. Here, the monetization will be through the match or comple-
tion of a transaction. In this model, the service provider will offer the content free
and determine the intent of the user for using this content. Once the intent is known,
the provider will propose a match and commit a business transaction.

3.	 The third model is where a service is free. The user is free to use or modify the
service or content. This will follow the principle of Bhikshu economy. Bhikshus
are Buddhist monks who offer service for free – in return, community supports
their livelihood (“366: A Bhikshu who, though he receives little, does not despise
what he has received”) [7]. If one finds a value in it, one makes a contribution.
Unlike a capitalistic economy, pricing is not dependent on demand and supply
– one can pay any amount that is worth the experience. Another interesting con-
cept of Shramadana from Buddhist philosophy will prevail in the cloud, wherein
public pays back by joining the community and offering their intellect, time, and
labor instead of cash. Wikis and GNU software are examples of this practice.

4.	 The fourth model is free service that might have some restriction for monetization.
Many governments are following the principle that all outcomes of research proj-
ects funded by governments will be open-domain where not only the results but
also the data will be available in the open domain for not-for-profit usage. Healthcare-
related projects in the USA and other parts of the world fall in this category.

Data logistics will play a significant role in the cloud monetization. Data logistics
will include functions like

Data acquisition•	
Data cleaning•	
Data transformation•	
Data transportation•	
Data storage (offline)•	

Data acquisition or cleaning of data will be a complex process where it might be a service
provided by the SaaS provider or the cloud vendor. Though not likely, data acquisition
and cleaning service might be offered by the IaaS or the PaaS through a partner. Data
acquisition will deal with a first-time user where the data need to be transformed into the
electronic form. Data might exist in paper form or some other nonelectronic form, which
need to be converted into electronic form understandable and accessible by the software
application. In data cleaning service, the data will be examined and validated to ensure
that the data that has been captured is indeed correct and free from redundancy or miss-
ing components. Data transformation will be a service where the data of the end-user is
transformed into a format that is understandable by the software application. Transportation
of data will mainly be the role of the cloud vendor where the data is transported from the
end-user’s premise to the computing infrastructure in the cloud.

35720  Cloud Economics: Principles, Costs, and Benefits

20.5 � Charging in the Cloud

The charging for the resources and invoicing the end-user will be the responsi-
bility of the cloud vendor. For the cloud usage, the cost to the end-user will be
the combination of communication cost and the charges the user will pay to the
cloud vendor. Communication will be provided by an internet and communica-
tion service provider (ICSP). The ICSP charges will mainly be based on the
traditional spatial and temporal properties of the single-tenancy resource usage
like bandwidth, and duration of usage. Cloud computing has the following three
characteristics.

1.	 Infinite virtual computing resources available on demand, thereby eliminating
the need for cloud computing users to plan far ahead for provisioning.

2.	 The elimination of an upfront commitment by cloud users, thereby allowing
companies to start small and increase hardware resources only when there is an
increase in their needs.

3.	 The ability to pay for use of computing resources on a short-term basis as needed
(e.g., processors by the hour and storage by the day) and release them as needed,
thereby rewarding conservation by letting machines and storage go when they
are no longer in use.

Capital expenses (capex) versus operational expense (opex) is one of the advan-
tages of using cloud computing. There have been many discussions comparing the
cost of a 24 × 7 use of a cloud infrastructure from a cloud vendor like Amazon EC2
instance against the cost of hosting a server within the data center. Usually, provid-
ers take the average price of a 1U server, divide it by 36 (the number of months in
the typical expected service life of a piece of equipment), and compare the savings.
If operational costs like energy, cooling, manpower, etc. are included, the cloud
looks very attractive from an operational costs’ point of view.

20.5.1 � Existing Models of Charging

The existing models of charging can be divided into charges by the IaaS, PaaS, and
the SaaS. In case of a SaaS business with varying demand over time and revenue
proportional to user hours in an IaaS, Armbrust et al. [13] have proposed the
tradeoff charging model through the following equation:

≥× − × −() ()datacenter
cloud cloud datacenter

Cost
UserHours revenue Cost UserHours revenue

Utilization

They also proposed the revenue equation for adverts-supported model in which the
number of adverts served is roughly proportional to the total visit time spent by
end-users on the service.

358 A.K. Talukder et al.

20.5.1.1 � On-Demand IaaS Instances

On-Demand Instances from an IaaS allows a customer to pay for compute capacity
by the hour with no long-term commitments. This frees the customer from the costs
and complexities of planning, purchasing, and maintaining hardware and trans-
forms what are commonly large fixed costs into much smaller variable costs. For
example, at Amazon for an Extra Large Instance with 15 GB of memory, 8 EC2
Compute Units (four virtual cores with two EC2 Compute Units each), 1,690 GB
of instance storage, 64-bit platform will cost $0.80 per hour. However, there are
hidden costs in many of these charging models; one such hidden cost worth men-
tioning here is the data access. Some cloud vendors offer storage at a very attractive
price but charge on transactions that accesses the disk.

20.5.1.2 � Reserved IaaS Instances

Reserved Instances by an IaaS gives the customer an option to make a low, one-
time payment for each instance the customer wants to reserve and in turn receives
a significant discount on the hourly usage charge for that instance. After the one-
time payment for an instance, that instance is reserved for the customer, and the
customer has no further obligation.

Simple statistics reveal that reserved instances though give a cloud customer the
option to make a low, one-time payment for each instance, they are not suitable for
a short-term usage. Hence, we envisage a new charging model of Value Instance.
Here, the one-time payment for each instance to be reserved is calculated taking
into consideration a percentage of the on-premise hardware cost.

20.5.1.3 � PaaS Charging

Just getting the computing resource from the IaaS provider may not be sufficient;
the charges for the PaaS need to be provisioned. PaaS cloud vendors enable an
application where they charge their platforms on rental basis. These rentals are
based on the number of servers or number of instances of PaaS the customer will
need to use. If the application is not cloud ready, there could be additional charges
for cloud enablement. There are different charging models for the PaaS user. These
are sometimes charged per-resource like a piece of middleware, which might be in
a range of $100–500 a year. Some of the PaaS providers charge on a per user basis,
a model similar to Google App Engine.

20.5.1.4 � Cloud Vendor Pricing Model

Because QoS and SLA play a significant role in the cloud, the cloud vendor will
have a back-to-back QoS and SLA with both the ICSP and the cloud providers that

35920  Cloud Economics: Principles, Costs, and Benefits

will need to provide QoE- and SLA-based charging as well. If there is an SLA
violation, a credit to the user will have to be initiated.

20.5.1.5 � Interprovider Charging

There will be many cases where the revenue collected by the cloud vendor needs to
be shared with partners and other providers who are part of the value-chain. This
demands an inter-provider charging agreement that will rate and calculate the
charges payable to or receivable from the partner provider like the SaaS, PaaS, or
the IaaS. This will be driven by the following considerations:

1.	 Bill & keep – this is a special type of billing agreements between the providers
where the provider keeps [14] all the money they collect from the subscriber.
Nobody shares any revenue with any other provider.

2.	 Usage of resource is measured, rated, and billed at the point of interconnection
(POI). Rates will be determined by service combined with spatial, temporal, and
instance attributes.

20.6 � Taxation in the Cloud

It is easy to formulate a taxation policy for tangible movable or immovable assets;
it is also possible to formulate a taxation policy when these assets cross the border
of a state. Tax is levied at the point of consumption of the service; therefore, con-
ventional taxation principles will not be able to support the complex needs of taxa-
tion in a virtual cloud environment. Cloud computing is predicated on a concept of
borderless global services. Governments, for one reason or another, do not like this
idea – at a basic level, governments need borders.

The taxation in the cloud will be the responsibility of the cloud vendor who will
have a local tax registration and be governed by the local tax regulations. Taxation
in the cloud can be managed with similar taxation model as mobile network opera-
tors or mobile virtual network operator (MVNO). A mobile subscriber can consume
the service of the home service provider while at the home network; the subscriber
can use the service of a foreign network being present at the home network. The
subscriber can also be roaming in a foreign country with different taxation policies
and consume services of the foreign network or the home network. Similarly, in the
cloud, the end-user could be in one country and the cloud vendor could be in another
country offering services from providers that originate in other countries.

Over a period of time, we believe that there will be clearing houses that will
manage the interstate and intercountry taxations of the consumables. This might
lead to a situation where there are dangers of double taxation. If tax is based on
the location of the registered office of a cloud computing company, then there is
always an option to the virtual offices to be located in a lower tax or tax-free
export zone.

360 A.K. Talukder et al.

References

	 1.	 Security Guidance for Critical Areas of Focus in Cloud Computing (2009, April) Prepared by
the Cloud security alliance

	 2.	 Talukder AK, Chaitnya M (2008) Architecting secure software systems. CRC Press, Boca
Raton, FL

	 3.	 Lee S, Cooper LF (2009, August) IT managers discover the high cost of ignoring data center
efficiency problems. BizTechReports.Com. Cited in an IBM WebEx presentation entitled:
dynamic infrastructure in action: reducing costs while increasing value. http://researchlibrary.
theserverside.net/detail/RES/1254491035_498.html

	 4.	 Weisman J (2008) GigaOM network: the 10 laws of Cloudonomics. BusinessWeek Online.
http://www.businessweek.com/technology/content/sep2008/tc2008095_942690.htm. Originally
posted 6 September 2008

	 5.	 Matzke P (2008, November) Cloud computing: from vision to reality. http://download.sczm.t-
systems.de/t-ystems.de/en/StaticPage/55/02/30/550230_10_Presentation_Cloud-
Computing-ps.pdf. Original presentation given 25 November 2008

	 6.	 Google (2009). Efficient computing: data center efficiency measurements. http://www.google.
com/corporate/green/datacenters/measuring.html. Accessed September 2009

	 7.	 The Bhikshu (Mendicant) from The Dhammapada, A Collection of Verses. http://www.
sacred-texts.com/bud/sbe10/sbe1027.htm

	 8.	 Gaggioli A, Bassi M, Delle Fave A (2003) Quality of experience in virtual environments. In:
Riva G, Davide F, IJsselsteijn WA (eds) Being there: concepts, effects and measurement of
user presence in synthetic environments. Los Press, Amsterdam, p 121

	 9.	 ITU-T Recommendation G.1000, Communications quality of service: A framework and
definitions

	10.	 ITU-T E.600, Terms and definitions of Traffic Engineering, 1993
	11.	 RFC3644, Policy Quality of Service (QoS) Information Model
	12.	 Oodan A et al (2002) Telecommunications quality of service management: from legacy to

emerging services. Institution of Electrical Engineers
	13.	 Armbrust M et al (2009, Feb 10) Above the clouds: a Berkeley view of cloud computing. UC

Berkeley Reliable Adaptive Distributed Systems Laboratory. http://radlab.cs.berkeley.edu/
	14.	 Berger U (2004) Bill-and-Keep vs. cost-based access pricing revisited. http://ideas.repec.

org/p/wpa/wuwpio/0408002.html

361

Abstract  Service Level Agreements (SLAs) become increasingly important
in clouds, grids and utilities. SLAs that provide bilaterally beneficial terms are
likely to attract more consumers and clarify expectations of both consumers and
providers. This chapter extends our existing work in SLAs through evaluating
application-specific costs within a commercial cloud, a private Eucalyptus cloud
and a grid-based system. We assess the total runtime, as well as the wait time due to
scheduling or the booting time of a virtual instance. With relatively short processes,
this start-up overhead becomes insignificant. In undertaking these experiments, we
have provided some justification for a recent hypothesis relating to a preference for
job completion time over raw compute performance [4].

21.1 � Introduction

Cloud computing [14, 17], and its recent forefathers of grid systems [1, 2, 3, 6] and
utility computing [5, 14], have led to a number of organisations reappraising their IT
infrastructures. Organisations with existing IT infrastructures are increasingly ques-
tioning the ownership model of computing, with cost management [7] being a key
concern. Clouds, grids and utilities have also become the basis for, or a core part of,
other businesses, and are typified by the strong emergence of Software as a Service
(SaaS). The move towards SaaS, essentially Internet-based software applications, is
reported by producers and consumers alike to be both strategically and financially
beneficial. Removing the need for physically locating, powering and cooling, certain
kinds of core and bespoke infrastructure – with regular maintenance schedules and

B. Li (*)
Department of Computing, Faculty of Engineering and Physical Sciences, University of Surrey,
Guildford, Surrey, United Kingdom, GU2 7XH
e-mail: B.Li@surrey.ac.uk

Chapter 21
Towards Application-Specific Service Level
Agreements: Experiments in Clouds and Grids

Bin Li, Lee Gillam, and John O’Loughlin

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,
Systems and Applications, Computer Communications and Networks,
DOI 10.1007/978-1-84996-241-4_21, © Springer-Verlag London Limited 2010

362 B. Li et al.

concomitant staffing – presents a different cost model for IT. Though email is
typically given as a prime example of a widely used SaaS, software such as Google
Apps, SalesForce, Zoho, g.ho.st and MobileMe can support a variety of uses. Such
software may be offered for free up to certain limits, beyond which differential
costs will be applied to specific levels of support or quantities of storage; models
for such costs will vary by provider, requiring the consumer to ascertain the best
value for money offering. Popular SaaS offerings with relatively fixed characteris-
tics, such as email, readily scale to the number of users and user demands, implying
that utilisation can be maximised and the resulting cost-efficiencies can be passed
on to consumers.

While SaaS may offer solutions for generic software needs, specific computa-
tional activities that rely on mechanisms of distributed computing for complex cal-
culations, Web Services for remote access, P2P networks for file sharing and
distribution, and so on, present different challenges. Cloud computing has grown to
encompass wider infrastructural issues for businesses, offering organisations and
individuals the opportunity to use different forms of commoditised computer sys-
tems, with various associated costs for processor hours and storage in managed
facilities. Such facilities can be used by organisations internally, or as part of the
external-facing business activity, or as part of an overall customer offering in which
the offering may encompass the costs of processor hours and storage. Although
accessing such systems has long been technically possible, the costs have typically
been rather less transparent and efficiently maximising use of the infrastructure has
been of less economic importance. Traditionally, peak requirements tended to dictate
the size of a system; now it is possible to run 1,000 servers for a short period without
having to own them, and the costs of doing so should not far exceed that of using a
server for 1,000 hours. The IT infrastructure can grow and shrink as needed, with
costs directly proportionate. Businesses are exploring solutions within this space
that might help with cutting costs; however, the range of choices is substantial.

Cloud systems may not be to everybody’s tastes for a variety of reasons: lack of
bandwidth makes such systems either difficult or impossible to use; organisations
may prefer the existence of tangible assets; legislative/regulatory issues may be too
great; and concern may exist over vendor dependency or so-called lock-in.
Alongside such issues, we would also include the importance of having well-
specified bilateral Service Level Agreements (SLAs) that provide generally under-
standable clauses for assurances of availability, reliability and liability. In previous
work [10–13], we have explored the construction of SLAs such that a price com-
parison service – as exists for other products. Commercial Cloud systems enable us
to capture price–performance information relating to specific applications with
relatively well-known demands on systems, and to be able to determine how such
a comparison service may be formulated. Such a comparison service will necessar-
ily depend on both the performance requirements of the user and the current avail-
ability of the system, as well as the price willing to be paid by the consumer. A
variety of factors are involved in determining the best value: a supercomputer may
be able to undertake specific kinds of analysis at a much faster rate than a com-
mercial cloud system [15] once the required work has been appropriately initiated.

36321  Towards Application-Specific Service Level Agreements

On the other hand, if the system is unable to perform such a task for an extended
period, or there is a larger overhead due to scheduling [4], running more slowly on
available systems may be specifically advantageous depending on the value of the
results and time at which they are provided. These factors of price, performance,
time to completion (availability), likelihood of completion (probability of failure)
and penalty (liability) are key to being able to produce such a comparison service,
and necessary alongside the description of the required service itself in order to
populate the SLA.

In this chapter, we build on previous work in SLAs through experiments with a
public cloud, a private cloud and a grid system to determine the relative costing as
would be required for such a price comparison service. We use a Value-at-Risk
(VaR) Monte Carlo Simulation on a public cloud (Amazon EC2) to obtain costing
information, and contrast the performance with a private cloud (Eucalyptus install
at the University of Surrey) and grid system (Condor install at the University of
Surrey) to determine an exchange rate. While a recent study compared performance
characteristics of EC2 and Eucalyptus, addressing storage, CPU, network transfer
and network latency [1], start-up time for these systems appears not to have been
accounted for, yet can be a major overhead for large numbers of short processes.
Applications such as VaR emphasise the importance of overall time to completion,
and a Monte Carlo approach is readily parallelised but may favour particular levels
of parallelism depending on the number of simulations. In relating price and per-
formance, at minimum we may ascertain when it is appropriate to scale across
private and public clouds, and potentially which direction is favoured.

21.2 � Background

Commercial grid and utility computing was largely driven by big technology
vendors such as IBM, Sun, HP, Oracle and Microsoft. Products and services
such as IBM’s Computing On-Demand, Sun’s network.com, Oracle 10g and
Microsoft’s High-Performance Computing (HPC) cluster solution were vari-
ously labelled as grid and utility, and variously priced and packaged. Sun’s
network.com had a relatively clear pricing – US$1 per CPU hour. However,
limited uptake meant that the service was eventually closed down. The US$1
price point was used in 2003 to equate computing resources [6]. An updated
consideration of this price point suggests that substantially improved perfor-
mance is now available, but the costs are most likely to vary according to the
application when elements of the cost are treated separately: ‘most applications
do not make equal use of computation, storage, and network bandwidth; some
are CPU-bound, others network-bound, and so on [14]. Specific application
requirements need to be reckoned with when determining how best to configure
the cloud system. Prices for Amazon AWS are typically used to exemplify this:
here, CPU, memory and storage often move together (Table 21.1), while network
transfers and persistent storage necessitate further calculations.

364 B. Li et al.

If we have good understanding of the requirements of an application such that we are
able to find matching resources at the right price, then we may begin to search through
the options on offer. Here, the consumer is attempting to achieve the best approxi-
mate fit. However, the best value may have come if a wider variety of configurations
were available or could be specifiable. The consumer would outline their needs, and a
range of providers would make offers to the consumer in order to secure their business.
Consumers may get better pricing depending on a variety of factors, and the service for
comparability would offer opportunities for markets in computational equivalents of
financial instruments – where these may be contracts of different values based on the
SLAs – and even derivatives of such instruments. These SLAs may need to reference a
portfolio of computational resources, introducing some notion of risk into the SLA itself
(see, for example, [9]). This would further suggest that organisations may offer variable
SLAs in which price accounts for risk – cheaper resources imply more risk and less
liability in the event of failure. Here, we have been inspired by the notions of tranches
and subordination in financial CDO models such that higher-value SLAs are those that
shall be satisfied first [10–12]. We believe that such a framework might assist providers
or brokers to optimise system utilisation and offer the best value for money with dynami-
cally configured systems. As such, cloud markets may emerge based on such consider-
ations and others made previously in relation to grid economics [8]. However, much of
the work of understanding applications in order to derive the required service description
terms and guarantee terms for the SLAs is still needed, and initial comparability across
resources, as described in the remainder of this chapter, is a vital step towards this.

21.3 � Experiment

21.3.1 � Target Application: Value at Risk

Value at Risk (VaR) typically computes a value from a distribution of returns
(profit or loss against the previous day) of financial instruments. The value
obtained from this analysis is the largest expected loss at a specific confidence

Table 21.1  Prices for Amazon AWS showing different classes of priced instances with different
(virtualised) hardware specifications (prices as on January 2010)

Type Small Large Extra large
Medium

(high-CPU)
Extra large (high-
CPU)

Memory (GB) 1.7 7.5 15 1.7 7
Compute unitsa 1 4 8 5 20
Virtual cores per unit 1 2 4 2 8
Storage (GB) 160 850 1,690 350 1,690
Platform (X-bit) 32 64 64 32 64
Price (on-demand

instances, EU,
US$ per hour)

0.095 0.38 0.76 0.19 0.76

a One EC2 computer unit provides equivalent to 1.0~1.2 GHz Intel Opteron or Xeon processor

36521  Towards Application-Specific Service Level Agreements

level for a given time horizon. In previous work, we have implemented three
approaches for VaR using Java – Historical Simulation (HS), Variance–Covariance
(VC) and Monte Carlo Simulations (MCS) – focussed on linear option-free financial
portfolios [11, 12]. These VaR methods can be characterised to promote reusability
in implementation, and results of HS and VC can be used to validate the expected
loss produced by the MCS. For VaR in general, job completion is potentially the
most vital factor: the faster the result, the more useful it may be and the lower the
likelihood that the ‘history’ has now changed with new data that renders the analy-
sis meaningless.

For our experiments, we capture the total completion time of MCS VaR for
95% confidence with 20 assets, with an evenly distributed notional (investment), and
using 1 year of historic market data with 640,000 simulations. This application
requires a relatively short run time, so the time taken before the application starts is
significant.

21.3.2 � Target Systems

Our target systems comprise a Condor pool, Amazon EC2 and a private cloud based
on Eucalyptus. We do not attempt to equate the configurations of these systems,
since the relative performance figures are of interest. Furthermore, we control data
transfer by having input data local to the analysis. The MCS is run using up to 32
nodes on all three systems, and also on 64 for EC2 and Condor. Furthermore, we
have produced a Directed Acyclic Graph of the MCS for Condor’s DAGman; how-
ever, for a better comparison we run jobs independently (non-DAG).

21.3.2.1 � Condor

Software for distributed computing is based on a scheduler, typically used in grids,
developed by the University of Wisconsin in Madison. Our Condor pool comprises
128 cores provided by 32 IBM HS21 Woodcrest Blades (two Intel dual core proces-
sors, 2.66 GHz, 1,333 MHz FSB with 4 GB RAM per blade), with Red Hat
Enterprise Linux 4 and Condor version 6.6.6.

21.3.2.2 � Amazon EC2

Our choice of public cloud is offering on-demand servers. We built an Ubuntu 9.04
(jaunty) 32-bit image containing the MCS application with all necessary input files.
The 32-bit image works in EC2 as m1.small and c1.medium instance types. The
application executes immediately once the image has been started, captures results
and timing information using web requests to a publicly available web server and
self-terminates following successful completion.

366 B. Li et al.

21.3.2.3 � Eucalyptus

Eucalyptus [8] is open-source software for building cloud systems on top of con-
ventional compute clusters, with a similar API and protocols to EC2. Our private
cloud is built using Ubuntu Linux server 9.04 (kernel 1.6.28-27) with Eucalyptus
version 1.61 and consists of two servers, each with two Quad Core Intel Xeon
E5540s at 2.53 GHz and 32 GB RAM. Currently, only the m1.small instance type is
available, offering a maximum of 40 instances of 1.0 GHz per compute unit and 256
MB RAM. We are able to reuse the 32-bit image built for EC2 within this system.

The specification for nodes within the three systems is shown in Table 21.2.

21.3.3 � Results

Values obtained for MCS VaR from all three systems are within tolerance of the VC
VaR, and the standard error is within the necessary 1% tolerance up to 32 nodes but
outside this tolerance at 64 nodes, consistent with expectations based on prior work.

We separate the start-up time from the application run-time and investigate the
averages: for Condor, this gives us an average scheduling overhead; for EC2 and
Eucalyptus, this provides the average image boot time. Results from this separation
are shown below (Figs. 21.1–21.3).

We obtain an average boot time for 32 virtual machines of 106 s in EC2 and 234
s in Eucalyptus, both of which are lower than a speculated 5 min [4]. For EC2, simi-
lar boot times are obtained for all our chosen configurations, and we have found that
such times are consistently achievable for morning and afternoon runs over a 7-day
period. However, times for both Condor and Eucalyptus are progressively increasing
with increasing demands. Condor requires 76 s for 32 processes, which appears to
be favourable performance over EC2, but EC2 is offering better times at 64.

Once the application is ‘booted’, Eucalyptus appears to offer best run perfor-
mance: for 32 instances, Eucalyptus takes 4.1 s, EC2 (m1.small) 7.9 s and Condor
19 s (Fig. 21.4). We have also found that EC2 (c1.medium) can outperform these at
3.7 s. Coordinating the analysis in Condor using DAGman magnifies the start-up
time to around 500 s, and making it particularly unfavourable.

Table 21.2  Platform hardware specification comparison

EC2 (m1.small) Eucalyptus (m1.small) Condor

OS Architecture 32-Bit 32-Bit 32-Bit
Compute unit One virtual core One One physical CPU
Compute unit type Intel 1.0–1.2 GHz 2007

Opteron or 2007 Xeon
processor

Intel 1.0 GHz 2007
Xeon

Intel 2.66G dual
core processor

Number of compute unit One One Two
Ram (GB) 1.7 256M 4

36721  Towards Application-Specific Service Level Agreements

Fig. 21.1  Performance comparison (queuing/boot time)

Fig. 21.2  Performance comparison (application run)

368 B. Li et al.

The total run time in Eucalyptus produces a similar ‘smile’ curve (Fig. 21.3) to
Condor. In both systems, performance is improving up to a given number, then

Fig. 21.3  Performance comparison (total run)

Fig. 21.4  Probability of completion. To show the general trend, we excluded one outlying data
point in ec2 c1.medium, which is considerably to the right of other data in that set

36921  Towards Application-Specific Service Level Agreements

drops away as more instances are demanded. EC2’s total run time appears to show
a slight increase at 64, but well within the previous range.

21.3.4 � Job Completion

We consider the probability of completion of the analysis in Condor, Eucalyptus
(m1.small) and EC2 (both m1.small and c1.medium) for 32 processors (Fig. 21.4).
Condor manages to start all parallel tasks first, followed by EC2 (m1.small),
Eucalyptus and EC2 (c1.medium). Note, however, the regression slope gradients:
Condor shows the greatest variance for start-up time (s = 19.53), followed by EC2
m1.small (11.81), EC2 c1.medium (7.11) and Eucalyptus (5.41).

The probability of completion of VaR on AWS is 100% after the average AMI boot-
ing time of 97 s, provided all have been provisioned. This may not always be the case.

We show the speed up for each platform in Fig. 21.5 by considering the gain achieved
in using double the number of instances each time. Here, the point at which performance
appears to begin to degrade becomes apparent (Eucalyptus, 4; Condor, 8).

21.3.5 � Cost

We estimated the cost of running VaR MCS on EC2 by reference to the Amazon
pricing scheme in July 2009 (Table 21.3), which appeared similar to Sun’s network.

Fig. 21.5  Total run speed-up, showing gain achieved in doubling the number of instances, and
performance degradation

370 B. Li et al.

com charges of $1 per CPU-hour integrating costs that are individually priced here.
The actual cost of an MCS VaR in EC2 (m1.small), for 640,000 simulations is
about $0.51, and the running costs of 640,000*1 instance is similar to that of
10,000*64 instances. Use of higher performance units, 64-bit machines and
Windows-based machines will result in variant performance and costs, not least
since a Windows machine initially costs more than a Linux machine [17]. With
Sun’s network.com running 64-bit systems, some of Amazon’s costs may be higher
than those for a system that was closed down.

VaR MCS with 640,000 simulations, in EC2, costs US$0.51, but takes only 90 s.
The same application running in Condor and Eucalyptus takes 95 and 228 s, respec-
tively. The EC2 cost equivalent would be: Condor – $0.54; Eucalyptus $1.29. This
emphasises the importance of careful choice of provider. However, a system that takes
longer should price more competitively, and equivalent performance would be: Condor
– US$0.48; Eucalyptus – $0.20. Price differences would reflect system performance
with different applications and different configurations of those applications.
Significant data capture will be required to address the scope of these differences.

21.4 � Conclusions and Future Work

In this chapter, we have used a Value at Risk (VaR) Monte Carlo Simulation (MCS)
to compare run information from a public cloud (Amazon EC2), a private cloud
(Eucalyptus) and a grid system (Condor). We considered the impact of the schedul-
ing and booting overhead on an application with a relatively short run time, and
used this information to relate system costs. We have previously reported on intro-
ducing risk into Service Level Agreements [10–12], and how price information
helps to create guarantee terms of SLAs and contributes to required future work on
resource availability prediction. The experiments presented here help us to consider
further how to build SLAs such that a price comparison service for computing
resources could be feasible. Such price information may be applicable to classes of

Table 21.3  Cost of VaR MCS (Dec 2009)

AWS m1.small moderate
I/O hourly charges (US$)

One off MCS (640,000
simulations) charges with 434M
Ubuntu AMI m1.small (US$)

EC2 VM per Instance
instance-hour (or
partial hour)

0.11 0.11

EC2 I/O in 0.10 0.01
EC2 I/O out 0.17 0.01
S3 I/O out (monthly cost) 0.17 0.01
S3 others 0.30 0.30
VAT (%) 15 15
Total cost (incl. VAT) 0.98 0.51

37121  Towards Application-Specific Service Level Agreements

applications that have similar characteristics in order to estimate costs without prior
knowledge of performance. However, obtaining reliable information will necessi-
tate numerous runs across multiple systems, likely involving parameter sweeps.
These efforts will be combined with autonomic use of SLAs, and are geared
towards demonstrating the provision of a computational price comparison service.

With reference to [4], it is entirely feasible that a public cloud (EC2) may be
faster than a supercomputer for a certain set of applications with known require-
ments and performance, and given certain availability constraints and scheduling
overheads. The experiments presented here also show the potential for using cur-
rent commercial clouds over grid-type infrastructures.

During our experiments, we encountered several occasions where one or two
instances simply failed to start properly, even given almost 9 (chargeable) hours.
Such occurrences merely emphasise the need for, and potential value of, applica-
tion-specific SLAs.

References

	 1.	 Baun C, Kunze M (2009) Building a private cloud with eucalyptus. In: Proceeding of the 5th
IEEE International Conference on e-Science Workshops, Oxford, UK

	 2.	 Buyya R, Giddy J, Abramson D (2001) A case for economy grid architecture for service-
oriented grid computing. In: 10th IEEE international heterogeneous computing workshop,
San Francisco, CA

	 3.	 Chetty M, Buyya R (2002) Weaving electrical and computational grids: how analogous are
they? Comput Sci Eng 4:61–72. http://buyya.com/papers/gridanalogy.pdf

	 4.	 Foster, I (2009) What’s faster – a supercomputer or EC2? http://ianfoster.typepad.com/
blog/2009/08/whats-fastera-supercomputer-or-ec2.html

	 5.	 Germano G, Engel M (2006) City@home: Monte Carlo derivative pricing distributed on net-
worked computers, Grid technology for financial modelling and simulation, 2006

	 6.	 Gray J (2003) Distributed computing economics, Microsoft research technical report:
MSRTR-2003-24 (also presented in Microsoft VC Summit 2004, Silicon Valey, April 2004)

	 7.	 Greenberg A, Hamilton J, Maltz DA, Patel P (2009) The cost of Cloud: research problems in
data centre networks. ACM SIGCOMM Comput Commun Rev 39(1). http://ccr.sigcomm.org/
drupal/files/p68-v39n1o-greenberg.pdf. Accessed January 2009

	 8.	 Kenyon C, Cheliotis G (2003) Grid resource commercialization: economic engineering and
delivery scenarios. In: Nabrzyski J, Schopf J, Weglarz J (eds) Grid resource management:
state of the art and research issues. Kluwer, Dordrecht, The Netherlands

	 9.	 Kerstin V, Karim D, Iain G, James P (2007) AssessGrid, economic issues underlying risk
awareness in grids. LNCS, Springer, Berlin/Heidelberg

	10.	 Li B, Gillam L (2009) Towards job-specific service level agreements in the cloud. In:
Proceeding of the 5th IEEE international conference on e-Science workshops. Oxford, UK

	11.	 Li B, Gillam L (2009) Grid service level agreements using financial risk analysis techniques.
In: Antonopoulos N, Exarchakos G, Li M, Liotta A (Eds) Handbook of research on P2P and
grid systems for service-oriented computing: models, methodologies and applications. IGI
Global, USA

	12.	 Li B, Gillam L (2009) Risk informed computer economics. In: IEEE international symposium
on cluster computing and the grid (CCGrid 2009, ServP2P). Shanghai, China

	13.	 Li B, Gillam L (2008) Grids for financial risk analysis and financial risk analysis for grids. In:
Proceedings of UK e-Science programmes, all hands meeting 2008 (AHM 2008), Edinburg

372 B. Li et al.

	14.	 UC Berkeley Reliable Adaptive Distributed Systems Laboratory (2009) Above the clouds: a
Berkeley view of cloud computing, white paper. http://radlab.cs.berkeley.edu/

	15.	 Walker E (2008) Benchmarking Amazon EC2 for high-performance scientific computing.
http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf

	16.	 Eucalyptus Cloud: http://www.eucalyptus.com/
	17.	 Amazon, EC2, S3 Pricing (2009), Amazon EC2 Developer Guide (2006). http://aws.amazon.

com

373

A
Abstraction, 12, 26, 41, 48, 81, 84, 94, 99,

129, 133, 134, 136–138, 143, 150–152,
171, 181, 263, 282

Agency cloud, 273, 274, 276,
280, 285, 286

Amazon, 4, 5, 10, 11, 13, 21–23, 26, 30, 33,
35, 38, 39, 41, 43, 58, 64, 66, 74, 78,
79, 81, 83, 95, 132, 145, 160, 164, 165,
167–170, 172–174, 176–178, 182, 185,
186, 191–193, 196, 197, 199, 200, 203,
211, 213–215, 220, 221, 225–229, 234,
261, 267, 268, 274, 276, 282, 286,
299–301, 311, 313–315, 318, 319, 322,
328, 357, 358, 363–365, 369, 370

Amazon elastic compute cloud (EC2, Amazon
elastic cloud computing), 5, 6, 10,
21–23, 26, 31, 33–35, 37, 39–41, 58,
64, 66, 79, 95, 132, 146, 164–170,
172–177, 182, 185, 186, 191–193, 196,
197, 199, 200, 203, 211, 213–215, 220,
224–229, 231–235, 261, 267, 274, 282,
286, 300, 301, 311, 313, 357, 358, 363,
365, 366, 369–371

Amazon Elastic MapReduce, 35
Amazon S3, 22, 30, 41, 43, 74
Amazon S3 buckets, 43
Amazon Web Services (AWS), 11, 23,

33–35, 41, 43, 79, 81, 83, 178,
200, 226, 228, 286, 300, 301, 322,
363, 364, 369, 370

Apache, 15, 38, 114, 265
Apache axis, 38
Apache hadoop, 114
Application-defined SLAs, 33
Application provisioning, 31, 63, 196,

212–214
ASKALON, 180–182, 188, 189
Auditing issues, 281

Authentication, 24, 32, 35, 38, 40, 57, 68,
82, 94, 99, 101, 107, 136, 138, 140,
187, 188, 227, 246–248, 291, 296,
298, 300, 301, 306, 307, 311–313,
317–321, 339, 344

Automatic scaling, 37, 41, 338

B
Backups, 5, 26, 32, 34, 37, 116–118, 120,

121, 123, 124, 130, 282, 283, 292,
294, 340, 351

Bandwidth, 26, 30, 73, 108, 128, 130–135,
137, 139–143, 155, 203, 261, 338,
346, 348, 357, 362, 363

Benchmarks, 164–167, 191, 192
BigTable, 5, 41
Broadcasting, 328–334, 336–338, 340
Business as a service (BaaS), 23
Business continuity and disaster recovery

issues, 282
Business model, 13, 15, 42, 50–53, 58, 59,

66, 70, 100, 109, 150, 151, 267, 328

C
California Security Breach

Information Act, 280
Certification, 35, 41, 101, 107, 251,

252, 280, 283
CESG information assurance, 286
Cloud architectures, 22, 24–26, 30, 42, 132,

138, 143, 305–324
Cloud architecture virtualization, 25, 132,

308, 311–313, 315, 317–319,
321, 322, 324

Cloud billing, 30
Cloud bursting, 164, 175, 176, 178
Cloud-centric regulatory compliance, 41

Index

374 Index

Cloud computing
communications, 14–16, 29, 35, 37, 41,

56, 67, 71, 95, 103, 119, 128, 130, 131,
134, 136, 137, 143, 159, 163, 166–174,
176–178, 188, 196, 197, 200, 203, 228,
245, 253, 259, 269, 291–294, 298, 300,
306–311, 313, 317, 318, 357

deployment, 5, 6, 9–11, 16, 29, 52, 67, 71,
79, 85, 86, 99, 105, 106, 122, 128, 164,
165, 167–171, 175, 178, 180–184,
186–188, 193, 196, 199, 213, 221–223,
226, 249, 273, 275, 281, 284, 285, 287,
306–316, 318–320, 323, 324, 329,
337–340, 346–349

ecosystems, 21–44, 77, 80
outages, 7, 32, 33, 74, 81, 86, 196, 199
taxonomy, 22–32, 47–60

Cloud Computing Interoperability Forum
(CCIF), 43, 80

Cloud delivery models, 22, 81, 273, 276, 284
CloudFS, 40
Cloud hosting, 30, 133, 197, 200
Cloudification, 21
Cloud infrastructure manager (CIM), 7, 11, 17
Cloud layers, 59, 67, 81, 94–95, 100, 103,

105, 128, 129, 132, 137, 138, 143, 150,
151, 165, 198–199, 211, 212, 306

Cloud middleware, 132, 133, 150, 151, 178
Cloud operating system (COS), 129, 132,

135–138
Cloud portability, 40, 261
Cloud programming models, 41
Cloud provisioning, 192, 195–216
Cloud resource provisioning, 28
Cloud security, 31, 74, 82, 83, 86, 242, 260,

264, 275, 280, 284–287, 290, 291, 300,
301, 305, 352

Cloud security alliance (CSA), 74, 82, 83, 86,
242, 260, 264, 280, 290, 301, 305

Cloud security framework, 285, 287
Cloud security relationship framework, 275,

284–286
Cloud security relationship model, 275
Cloud seeding, 164, 176–178
Cloud states, 184, 205, 293
Cloud storage, 35, 37, 40, 84, 105, 192, 263,

264, 298, 322, 351
Cloud Storage Initiative, 84
Cloud vendors, 23, 30, 42, 80, 281, 286,

343–346, 351–359
Cluster, 7, 10, 13, 22, 36, 39, 40, 55, 63, 95,

106, 114, 132, 146–148, 150, 152–154,
157, 160, 163–178, 180, 192, 200, 205,
219–223, 227, 228, 231, 232, 234,
313–315, 336, 344, 363, 366

Collaboration, 32, 43, 71, 72, 87, 103, 130,
222, 264, 265, 267, 269

Collateralized debt obligations (CDO), 364
Commodity computers, 13, 142,

221, 315
Community cloud, 273, 274, 285, 286
Compliance, 41, 43, 77, 78, 81–83, 85–87,

241–254, 258, 277, 279–281, 283, 286,
290, 292, 295, 296, 299, 347, 353

Computer-supported cooperative work
(CSCW), 63–75

Computing infrastructure, 5, 9, 13, 33–35, 41,
104, 136, 137, 139, 172, 182, 220, 221,
235, 263, 356

Computing outages, 32
Condor, 148, 221, 222, 226, 363, 365, 366,

368–370
Confidential, 43, 73, 82, 99, 102, 103, 109,

186, 246, 257–269, 272, 276–279,
284–286, 291, 293, 307, 312, 320,
323, 344, 352

Control issues, 280
Control plane, 131, 134–137, 139, 143
Cross-application vulnerability exploits, 283
Cross-virtual machine (VM) exploits, 283

D
Dashboard, 10, 38, 79
Data-aware distributed computing, 46
Databases, 5, 31, 43, 50, 53, 59, 203,

261, 268, 354
Datacenter, 213, 246, 290, 292, 295,

300–302
[Data center, database, desktop] as a service

(DaaS), 15, 23, 53, 58, 59
Data confidentiality, 73, 99, 102, 257–269,

277–279, 352
Data isolation, 81, 82
Data location, 279, 352
Data ownership, 81, 277
Data ownership and content disclosure, 277
Dataquest, 45
DDOS attacks, 31
Decryption, 24, 31, 316
Dedicated computing resources, 147, 148,

150, 152, 160
Defense Information Systems Agency (DISA)

cloud, 274, 278, 286
Deploy, 5, 7, 10, 29, 41, 69, 129, 161, 164,

165, 167, 177, 182, 183, 196, 283, 286,
309, 318, 349

Deployment lifecycle, 29
Deployment monitoring, 29, 338
Deprovisioned, 27

375Index

Desktop, 23, 26, 27, 56, 96, 129, 133, 138,
140, 146–148, 152, 154, 155, 160, 176,
267, 349

Desktop virtualization, 26
Digital identity, 42, 57
Digital media, 327–340
Disclosure, 28, 82, 277, 281, 322
Discovery, 15, 24, 27, 42, 86, 98, 99, 101,

104, 118–120, 122, 167, 181,
195–216, 222, 227, 281

Disk storage, 33, 344
Distributed computing, 14, 21, 48, 93,

94, 96, 129, 139, 143, 146, 165,
171, 222, 268, 272, 286,
316, 362, 365

Distributed hash table (DHT), 119, 199,
201–206, 208, 215

Distributed Management Task Force
(DMTF), 9, 16, 43, 74, 80, 84,
88, 263, 264

Distributed provisioning, 323
Downtime, 6, 32, 33
Dynamic provisioning, 107, 143, 196

E
Economic scheduling (Budget scheduling),

224, 225, 229–234
Ecosystems, 21–44, 77, 80
Elastic IPs, 36, 37
Elastic MapReduce, 35
Elastic utility computing architecture linking

your programs to useful systems
(Eucalyptus), 10, 26, 33, 35, 39,
40, 58, 84, 95, 180, 182, 185,
186, 189, 192, 197, 200, 228,
232, 363, 365, 366,
368–370

Elastra, 6, 11, 26, 268
Embarassingly parallel computing, 166, 212
Emerging threats to cloud computing,

283–284
Encryption, 24, 31, 248, 292, 293, 313
Enomaly, 5, 10, 26, 33, 39, 40, 42
Enterprise cloud, 28, 31, 42
Enterprise cloud governance, 28
Enterprise Java Beans (EJB), 14
e-Research, 198
e-Science, 47–60, 138, 269, 328
ESXi, 28, 72
EU Directive on Data protection, 279
European “adequacy” standard, 279
Everything as a service (XaaS), 22, 23
Extraterritorial effect, 279

F
Fabric, 22, 23, 195–197, 199, 200, 206–210,

213, 215
Fabric controller, 41, 199, 200
Facebook, 13, 22, 31, 198, 339
Failover, 22, 27, 32–34, 37, 40, 314
Failure recovery, 7, 119, 120, 226
Fault tolerance, 12, 22, 32–34, 37, 40, 44, 69,

107, 156, 164, 168, 201, 216, 313, 314
Fault tolerant, 13, 37, 161, 181, 199, 344, 351
Federal offence, 28
Federated database, 42
Federated identification, 24
Federated identity, 31–32, 247
Flexiscale, 11, 23, 26, 32–35, 186
Forensic evidence, 281
Forrester, 23, 73, 258
Framework as a service (FaaS), 23

G
Gartner, 27, 81, 267
GCM Deployment (GCMD), 167–168, 170,

175, 178
Gigaom, 45, 360
Gigaspaces, 26, 33, 35–38, 41
Globus, 10, 39, 40, 67, 99, 168, 185,

221–223, 227
Glusterfs, 39
Gmail, 4, 32, 311
Gogrid, 11, 26, 30, 33–35, 80, 185, 186, 191,

197, 200, 265
Gogrid’s prepaid cloud hosting, 30
Google, 4–6, 12, 15, 17, 21–23, 25, 31–33, 36,

38, 41, 43, 64, 66, 69, 74, 75, 79, 96,
108, 114, 115, 124, 145, 164, 197, 199,
200, 228, 268, 274, 276, 311, 339, 348,
358, 362

Google AppEngine (GAE), 23, 25, 32, 33,
36–38, 41–43, 79, 83, 164

Google Apps, 32, 274, 276, 362
Gossip protocol, 32
Governance, 21, 23, 24, 28–29, 31,

77, 78, 85–87, 242, 253, 290,
307, 324

GQL, 43
Greener, 28
Grid, 9, 11, 16, 27, 34, 37, 40, 41, 43, 47, 48,

55, 57, 63–75, 80, 93, 95, 97–99, 104,
106, 107, 116, 128, 129, 132, 137,
146–148, 150–152, 154, 155, 157, 160,
163–193, 207, 219–235, 257, 261–262,
268, 269, 327, 328, 330, 361–371

Grid architecture, 34, 104

376 Index

Grid computing, 63–67, 70, 72, 75,
93, 128, 129, 163, 179, 180,
221, 261

Grid economics, 364
Grid forum, 9, 43, 74, 80, 261–262
GridFTP, 40, 67, 331
Grid proxies, 40
Grudin’s inequality, 71

H
Hadoop, 13, 22, 43, 114, 116, 138,

147, 160, 199
Hadoop distributed file system (HDFS), 13
Hardware architectures, 41
Hardware as a Service (HaaS), 23, 25, 26, 59,

95, 272
Hardware infrastructure, 22, 28
Hardware platform, 22, 63, 299, 366
Hardware platform infrastructure, 22
Hardware virtualization, 8, 25, 34, 180
Heterogeneous, 28, 55, 66, 71, 94, 98,

109, 147, 155, 165, 167, 169–171,
176–177, 189, 306, 309

Hibernate, 39, 297
Hierarchical SPMD, 171–173
High performance computing (HPC), 43, 56,

58, 59, 65, 70, 163, 165, 171–174, 178,
204, 221, 363

High throughput computing (HTC), 221, 222,
228, 235

High throughput science (HTS), 219–235
Hive, 22
Homogeneous, 5, 28, 66, 94, 98, 102, 147,

151, 272, 286
Horizontal scalability, 27, 37, 309
Host-based software, 27
Hosted private cloud, 35, 285, 349
Hosted provider, 23
Hosted virtual desktop, 27
Hosting, 6, 11, 25, 30, 39, 103, 132–134,

140, 164, 179, 195–197, 200, 201,
203, 204, 210–212, 245, 246, 268,
272, 273, 312, 329, 343, 352,
353, 357

Hybrid cloud, 11, 26, 42, 81, 98, 1
45–147, 160, 164, 201, 228,
273, 274, 286, 287

Hybrid cloud architecture, 42
Hype, 21, 44, 64, 310
Hyper-V, 8, 9, 28, 36, 72
Hypervisors, 7–9, 28, 34, 36, 39, 67,

95, 101, 102, 106, 108, 293,
294, 311

I
IBM, 6, 15, 23, 25, 58, 64, 66, 79, 84, 95,

98, 145, 199, 265, 267, 310, 323,
348, 363, 365

IDC, 30, 73, 77
Identity, 31–32, 42, 57, 82, 103, 155, 247,

291, 298, 306–308, 310, 316, 318,
320, 321, 323

Identity verification, 42
Infrastructure as a service (IaaS), 4, 7, 11,

15, 23, 26, 34, 39, 42, 52, 53, 58, 66,
67, 69, 70, 73, 74, 79–81, 84–86, 95,
164, 169, 170, 182, 196, 198, 199, 203,
225, 226, 247, 248, 262, 269, 272, 273,
276, 279, 284, 285, 311–313, 321, 344,
345, 355–359

Instance types, 182, 184–186, 203,
226, 365, 366

Interface description language (IDL), 14, 15
Interoperability, 9, 15, 22, 24, 28–29, 35, 38,

40, 42, 43, 71, 77–81, 87, 97, 99–101,
104, 107, 109, 221–223, 252, 257–269,
280, 307

Inter-processor exploits, 283
ISO 27002, 290–295, 301

J
Java runtime environment (JRE), 7, 78
JXTA, 118–120, 122, 123

K
KVM, 8, 26, 72

L
Latency, 41, 73, 137, 166, 174, 179, 191, 250,

308, 315, 319, 320, 346, 363
License, 25, 30, 177, 280
Load balancer, 27, 197, 199, 200, 314, 322
Load balancing, 22, 24, 27–28, 41, 42, 164,

195–216, 333
Localised and federated clouds, 272

M
MapReduce, 6, 12–13, 17, 22, 43, 113–125
Mapreduce programming framework,

17, 38, 114
Master-slave, 41, 114, 123
Master slave replication, 41
MCSP, 279, 283
Message forwarding, 169–170

377Index

Metadata, 12, 42, 67, 84, 204, 216,
227, 245, 293, 323, 328, 334,
338–340

Metering, 25, 29, 30
Microsoft, 5, 14, 23, 25, 26, 32,

64, 66, 72, 83, 145, 175,
199, 200, 213, 264–267,
274, 286, 308, 363

Microsoft Azure, 23, 25, 32, 83, 95, 265, 267,
274, 286

Middleware, 65–70, 95, 97–99, 103, 129,
132, 133, 136–139, 147–152, 154,
156–159, 163–165, 167, 169, 171,
178, 180, 181, 185, 189, 198, 199,
221, 223, 225–229, 317,
344, 358

Multi Protocol Label Switching (MPLS), 134,
135, 139, 143, 287

Multitenancy, 41, 42, 356
Multitenant, 25, 42, 290
Multitenant architecture, 42
MySQL, 37, 40, 85

N
National IT industry promotion agency

(NIPA), 44
Nebula, 33, 95, 138, 164, 225, 228
Netsuite, 25
Network transfer protocols, 363
Nimbus, 23, 33, 42, 58, 78, 79, 81, 83, 85, 95,

99, 164, 165, 185
Nimrod tool family, 219–235
NIPA. See National IT industry promotion

agency

O
Object Management Group (OMG), 264
Off-site third-party provider, 26
On-demand self-service, 272
Online replication, 27
Open cloud computing interface (OCCI), 9,

74, 262–264
Open cloud consortium (OCC), 43, 74, 264
Open Cloud Manifesto, 35, 87
Open Grid Forum (OGF), 9, 43, 74,

261–264, 269
OpenNebula, 95, 138, 164, 225, 228
Openspaces, 37
Open Virtualization Format (OVF), 9, 57, 74,

80, 84, 85
Oracle, 25, 79, 363
Organization as a Service (OaaS), 23

Organization for the Advancement of
Structured Information Standards
(OASIS), 16, 42

Outages, 7, 32, 74, 81, 86

P
Parallel computing, 163, 221
Parameter sweep (Parameter study, Parametric

modelling), 212, 222, 371
Pay-for-use on-demand distributed

computing, 357
Peer to peer (P2P), 63, 114, 116–125, 203, 362
Performance evaluation, 114, 140–142,

173–174
Persistent, 41, 136, 154, 187, 293, 315, 363
PHP, 138, 264–266
PKI, 101, 107, 319
Platform as a Service (PaaS), 4, 23, 25, 33,

37, 38, 41–43, 52, 66, 67, 69, 73, 79,
81, 83–86, 95, 164, 196, 198, 199, 203,
211, 212, 225, 226, 247, 268, 276, 284,
285, 311, 344, 345, 355–359

Platform infrastructure, 22
Policy-based dynamic privacy, 43, 311
Portability, 77, 78, 83–85, 99, 109, 164, 252,

261, 268, 279
P2P-MapReduce, 114, 116–125
Prepaid cloud hosting, 30
Pricing, 25, 30, 50, 51, 54, 59, 67, 199, 235,

345, 356, 358–359, 363, 364, 369
Pricing strategies, 30
Privacy, 23, 24, 28, 31–32, 42, 43, 50, 51,

53–54, 58, 59, 73, 81, 86, 243, 250,
258, 260, 269, 272, 275–277, 279, 281,
285–287, 295, 298, 300, 307, 316, 321

Privacy issues, 276–277
Private cloud, 3, 4, 23, 26, 32, 53, 55, 79, 98,

145–161, 165, 169, 171, 182, 195, 196,
199, 201, 228, 232, 274, 275, 281, 285,
286, 299–300, 313, 316, 346, 363, 365,
366, 370

Private cloud computing, 196
Provisioning, 7, 9, 28, 31, 63, 79, 97, 107,

131, 143, 176, 180–182, 184, 186, 187,
191, 192, 195–216, 220, 226, 229, 232,
267, 272, 295, 308, 314, 321, 323, 357

Proxy load balancing, 37
Public cloud, 3, 4, 23, 26, 31, 32, 53, 78, 79,

81, 145–147, 160, 171, 196, 198–200,
232, 235, 274–277, 280, 281, 285, 286,
300, 315–317, 319, 321, 346, 348, 350,
363, 365, 370, 371

Python, 5, 41, 56, 228

378 Index

Q
Quality of Service (QoS), 22, 74, 131, 196,

209, 231, 249, 328, 331, 343, 353

R
Rackspace, 26, 265, 274
Rails, 15, 39
Recommender system, 229, 230
Regulations, 28, 68, 243–245, 254, 259, 290,

295, 359
Regulatory and legislative compliance,

279–281
Regulatory compliance, 41, 280, 290, 347
Reliability, 32, 44, 66, 68, 72–75, 77, 81, 86,

99–102, 104, 106, 107, 109, 124, 132,
179, 224, 235, 244, 267, 298, 307, 315,
317, 328, 346, 362

Remote Method Invocation (RMI), 14
Remote Procedure Call (RPC), 13–16
Replication, 24, 27, 41, 42, 67, 125, 139, 147,

154, 206, 216, 224
Representative State Transfer (REST), 14, 16,

17, 30, 81, 95, 101, 165, 197, 248, 250,
262, 266, 299, 316

Resource discovery, 119, 222
Resource management, 27, 28, 31, 44, 71, 98,

128, 143, 147, 179–193
Resource scheduling, 28
Resource sharing, 41, 55, 65, 72, 127, 128,

179, 220, 330
Resource utilization, 42, 54, 175, 180,

297, 299
RESTful, 27, 262, 265
Rightscale, 6, 26, 33, 81, 318, 323
Risk Management and Compliance, 78,

85–87
Risks inherent in cloud computing, 272, 275
RSA, 316
Ruby, 35, 38, 39

S
S3, 13, 22, 30, 41, 43, 64, 66, 74, 132, 164,

192, 228, 267, 315
SaaS provider, 41–42, 201, 306, 344, 356
SaaS software, 25, 362
SaaS vendors, 23
Safe harbour, 279
Salesforce, 23, 25, 33, 66, 74, 75, 269, 274,

286, 311, 362
SalesForce.com (SFDC), 25, 33, 42
SAN, 35
SAS70, 35, 41

Scalability, 12, 22, 27–29, 41, 42, 44, 55, 66,
69, 73, 128, 129, 131, 132, 151, 157,
158, 197, 205, 259, 260, 308, 309,
313–315, 346

Scalable, 5, 22, 24, 27, 28, 42, 48, 73,
127–143

Scalable storage, 22, 42, 73, 322
Scaling, 4, 41, 73, 180, 200, 201, 264, 314,

329, 338
Scheduler, 12, 106–109, 146, 149, 151,

154–156, 165, 175–177, 181–183, 190,
192, 222, 224, 225, 227, 229, 232–235,
334, 335, 365

Scheduling, 13, 28, 101, 142, 156, 176, 181,
190, 193, 196, 212, 220, 222–225, 227,
229–235, 330, 363, 366, 370, 371

Scientific computing, 95, 96, 137, 146, 151,
153, 155, 158, 179, 180, 192

Scientific workflow, 48–50, 188
S3 downtime, 45
Secret, 146, 226, 246, 267, 278, 285
Secure cloud, 41, 291, 295
Security policy issues, 283
Security requirements, 245, 251, 271, 275,

276, 281, 284, 286, 287, 299
Self-configuring virtual clusters, 39
Self-service application provisioning, 31
Semantic interoperability, 24
Server virtualization, 7, 8, 26, 27
Service discovery, 27, 104, 195–216
Service economy, 333
Service Level Agreement (SLA), 30, 44, 94,

98, 100, 101, 104, 107, 109, 110, 196,
199, 258, 283, 313, 338, 344, 345, 354,
358, 363, 364

Service Oriented Architecture (SOA), 14–17,
66, 72, 94, 101, 138, 151, 272,
305–307, 309–315, 317, 320–322, 324

Service plane, 135–137
Shibboleth, 339
Simple API for Grid Applications (SAGA), 69
SimpleDB, 30, 267, 315
Simple Object Access Protocol (SOAP), 15,

101, 136, 168, 306, 316, 321
Slave replication, 41
Snapshot, 42
Snapshot replication, 42
Software as a Service (SaaS), 5, 17, 23, 25, 33,

41–42, 52, 53, 66, 67, 73, 79, 81,
84–86, 94, 164, 196, 198, 201, 247,
268, 272, 276, 279, 284, 285, 306, 309,
311, 344, 345, 355–357, 359, 361, 362

Solaris, 36, 38, 39, 85
SQL, 43, 213, 265

379Index

Standardization, 43, 74, 261, 262, 268,
307, 309

Standards, 9, 15, 16, 28, 30, 33, 41, 43, 48, 50,
51, 55–57, 59, 73, 74, 77–88, 110, 175,
229, 251, 259, 261, 262, 264, 266, 269,
280, 290, 294, 313, 354

Storage virtualization, 26
Subscription-based pricing, 30
Sun cloud, 41, 42

T
Tenancy, 81, 273, 282, 286, 355–357
Tenants, 317
3Tera, 80, 268
Teraport cluster, 39
Terminal server, 27
Third-party cloud resource, 274
Top500, 45, 178
Top secret, 246, 277, 278, 285
Transparent metering, 30
Trust issues, 282–283
Tunneling, 168–170, 174, 178

U
Ubiquitous network access, 272, 282, 286
Understanding risks to cloud computing,

275–284
Unified cloud interface, 81
Universal Description Discovery and

Integration (UDDI), 15, 22
Usage metering, 25
Utility, 31, 44, 63, 64, 71, 75, 93, 94, 96–98,

109, 128, 182, 225, 265, 284, 287, 292,
293, 337, 338, 346, 361, 363

Utility computing, 93, 109, 225, 361, 363

V
Value at Risk (VaR), 364–365, 370
Vendor lock-in, 29, 73–74, 78, 79,

261, 290
Vendors, 5, 23–25, 28–30, 42, 44, 46, 73–74,

78–88, 242, 251, 252, 261, 265, 274,
281, 286, 290, 309, 313, 314, 343–346,
351, 353–359, 362, 363

Vertical scalability, 309
Virtualbox, 26
Virtual clusters, 10, 39
Virtual desktop, 27
Virtual Infrastructure manager (VIM), 7, 9–10

Virtualization (paravirtualization, full
virtualization), 5–11, 17, 22–27, 41, 42,
55, 57, 71, 74, 94, 99, 102, 110, 127,
129, 132, 138, 149, 164, 165, 180, 182,
189, 246, 261, 268, 269, 291

Virtualized infrastructure, 28
Virtual Machine (VM), 5, 7, 8, 28, 67–69, 72,

79, 84, 95, 106–109, 138, 155, 156,
196, 198, 204, 205, 208–215, 261, 283,
318

Virtual Machine Monitor (VMM, hypervisor),
7, 8

Virtual organization membership services
(VOMS), 140

Virtual Private Network (VPN), 169, 170, 177,
178, 248, 287, 313, 319

VM images, 108
VM provisioning, 196
VMware, 8, 9, 26, 72, 83, 161
Volunteer computing, 95–99, 103–104,

146–153, 155, 156, 160, 161
VOMS. See Virtual organization membership

services

W
Walrus, 40
Wavelength Division Multiplexing (WDM),

131
Web Service Description Language (WSDL),

15, 136
Web Services Policy (WS-Policy), 16
Web Services Resource Framework (WSRF),

16, 42, 66, 136, 143
Web Services Security (WS-Security), 16,

314, 317, 319–321, 323
WIEN2k, 188–191
World privacy forum, 258, 276

X
Xen hypervisor, 34, 36, 39
XVM, 36

Y
YML, 145–161

Z
Zetta-byte file system (ZFS), 36
Zimory, 26

	Cover

	Cloud Computing
	Computer Communications and Networks series
	ISBN 1849962405
	Foreword
	Preface
	Introduction
	Expected Audience
	Book Overview
	Part 1: Cloud Base
	Part 2: Cloud Seeding
	Part 3: Cloud Breaks
	Part 4: Cloud Feedback

	Contents

	Part I
Cloud Base
	Chapter 1: Tools and Technologies for Building Clouds
	1.1 Introduction
	1.1.1 Cloud Services and Enabling Technologies

	1.2 Virtualization Technology
	1.2.1 Virtual Machines
	1.2.2 Virtualization Platforms
	1.2.3 Virtual Infrastructure Management
	1.2.4 Cloud Infrastructure Manager

	1.3 The MapReduce System
	1.3.1 Hadoop MapReduce Overview

	1.4 Web Services
	1.4.1 RPC (Remote Procedure Call)
	1.4.2 SOA (Service-Oriented Architecture)
	1.4.3 REST (Representative State Transfer)
	1.4.4 Mashup
	1.4.5 Web Services in Practice

	1.5 Conclusions
	References

	Chapter 2: A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems
	2.1 Introduction
	2.2 Background and Related Work
	2.3 Taxonomy of Cloud Computing
	2.3.1 Cloud Architecture
	2.3.1.1 Services and Modes of Cloud Computing
	Software-as-a-Service (SaaS)
	Platform-as-a-Service (PaaS)
	Hardware-as-a-Service (HaaS)
	Infrastructure-as-a-Service (IaaS)

	2.3.2 Virtualization Management
	2.3.3 Core Services
	2.3.3.1 Discovery and Replication
	2.3.3.2 Load Balancing
	2.3.3.3 Resource Management

	2.3.4 Data Governance
	2.3.4.1 Interoperability
	2.3.4.2 Data Migration

	2.3.5 Management Services
	2.3.5.1 Deployment and Configuration
	2.3.5.2 Monitoring and Reporting
	2.3.5.3 Service-Level Agreements (SLAs) Management
	2.3.5.4 Metering and Billing
	2.3.5.5 Provisioning

	2.3.6 Security
	2.3.6.1 Encryption/Decryption
	2.3.6.2 Privacy and Federated Identity
	2.3.6.3 Authorization and Authentication

	2.3.7 Fault Tolerance

	2.4 Classification and Comparison between Cloud Computing Ecosystems
	2.5 Findings
	2.5.1 Cloud Computing Infrastructure Technologyand Solution Provider
	2.5.2 Cloud Computing PaaS and SaaS Provider
	2.5.3 Open Source Based Cloud Computing Services

	2.6 Comments on Issues and Opportunities
	2.7 Conclusions
	References

	Chapter 3: Towards a Taxonomy for Cloud Computing from an e-Science Perspective
	3.1 Introduction
	3.2 Scientific Workflows and e-Science
	3.2.1 Scientific Workflows
	3.2.2 Scientific Workflow Management Systems
	3.2.3 Important Aspects of In Silico Experiments

	3.3 A Taxonomy for Cloud Computing
	3.3.1 Business Model
	3.3.2 Privacy
	3.3.3 Pricing
	3.3.4 Architecture
	3.3.5 Technology Infrastructure
	3.3.6 Access
	3.3.7 Standards
	3.3.8 Orientation

	3.4 Classifying Cloud Computing Environments Using the Taxonomy
	3.5 Taxonomies for Cloud Computing
	3.6 Conclusions and Final Remarks
	References

	Chapter 4: Examining Cloud Computingfrom the Perspective of Grid and Computer-Supported Cooperative Work
	4.1 Introduction
	4.2 Cloud and Grid: A Comparison
	4.2.1 A Retrospective View
	4.2.2 Comparison from the Viewpoint of System
	4.2.3 Comparison from the Viewpoint of Users
	4.2.4 A Summary

	4.3 Examining Cloud Computing from the CSCW Perspective
	4.3.1 CSCW Findings
	4.3.2 The Anatomy of Cloud Computing
	4.3.2.1 Security and Privacy
	4.3.2.2 Data and/or Vendor Lock-In
	4.3.2.3 Service Availability/Reliability

	4.4 Conclusions
	References

	Chapter 5: Overview of Cloud Standards
	5.1 Overview – Cloud Standards – What and Why?
	5.2 Deep Dive: Interoperability Standards
	5.2.1 Purpose, Expectations and Challenges
	5.2.2 Initiatives – Focus, Sponsors and Status
	5.2.3 Market Adoption
	5.2.4 Gaps/Areas of Improvement

	5.3 Deep Dive: Security Standards
	5.3.1 Purpose, Expectations and Challenges
	5.3.2 Initiatives – Focus, Sponsors and Status
	5.3.3 Market Adoption
	5.3.4 Gaps/Areas of Improvement

	5.4 Deep Dive: Portability Standards
	5.4.1 Purpose, Expectations and Challenges
	5.4.2 Initiatives – Focus, Sponsors and Status
	5.4.3 Market Adoption
	5.4.4 Gaps/Areas of Improvement

	5.5 Deep Dive: Governance, Risk Managementand Compliance Standards
	5.5.1 Purpose, Expectations and Challenges
	5.5.2 Initiatives – Focus, Sponsors and Status
	5.5.3 Market Adoption
	5.5.4 Gaps/Areas of Improvement

	5.6 Deep Dive: Other Key Standards
	5.6.1 Initiatives – Focus, Sponsors and Status

	5.7 Closing Notes
	References

	Part II
Cloud Seeding
	Chapter 6: Open and Interoperable Clouds: The Cloud@Home Way
	6.1 Introduction and Motivation
	6.2 Cloud@Home Overview
	6.2.1 Issues, Challenges, and Open Problems
	6.2.2 Basic Architecture
	6.2.2.1 Software Environment
	6.2.2.2 Software Infrastructure
	6.2.2.3 Software Kernel
	6.2.2.4 Firmware/Hardware

	6.2.3 Application Scenarios

	6.3 Cloud@Home Core Structure
	6.3.1 Management Subsystem
	6.3.2 Resource Subsystem

	6.4 Conclusions
	References

	Chapter 7: A Peer-to-Peer Framework for Supporting MapReduce Applications in Dynamic Cloud Environments
	7.1 Introduction
	7.2 MapReduce
	7.3 P2P-MapReduce
	7.3.1 Architecture
	7.3.2 Implementation
	7.3.2.1 Basic Mechanisms
	Resource Discovery
	Network Maintenance
	Job Submission and Failure Recovery

	7.3.2.2 State Diagram and Software Modules

	7.3.3 Evaluation

	7.4 Conclusions
	References

	Chapter 8: Enhanced Network Support for Scalable Computing Clouds
	8.1 Introduction
	8.2 The Cloud Evolution
	8.3 Improved Network Support for Cloud Computing
	8.3.1 Why the Internet is Not Enough?
	8.3.2 Transparent Optical Networks for Cloud Applications: The Dedicated Bandwidth Paradigm

	8.4 Architecture and Implementation Details
	8.4.1 Traffic Management and Control Plane Facilities
	8.4.2 Service Plane and Interfaces
	8.4.2.1 Providing Network Services to Cloud-Computing Infrastructures
	8.4.2.2 The Cloud Operating System–Network Interface

	8.5 Proof of Concept Implementationand Performance Analysis
	8.5.1 The Prototype Details
	8.5.1.1 The Underlying Network Infrastructure
	8.5.1.2 The Prototype Cloud Network Control Logic and its Services

	8.5.2 Performance Evaluation and Results Discussion

	8.6 Related Work
	8.7 Conclusions
	References

	Chapter 9: YML-PC: A Reference Architecture Based on Workflow for Building Scientific Private Clouds
	9.1 Introduction
	9.2 Overview of YML
	9.3 Design and Implementation of YML-PC
	9.3.1 Concept Stack of Cloud Platform
	9.3.2 Design of YML-PC
	9.3.3 Core Design and Implementation of YML-PC

	9.4 Primary Experiments on YML-PC
	9.4.1 YML-PC Can Be Scaled Up Very Easily
	9.4.2 Data Persistence in YML-PC
	9.4.3 Schedule Mechanism in YML-PC

	9.5 Conclusion and Future Work
	References

	Chapter 10: An Efficient Framework for Running Applications on Clusters, Grids, and Clouds
	10.1 Introduction
	10.2 Related Work
	10.2.1 General View of Cloud Computing frameworks
	10.2.2 Cloud Computing Middleware

	10.3 Deploying Applications in the Cloud
	10.3.1 Benchmarking the Cloud
	10.3.2 The ProActive GCM Deployment
	10.3.3 Technical Solutions for Deployment over Heterogeneous Infrastructures
	10.3.3.1 Virtual Private Network (VPN)
	10.3.3.2 Amazon Virtual Private Cloud (VPC)
	10.3.3.3 Message Forwarding and Tunneling

	10.3.4 Conclusion and Motivation for Mixing

	10.4 Moving HPC Applications from Grids to Clouds
	10.4.1 HPC on Heterogeneous Multi-Domain Platforms
	10.4.2 The Hierarchical SPMD Concept and Multi-level Partitioning of Numerical Meshes
	10.4.3 The GCM/ProActive-Based Lightweight Framework
	10.4.4 Performance Evaluation

	10.5 Dynamic Mixing of Clusters, Grids, and Clouds
	10.5.1 The ProActive Resource Manager
	10.5.2 Cloud Bursting: Managing Spike Demand
	10.5.3 Cloud Seeding: Dealing with Heterogeneous Hardware and Private Data

	10.6 Conclusion
	References

	Chapter 11: Resource Management for Hybrid Grid and Cloud Computing
	11.1 Introduction
	11.2 Background
	11.2.1 ASKALON
	11.2.2 Cloud Computing

	11.3 Resource Management Architecture
	11.3.1 Cloud Management
	11.3.2 Image Catalog
	11.3.3 Security

	11.4 Evaluation
	11.5 Related Work
	11.6 Conclusions and Future Work
	References

	Chapter 12: Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing
	12.1 Introduction
	12.2 Layered Peer-to-Peer Cloud Provisioning Architecture
	12.3 Current State-of-the-Art and Practice in Cloud Provisioning
	12.4 Cloud Service Discovery and Load-Balancing Using DHT Overlay
	12.4.1 Distributed Hash Tables
	12.4.2 Designing Complex Services over DHTs

	12.5 Cloud Peer Software Fabric: Design and Implementation
	12.5.1 Overlay Construction
	12.5.2 Multidimensional Query Indexing
	12.5.3 Multidimensional Query Routing
	12.5.4 Designing Decentralized and Co-ordinated Load-Balancing Mechanism

	12.6 Experiments and Evaluation
	12.6.1 Cloud Peer Details
	12.6.2 Aneka: PaaS Layer Application Provisioning and Management Service
	12.6.3 Test Application
	12.6.4 Deployment of Test Services on Amazon EC2 Platform

	12.7 Results and Discussions
	12.8 Conclusions and Path Forward
	References

	Chapter 13: Mixing Grids and Clouds: High-Throughput Science Using the Nimrod Tool Family
	13.1 Introduction
	13.2 High-Throughput Science with the Nimrod Tools
	13.2.1 The Nimrod Tool Family
	13.2.2 Nimrod and the Grid
	13.2.3 Scheduling in Nimrod

	13.3 Extensions to Support Amazon’s Elastic Compute Cloud
	13.3.1 The Nimrod Architecture
	13.3.2 The EC2 Actuator
	13.3.3 Additions to the Schedulers

	13.4 A Case Study in High-Throughput Science and Economic Scheduling
	13.4.1 Introduction and Background
	13.4.2 Computational Requirements
	13.4.3 The Experiment
	13.4.4 Computational and Economic Results
	13.4.5 Scientific Results

	13.5 Conclusions
	References

	Part III
Cloud Breaks
	Chapter 14: Cloud Compliance: A Framework for Using Cloud Computing in a Regulated World
	14.1 Using the Cloud
	14.1.1 Overview
	14.1.2 Background
	14.1.3 Requirements and Obligations
	14.1.3.1 Regional Laws
	14.1.3.2 Industry Regulations

	14.2 Cloud Compliance
	14.2.1 Information Security Organization
	14.2.2 Data Classification
	14.2.2.1 Classifying Data and Systems
	14.2.2.2 Specific Type of Data of Concern
	14.2.2.3 Labeling

	14.2.3 Access Control and Connectivity
	14.2.3.1 Authentication and Authorization
	14.2.3.2 Accounting and Auditing
	14.2.3.3 Encrypting Data in Motion
	14.2.3.4 Encrypting Data at Rest

	14.2.4 Risk Assessments
	14.2.4.1 Threat and Risk Assessments
	14.2.4.2 Business Impact Assessments
	14.2.4.3 Privacy Impact Assessments

	14.2.5 Due Diligence and Provider Contract Requirements
	14.2.5.1 ISO Certification
	14.2.5.2 SAS 70 Type II
	14.2.5.3 PCI PA DSS or Service Provider
	14.2.5.4 Portability and Interoperability
	14.2.5.5 Right to Audit
	14.2.5.6 Service Level Agreements

	14.2.6 Other Considerations
	14.2.6.1 Disaster Recovery/Business Continuity
	14.2.6.2 Governance Structure
	14.2.6.3 Incident Response Plan

	14.3 Conclusion
	Bibliography

	Chapter 15: Cloud Computing – Data Confidentiality and Interoperability Challenges
	15.1 Confidentiality of Data and Principal Issues Globally: An Overview
	15.1.1 Location of Cloud Data and Applicable Laws
	15.1.2 Data Concerns Within a European Context
	15.1.3 Government Data
	15.1.4 Trust
	15.1.5 Interoperability and Standardization in Cloud Computing
	15.1.6 Open Grid Forum’s (OGF) Production Grid Interoperability Working Group (PGI-WG) Charter
	15.1.7 Achievements in the OGF Open Cloud Computing Interface (OGF-OCCI)
	15.1.7.1 What will OCCI Provide?
	15.1.7.2 Cloud Data Management Interface (CDMI)
	15.1.7.3 How it Works

	15.1.8 SDOs and their Involvement with Clouds
	15.1.9 An Example of Cloud Computing Interoperability at Microsoft
	15.1.10 A Microsoft Cloud Interoperability Scenario
	15.1.11 Opportunities for Public Authorities
	15.1.12 Future Market Drivers and Challenges
	15.1.13 Priorities Moving Forward

	15.2 Conclusions
	References

	Chapter 16: Security Issues to Cloud Computing
	16.1 Introduction
	16.2 Cloud Computing (‘The Cloud’)
	16.3 Understanding Risks to Cloud Computing
	16.3.1 Privacy Issues
	16.3.2 Data Ownership and Content Disclosure Issues
	16.3.3 Data Confidentiality
	16.3.4 Data Location
	16.3.5 Control Issues
	16.3.6 Regulatory and Legislative Compliance
	16.3.7 Forensic Evidence Issues
	16.3.8 Auditing Issues
	16.3.9 Business Continuity and Disaster Recovery Issues
	16.3.10 Trust Issues
	16.3.11 Security Policy Issues
	16.3.12 Emerging Threats to Cloud Computing

	16.4 Cloud Security Relationship Framework
	16.4.1 Security Requirements in the Clouds

	16.5 Conclusion
	References

	Chapter 17: Securing the Cloud
	17.1 Introduction
	17.1.1 What Is Security?

	17.2 ISO 27002 Gap Analyses
	17.2.1 Asset Management
	17.2.2 Communications and Operations Management
	17.2.3 Information Systems Acquisition, Development, and Maintenance
	17.2.4 Information Security Incident Management
	17.2.5 Compliance

	17.3 Security Recommendations
	17.4 Case Studies
	17.4.1 Private Cloud: Fortune 100 Company
	17.4.2 Public Cloud: Amazon.com

	17.5 Summary and Conclusion
	References

	Part IV
Cloud Feedback
	Chapter 18: Technologies for Enforcement and Distribution of Policy in Cloud Architectures
	18.1 Introduction
	18.2 Decoupling Policy from Applications
	18.2.1 Overlap of Concerns Between the PEP and PDP
	18.2.2 Patterns for Binding PEPs to Services
	18.2.3 Agents
	18.2.4 Intermediaries

	18.3 PEP Deployment Patterns in the Cloud
	18.3.1 Software-as-a-Service Deployment
	18.3.2 Platform-as-a-Service Deployment
	18.3.3 Infrastructure-as-a-Service Deployment
	18.3.4 Alternative Approaches to IaaS Policy Enforcement
	18.3.5 Basic Web Application Security
	18.3.6 VPN-Based Solutions

	18.4 Challenges to Deploying PEPs in the Cloud
	18.4.1 Performance Challenges in the Cloud
	18.4.2 Strategies for Fault Tolerance
	18.4.3 Strategies for Scalability
	18.4.4 Clustering
	18.4.5 Acceleration Strategies
	18.4.5.1 Accelerating Message Processing
	18.4.5.2 Acceleration of Cryptographic Operations

	18.4.6 Transport Content Coding
	18.4.7 Security Challenges in the Cloud
	18.4.8 The PEP Air Gap
	18.4.9 Binding PEPs and Applications
	18.4.9.1 Intermediary Isolation
	18.4.9.2 The Protected Application Stack

	18.4.10 Authentication and Authorization
	18.4.11 Clock Synchronization
	18.4.12 Management Challenges in the Cloud
	18.4.13 Audit, Logging, and Metrics
	18.4.14 Repositories
	18.4.15 Provisioning and Distribution
	18.4.16 Policy Synchronization and Views

	18.5 Conclusion
	References

	Chapter 19: The PRISM On-demand Digital Media Cloud
	19.1 Introduction and Background
	19.2 A Media Service Cloud for Traditional Broadcasting
	19.2.1 Gridcast the PRISM Cloud 0.12

	19.3 An On-demand Digital Media Cloud
	19.4 PRISM Cloud Implementation
	19.4.1 Cloud Resources
	19.4.2 Cloud Service Deployment and Management

	19.5 The PRISM Deployment
	19.6 Summary
	19.7 Content Note
	References

	Chapter 20: Cloud Economics: Principles, Costs, and Benefits
	20.1 Cloud Computing Reference Model
	20.2 Cloud Economics
	20.2.1 Economic Context
	20.2.2 Economic Benefits
	20.2.3 Economic Costs
	20.2.4 Company Size, Economic Costs, and Benefits of Cloud Computing
	20.2.5 The Economics of Green Clouds

	20.3 Quality of Experience in the Cloud
	20.4 Monetization Models in the Cloud
	20.5 Charging in the Cloud
	20.5.1 Existing Models of Charging
	20.5.1.1 On-Demand IaaS Instances
	20.5.1.2 Reserved IaaS Instances
	20.5.1.3 PaaS Charging
	20.5.1.4 Cloud Vendor Pricing Model
	20.5.1.5 Interprovider Charging

	20.6 Taxation in the Cloud
	References

	Chapter 21: Towards Application-Specific Service Level Agreements: Experiments in Clouds and Grids
	21.1 Introduction
	21.2 Background
	21.3 Experiment
	21.3.1 Target Application: Value at Risk
	21.3.2 Target Systems
	21.3.2.1 Condor
	21.3.2.2 Amazon EC2
	21.3.2.3 Eucalyptus

	21.3.3 Results
	21.3.4 Job Completion
	21.3.5 Cost

	21.4 Conclusions and Future Work
	References

	Index

