


Computer Communications and Networks

For other titles published in this series, go to 
www.springer.com/series/4198



The Computer Communications and Networks series is a range of textbooks, 
monographs and handbooks. It sets out to provide students, researchers and non-
specialists alike with a sure grounding in current knowledge, together with compre-
hensible access to the latest developments in computer communications and 
networking.

Emphasis is placed on clear and explanatory styles that support a tutorial approach, 
so that even the most complex of topics is presented in a lucid and intelligible 
manner.



Nick Antonopoulos  •  Lee Gillam
Editors

Cloud Computing

Principles, Systems and Applications



ISBN 978-1-84996-240-7 e-ISBN 978-1-84996-241-4
DOI 10.1007/978-1-84996-241-4
Springer London Dordrecht New York Heidelberg

Library of Congress Control Number: 2010930920

© Springer-Verlag London Limited 2010
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted 
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or 
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case 
of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing 
Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of 
a specific statement, that such names are exempt from the relevant laws and regulations and therefore 
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the  information 
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions 
that may be made.

Cover design: SPi, Puducherry, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editors
Nick Antonopoulos
University of Derby 
School of Computing and Mathematics
Kedleston Road, DE22 1GB
Derby 
UK
N.Antonopoulos@derby.ac.uk

Lee Gillam
University of Surrey
Department of Computing
Guildford, Surrey, GU2 7XH
UK
L.Gillam@surrey.ac.uk

Series Editor
Professor A.J. Sammes, BSc, MPhil, PhD, FBCS, CEng 
Centre for Forensic Computing 
Cranfield University 
DCMT, Shrivenham 
Swindon SN6 8LA 
UK



v

Foreword

Cloud computing is increasingly being used for what was known as ‘on-demand’ 
and ‘utility computing’. The services provided, the APIs and the applications that 
can be hosted by these Cloud providers have superseded the use of the Grid, and 
are increasingly becoming popular with users. There are obviously two sides to the 
services that are provided by Cloud providers: those that are supplied by commer-
cial entities, such as Amazon and Google, and those that are open-source systems, 
such as Open Cirrus1 and Eucalyptus.2

There are currently three cloud-based delivery models. Software as a Service 
(SaaS), where the consumer uses an application, but does not control the operating 
system, hardware or network infrastructure. In this situation, the user steers applica-
tions over the network. Next is Platform as a Service (PaaS), where the users host an 
environment for their applications. The users control the applications, but do not 
control the operating system, hardware or network infrastructure, which they are 
using. Finally, there is Infrastructure as a Service (IaaS), where the user accesses 
‘fundamental computing resources’ such as CPU, memory, middleware and storage. 
The consumer controls the resources, but not the cloud infrastructure beneath them.

Service providers try to provide simplified software installation, maintenance 
and a centralised control over the software used. The end-users can access the 
cloud-based services ‘anytime’ and from ‘anywhere’. Naturally, this type of access 
is based on the bandwidth that a user has over the Internet and therefore poor inter-
connections mean that the use of cloud-based resources is not viable. Unfortunately, 
most current cloud-based systems use different APIs and protocols, which means 
that collaboration and sharing of data is difficult at this point in time. It is interest-
ing that the Open Grid Forum is looking at Cloud-based API and protocols, so that 
systems can share and work together in the future.

Many users and organisations are uncomfortable with the idea of storing their 
data and applications on system infrastructure and services they do not control. In 
addition, migrating workloads to a shared infrastructure increases the potential for 
unauthorised access and exposure of sensitive data. Cloud-based systems need to 

1 Open Cirrus, http://opencirrus.org/
2 Eucalyptus, http://open.eucalyptus.com/
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be consistent around authentication, identity management, compliance and 
access-related technologies, which are becoming increasingly important. Within 
the cloud-security model, the user needs to trust the vendor’s security model, con-
sider a customer’s inability to respond to audit findings, potentially obtain support 
for investigations, deem indirect administrator accountability, ensure that proprie-
tary implementations cannot be examined, and cope with the loss of physical con-
trol on the remote clouds being used. In addition, it may be a case that a user wants 
to use sensitive data on a cloud-based system, in which case it would be useful to 
be able to encrypt the data so that it is safe and cannot be stolen by other users.

There is also a need on cloud-based systems for Quality of Service (QoS) and 
Service-Level Agreements (SLAs). The contract between customers and service 
providers needs to be negotiated and agreed. Various performance metrics (e.g., 
uptime, throughput, and response time) need to be guaranteed to the users. Also, 
certain management details need to be exposed to the users of the system. This 
aspect of the service will require logging and efficient monitoring of the resources 
used by the users, so that they can see that they are potentially accessing the 
resources that were originally negotiated. There also needs to be well-documented 
security capabilities provided to the users, and the providers must recompense users 
where there are penalties for non-performance.

Cloud computing relies on separating user applications from the underlying 
infrastructure using virtualisation. The host operating system provides an abstrac-
tion layer for executing a virtual guest operating system. A key aspect of virtualisa-
tion is the ‘hypervisor’ and potentially the ‘virtual machine monitor’. Cloud-based 
systems use para-virtualisation, which includes a binary bus between the various 
virtual machines that are being executed. Para-virtualisation provides a much faster 
and more efficient virtualisation system than other virtual systems. Virtualisation 
enables the guest operating systems to execute in isolation of the other operating 
systems, and it also enables a range of legacy applications to be run. In addition, on 
a Cloud-based system, it is possible to run multiple types of operating systems 
across the system, which potentially also helps to increase the utilisation of physi-
cal servers. Virtualisation also allows the portability of virtual servers between 
physical servers and it can increase the overall security of the physical host server. 
It is well known for example that many HPC applications are only 15–20% effi-
cient, and it is possible when executing these applications on Cloud-based services 
that overall there is better program efficiency. In addition, for HPC applications, the 
system will also need to be able to schedule the virtual machines (VMs) efficiently, 
as it will be important that the constituting parts of the application are placed 
closely together to reduce communication latencies and give high inter-VM band-
width as well. Another aspect is that the Cloud-based systems have the possibility 
to optimise the use of resources, reduce the amount of electrical power used as well 
as the capability to provide efficient Green IT computing.

An unfortunate aspect of current Cloud-based systems is the hyperbolae and 
publicity broadcast about them, without detailed information about the services, 
protocols and applications that can be executed on these systems. Just like previous 
distributed systems (e.g. CORBA, Jini and the Grid), it is very important for the 
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potential end-user to know about the architecture, services, protocols, inter-opera-
bility, security, scalability and performance, reliability, user interfaces and poten-
tially payment for services in the context of Cloud computing.

This book provides a thorough and timely examination and exploration of the 
services, interfaces and the types of applications that can be executed on Cloud-
based systems. In addition, the book discusses the interfaces used to access the 
underlying services, the pros/cons of using virtualisation, the range and scope of 
applications that can be executed, the security used by these services, the user inter-
faces and aspects such as service-level agreements and the quality of service pro-
vided. The applications that execute on a Cloud-based system need a computational 
model, storage capabilities and potentially inter-process/thread communication. In 
addition, it is important to understand the scalability and performance capability of 
the systems being used. This book covers a wide range of topics related to Clouds 
and it includes chapters about tools and technologies for building Clouds, taxono-
mies of cloud-based systems and analysis of security and data confidentiality 
issues. There are discussions about the interoperability challenges related to the 
numerous protocols and APIs, methods for mixing Grids and Clouds together, 
resource management tools, potential Peer-to-Peer cloud-based provisioning, the 
policies, economics and costs-based benefits of Clouds, as well as Service-Level 
Agreements in Grids and Cloud-based systems. Therefore, it will be a useful tool 
for researchers and professionals aiming to understand and use Cloud systems for 
scientific and commercial purposes.

University of Reading, UK	 M. Baker
Winter 2010
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Preface

Introduction

Cloud computing appears to have emerged very recently as a subject of substantial 
industrial and academic interest, though its meaning, scope and fit with respect to 
other paradigms is hotly debated. For some researchers, Clouds are a natural evolu-
tion towards full commercialisation of Grid systems, while for others they may be 
dismissed as a mere rebranding of the existing pay-per-use or pay-as-you-go tech-
nologies. From either perspective, it appears that ‘Cloud’ has become the label of 
choice for accountable pay-per-use access to a wide variety of third-party applica-
tions and computational resources on a massive scale. Clouds are now supporting 
patterns of less-predictable resource use for applications and services across the IT 
spectrum, from online office applications to high-throughput transactional services 
and high-performance computations involving substantial quantities of processing 
cycles and storage. The current notion of Clouds seems to blur the distinctions 
between Grid Services, Web Services, and data centres, amongst others, and brings 
considerations of lowering the cost for relatively bursty applications to the fore.

Currently, there appears to be an increasing demand for Cloud computing in 
general. Major IT and e-commerce vendors such as Amazon, Google, IBM, 
Microsoft, and Sun have joined a variety of technology and service providers in 
offering Clouds. In turn, this generates significant demand for reference materials 
that provide coverage for this topic, ranging from standard developer guides to 
advanced expositions of research into Cloud design, optimisation and management. 
Interest in Cloud computing, as a concept or system design abstraction, is com-
pounded and further strengthened by an inherent relationship to service-oriented 
computing. Clouds may be considered by some as a reincarnation and an extension 
of service-oriented computing that covers computational hardware-based resources 
as well as software, with concomitant business benefits in cost reduction where 
such services scale efficiently.

For the scientific community, Cloud computing offers interesting characteristics 
and challenges. Some of these exist at the intersection between computing and 
economics, where the key question is how to develop a Cloud infrastructure that 
provides the required quality of service; from a network economics perspective, 
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this relates to the design and deployment of an adaptive pricing mechanism that 
provides both for a competitive edge and a profitable venture. At the same time, 
end-users (both potential consumers and providers) need to be able to understand 
the similarities, differences, benefits and disadvantages of Clouds over numerous 
existing paradigms including Grids, High-Performance Computing, Peer-to-Peer 
(P2P) systems and so on. P2P, Grid, High-Performance Computing and Web 
Services are very pertinent fields that have received significant and sustained 
research interest in the design and deployment of large-scale and high-performance 
computational resource-sharing systems. Collectively, these form the de facto basis 
for methods and techniques that will be re-appraised, re-used or re-designed to 
construct performance-driven Cloud platforms capable of satisfying the four cor-
nerstones of quality of service:

1.	 Efficiency: The execution and coordination of the services is optimised in terms 
of data traffic and latency. Data traffic is typically one of the main cost factors in 
any distributed computing framework and thus its reduction is a standard long-
term goal of such systems. Latency is arguably one of the most important factors 
affecting customer satisfaction and therefore it should also be within specified 
acceptable limits.

2.	 Scalability: These platforms should scale well to massive customer bases. They 
must also withstand demand of multiple bursty applications during peak times 
and endure the ‘flash crowds’ phenomenon familiar in overly successful market-
ing strategies and provisioning for popular websites at key times.

3.	 Robustness: The services need continuously high availability by design, with 
effective use of redundancy and graceful failover. Where users are charged for 
the expected successful use of computational facilities, it is imperative to under-
stand the risk of failure, either to remove the probability of failure, or to use this 
information to offer appropriate compensation schemes.

4.	 Security: Appropriate security provisions must exist for both data and applications to 
protect both the providers and consumers from malicious or fraudulent activities. 
Without adequate security provisioning, it is highly unlikely that any commoditised 
platform would become a serious consideration for business computing.

To ensure commercial success, effective Clouds will be expected to provide 
guaranteed quality of service to customers by satisfying these four cornerstones.

This book is targeted at providing a thorough and advanced treatment of the 
state-of-the-art in Cloud computing that addresses the above topics and highlights 
and clarifies the conceptual and systemic links with other distributed computing 
approaches.

The book has four key objectives:

	(i)	 To explore the relationship of Cloud computing to other distributed computing 
paradigms, namely Peer-to-Peer, Grids, High-Performance Computing and 
Web Services

	(ii)	 To present the principles, techniques, protocols and algorithms that can be 
adapted from other distributed computing paradigms to the development of 
successful Clouds
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	(iii)	to present current Cloud applications and highlight early deployment 
experiences

	(iv)	to elaborate the economic schemes needed for Clouds to become viable 
business models.

The first two objectives are firmly rooted in extant discourse of distributed com-
puting and a desire to understand the potential of all these technologies in con-
structing purpose-specific hybrid solutions. The remaining objectives are closely 
linked to commercial demand for understanding how such technologies can shape 
successful and profitable businesses.

Expected Audience

This book should be of particular interest for the following audiences:

•	 Researchers and doctoral students working specifically in Cloud computing 
research, implementation and deployment, primarily as a reference publication. 
Similarly, this book should be useful to researchers in related, or more general 
fields, such as distributed computing, software engineering, Web Services, mod-
elling of business processes, and so on.

•	 Academics and students engaging in research-informed teaching in the above 
fields. This book can serve as a good collection of articles to facilitate a broad 
understanding of this subject and as such may be useful as a key reference text 
in such teaching.

•	 Professional system architects and developers who could decide to adapt and 
apply in practice a number of the techniques and processes presented in the book.

•	 Technical managers and IT consultants as a book that demonstrates the poten-
tial applicability of certain methods for delivering efficient and secure commer-
cial electronic services to customers globally.

These audiences will find this publication appealing as it combines three distinct 
scholarly contributions: first, it identifies and highlights state-of-the-art techniques 
and methods for designing Cloud systems; second, it presents mechanisms and 
schemes for linking Clouds to economic activities; third, it achieves balanced cov-
erage of all related technologies that collectively contribute towards the realisation 
of Cloud computing.

Book Overview

The book contains 21 chapters that were carefully selected based on peer review by 
at least two expert and independent reviewers. The chapters are split into four Parts:
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Part 1: Cloud Base

This section aims to cover the essential definitions, characteristics and concepts 
behind Cloud computing. The chapters included in this section collectively intro-
duce the reader to Cloud computing and its essential architectural principles. As a 
result, chapters in this section are either tutorial in nature or provide critical litera-
ture surveys in the field.

Chapter 1 presents a number of mainstream technologies for building and man-
aging Cloud architectures. The authors provide a detailed description of virtual 
machine frameworks and present the MapReduce programming model, which is 
suitable for large-scale data processing.

Chapter 2 describes a detailed taxonomy of Cloud computing architectures that 
may promote clarity and reusability of key concepts in Cloud design. The authors 
use this taxonomy to identify key similarities and differences between various 
approaches to Cloud computing and underline areas for further development.

Chapter 3 analyses the applicability of Cloud computing in e-Science. It focuses 
on classifying different Cloud architectures in terms of their ability to provide the 
services required for large-scale scientific experiments and calculations.

Chapter 4 examines the differences between Cloud and Grid computing. The 
authors explain how the user- and task-centric design philosophy of Clouds makes 
this technology more appealing to typical end-users.

Chapter 5 provides a high-level overview of various standards for, and related 
to, Cloud computing. It explores the key features of each standard in terms of 
interoperability, security and portability and assesses the potential for market adop-
tion of the standards presented.

Part 2: Cloud Seeding

This section builds on the introductory material of Part 1 and provides in-depth 
coverage of how Clouds can be designed and how emerging technologies such as 
P2P fit with Cloud computing in general. It includes chapters that propose novel 
techniques and systems for making Clouds scalable, efficient and fault-tolerant 
computing platforms.

Chapter 6 presents an innovative computational paradigm called Cloud@Home 
that merges Peer-to-Peer computing with Clouds. The Cloud@Home aggregates 
the computational resources of many low-power systems, and the authors demon-
strate how this pool of resources can subsequently be managed and used by differ-
ent communities of users.

Chapter 7 exploits a novel peer-to-peer model for replicating and managing job 
states in an efficient and decentralised way. The authors use this model to enhance 
the fault tolerance of the MapReduce programming paradigm in highly dynamic 
environments that exhibit significant failure rates.
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Chapter 8 introduces a novel network-centric Cloud architecture that provides 
enhanced end-to-end connectivity services. The framework facilitates vertical and 
horizontal communication integration of Cloud applications and the authors dem-
onstrate its usefulness in decoupling connectivity from the underlying network 
implementations.

Chapter 9 presents a new workflow-based framework called YPL-PC that sup-
ports the development of (private) scientific Clouds. The authors base their work on 
the YML workflow programming paradigm and show how their framework can 
effectively integrate dedicated and volunteer computing resources to support large-
scale scientific applications.

Chapter 10 discusses the benefits of mixing Clouds with more traditional com-
puting platforms. It focuses on the design of a new high-level framework that sup-
ports the smooth transition of an application from a cluster or Grid to a Cloud.

Chapter 11 describes a novel mechanism for extending a Grid computing envi-
ronment to use on-demand Cloud resources in order to achieve better performance. 
The authors achieve this by modifying the Grid resource management architecture, 
and through experimentation demonstrate the performance gains of their frame-
work in workflows with large data sets.

Chapter 12 presents a new peer-to-peer Cloud architecture called Cloud Peer. The 
system creates and manages an overlay network of virtual machines and the authors 
demonstrate how it supports load balancing and scalable resource discovery.

Chapter 13 discusses the applicability of Cloud computing for high-throughput 
scientific applications. It shows that the Nimrod/G toolkit can handle both volun-
teer resources and commercial services. Through a case study, the authors conclude 
that an appropriate mixture of Grid and Cloud computing provides an ideal plat-
form for high-performance scientific computations.

Part 3: Cloud Breaks

This section covers a range of challenging issues associated to Cloud computing 
that, if not addressed properly, may limit adoption. It includes chapters that discuss 
legal issues, security and limitations. Specifically, the questions here relate to how 
data is protected in such environments to account for privacy, confidentiality, and 
so on, and what legislative and regulatory challenges are faced.

Chapter 14 provides an overview of a wide spectrum of legislation and regula-
tions applicable to Cloud computing. The authors present a detailed analysis of the 
considerations that potential Cloud users should make in order to protect their pro-
cesses and data.

Chapter 15 discusses interoperability issues and open development frameworks 
for Cloud computing. It presents current standardisation efforts and identifies future 
key challenges in data confidentiality in particular.

Chapter 16 discusses security and risk issues related to Cloud computing, 
including privacy, trust and data control. The authors use this analysis to propose a 
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new information asset classification model to assist Cloud users when choosing 
amongst Cloud delivery and deployment models.

Chapter 17 focuses on the security controls that need to be deployed in order to 
increase the adoption of Cloud computing. This discussion leads to a set of recom-
mendations on how various security layers can be incorporated in typical private or 
public Cloud provisions.

Part 4: Cloud Feedback

This section aims to argue a business case for Cloud computing by debating the 
impact of Clouds. Can Clouds be the basis for deploying successful digital econo-
mies? Are there any lessons learned from specific case studies involving the use of 
Clouds for business applications?

Chapter 18 assesses frameworks for the distribution and enforcement of policies 
in Cloud architectures. The authors explore the use of the Service-Oriented 
Architecture (SOA) Policy Enforcement Point (PEP) as a policy portal and show 
that this can be an effective security model for Cloud-based services.

Chapter 19 describes in detail the PeRvasive Infrastructure of Services for Media 
(PRISM) project that provides a Cloud-based media infrastructure to support network 
access to BBC content. The deployment of this system is discussed, and it is shown 
that the system is capable of handling petabytes of data for on-demand viewing.

Chapter 20 discusses the economic forces and business drivers affecting the 
adoption of Cloud computing. It provides a detailed analysis of the costs and ben-
efits of using Clouds as well as the overall quality of experience of Cloud end-users 
and its link to Service-Level Agreements (SLAs).

Chapter 21 discusses the challenges that would be entailed in constructing a 
price comparison service for Cloud resources. Service-Level Agreements (SLAs) 
would be a key component in such a service and experiments are presented for 
costing applications on a local Grid and a public (Amazon EC2) and private 
(Eucalyptus) Cloud.

Acknowledgements  The editors are grateful to the peer-review panel for supporting this book 
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Scott Morrison, and Terence Harmer. The editors are deeply apologetic to anyone whom they have 
forgotten.
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Abstract  With cloud computing growing in popularity, tools and technologies are 
emerging to build, access, manage, and maintain the clouds. These tools need to 
manage the huge number of operations within a cloud transparently and without 
service interruptions. Cloud computing promises lower costs, faster implementa-
tion, and more flexibility using mixtures of technologies, and the associated tools 
are critical for achieving this.

In this chapter, we survey several state-of-the-art techniques for building clouds, start-
ing with virtualization technology. We briefly introduce virtual machines (VMs) and 
their main features. Then, we introduce the main tools to manage VMs (hypervisors and 
virtual infrastructure managers) as well as the major technologies used to manage VMs 
in a public cloud. We then present MapReduce, a powerful model that makes it easier to 
write programs that take advantage of the power of cloud computing. We conclude by 
examining four web services tools and technologies that are built for cloud computing.

1.1 � Introduction

Computing is being transformed by a new model, cloud computing. In this model, 
data and computation are operated somewhere in a “cloud,” which is some collection 
of data centers owned and maintained by a third party.

Cloud computing refers to the hardware, systems software, and applications 
delivered as services over the Internet. When a cloud is made available in a pay-
as-you-go manner to the general public, we call it a Public Cloud. The term Private 
Cloud is used when the cloud infrastructure is operated solely for a business or an 
organization. A composition of the two types (private and public) is called a Hybrid 

H. Jin (*) 
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,  
Huazhong University of Science and Technology, 430074, Wuhan, China 
e-mail: hjin@hust.edu.cn

Chapter 1
Tools and Technologies for Building Clouds

Hai Jin, Shadi Ibrahim, Tim Bell, Li Qi, Haijun Cao, Song Wu,  
and Xuanhua Shi 
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Cloud, where a private cloud is able to maintain high service availability by scaling 
up their system with externally provisioned resources from a public cloud when 
there are rapid workload fluctuations or hardware failures.

In general, cloud providers fall into three categories (shown in Fig. 1.1):

Infrastructure as a Service (IaaS): offering web-based access to storage and •	
computing power. The consumer does not need to manage or control the under-
lying cloud infrastructure but has control over the operating systems, storage, 
and deployed applications.
Platform as a Service (PaaS): giving developers the tools to build and host web •	
applications (e.g., APPRIO [1], a software as a service provider, is built using 
the Force.com [2] platform while the infrastructure is provided by the Amazon 
Web Service [3]).
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MapReduce
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Web Services

Web Services

Hardware Technologies
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Platform as a
Service for
building web
applications.
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Software as a
Service such as
Gmail, Google
talk, Calendar
and so on.

Google’s main enabling technologies to build
Google Clouds are: MapReduce, GFS, BigTable,
and web services
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Amazon Elastic cloud service (VM-based
computation as a service) uses Xen as
hypervisor and web service technology to
expose the VMs. RightScale (third party), built on
top of EC2, can be used to reduce the
administration burden on the customer.
Amazon Simple Storage (S3). Web service
technology to expose storage resources to the
user.
Amazon Elastic MapReduce. Using Hadoop
over EC2 and S3 to process and analyze huge
amounts of data.

Amazon’s main IaaS services are:

Fig. 1.1  Cloud services and enabling technologies, using Amazon and Google systems as examples
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Software as a Service (SaaS): applications that are accessible from various client •	
devices through a thin client interface such as a web browser.

The shift toward cloud computing is driven by many factors including ubiquity of 
access (all you need is a browser), ease of management (no need for user experi-
ence improvements as no configuration or backup is needed), and less investment 
(affordable enterprise solution deployed on a pay-per-use basis for the hardware, 
with systems software provided by the cloud providers) [4]. Furthermore, cloud 
computing offers many advantages to vendors, such as easily managed infrastruc-
ture because the data center has homogeneous hardware and system software. 
Moreover, they are under the control of a single, knowledgeable entity.

1.1.1 � Cloud Services and Enabling Technologies

For the purposes of this chapter, we define cloud computing as data centers plus a 
layer of system software services designed to support the creation and scalable 
deployment of application services. Our goal here is to examine the tools and tech-
nologies used to build these clouds.

The data center hardware consists of thousands of individual computing nodes 
with their corresponding networking and storage subsystems, power distribution 
and conditioning equipment, and extensive cooling systems. Such data centers 
currently power the services offered by companies such as Google, Amazon, 
Yahoo, and Microsoft’s online services division.

Cloud services (remote data and computation) are exposed as simple and user-
friendly web services. For example, Microsoft’s ADO.NET (originally called 
Astoria) [5] provides the tools to expose any data object from a collection, stored 
in a database or other form, as a URI to an encoded form using a standard such as 
JSON or ATOM representation, and Google’s AppEngine [6] provides a way to 
deploy a remote Python script that becomes a web service that can access data in 
their BigTable database system.

To deliver highly available and flexible services (i.e., computation as a service), 
and owing to the maturity of virtualization technology, Virtual Machines (VMs) 
are used as a standard for object deployment in the cloud. VMs decouple the com-
puting infrastructure from the physical infrastructure. In addition, VMs allow the 
customization of the platform to suit the needs of the end-user. For example, in the 
Amazon Elastic Compute Cloud (EC2) [7], the customer selects his/her preferred 
VM image (virtual appliance) from a list of various versions of Linux and Windows 
servers configured with different web servers and databases. Alternatively, they can 
customize a system to best meet their needs and deploy the new application in 
the VM. Amazon provides a basic set of web services that can be used to deploy 
the VM, create an instance, and secure it. Multiple instances can be created to 
support demand as needed, although this requires more system administration and 
management. Thus, some organizations have developed virtual infrastructure 
tools to manage and monitor VMs in a pool of distributed resources (e.g., Enomaly 
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[8] and OpenNebula [9]). In addition, third-party application hosting framework 
service companies, like RightScale [10] and Elastra [11], have emerged to provide 
higher-level application deployment tools on top of EC2, thereby reducing the 
administration burden on the customer.

Because of the huge amount of data stored by a cloud, efficient processing and 
analysis of data has become a challenging issue. The Google MapReduce [12] 
model has proven to be an efficient approach for data-intensive cloud computing 
(e.g., Google uses its MapReduce framework to process 20 petabytes of data per 
day). MapReduce has been advocated as a good basis for data center computers in 
general [13].

1.2 � Virtualization Technology

Virtualization is the idea of partitioning or dividing the resources of a single server 
into multiple segregated VMs. Virtualization technology has been proposed and 
developed over a relatively long period. The earliest use of VMs was by IBM in 
1960, intended to leverage investments in expensive mainframe computers [14]. 
The idea was to enable multitasking – running multiple applications and processes 
for different users simultaneously. Robert P. Goldberg described the need for vir-
tual machines in 1974: “Virtual machine systems were originally developed to 
correct some of the shortcomings of the typical third generation architectures and 
multiprogramming operating systems – e.g., OS/360” [15]. During the 1980s and 
1990s, the prevailing approach to computing was distributed systems, client-
server applications, and the inexpensive x86 server [14]. Recently, owing to the 
rapid growth in IT infrastructure, we have seen the emergence of multicore proces-
sors and a wide variety of hardware, operating systems, and software. In this 
environment, virtualization has had a resurgence of popularity. Virtualization can 
provide dramatic benefits for a computing system, including increased utilization, 
energy saving, rapid deployment, improved maintenance capability, isolation, and 
encapsulation. Moreover, virtualization enables applications to migrate from one 
server to another while they are still running, without downtime, providing flexible 
workload management, and high availability during planned maintenance or 
unplanned events [16–22].

There are numerous reasons that virtualization is effective in practical scenarios, 
for example [23,24]:

Server and application consolidation: under virtualization, we can run multiple •	
applications at the same time on the same server, resulting in more efficient 
utilization of resources.
Configurability: virtualization allows dynamic configuration and bundling of •	
resources for a wider variety of applications than could be achieved at the hard-
ware level – different applications require different resources (some requiring 
more storage, others requiring more computing).
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Increased application availability: VM checkpointing and migration allow quick •	
failure recovery from unplanned outages with no interruption in service.
Improved responsiveness: resource provisioning, monitoring, and maintenance •	
can be automated, and common resources can be cached and reused.

1.2.1 � Virtual Machines

A VM is a software implementation of a machine (i.e., a computer) that executes 
programs like a physical machine [25]. This differs from a process VM, which is 
designed to run a single program, such as the Java Runtime Environment (JRE). 
A system VM provides a complete system platform that supports the execution of 
a complete operating system (OS).

The VM lifecycle has six phases: create, suspend, resume, save, migrate, and 
destroy. Multiple VMs can run simultaneously in the same physical node. Each VM 
can have a different OS, and a Virtual Machine Monitor (VMM) is used to control 
and manage the VMs on a single physical node. A VMM is often referred to as a 
hypervisor. Above this level, Virtual Infrastructure Managers (VIMs) are used to 
manage, deploy, and monitor VMs on a distributed pool of resources (cluster or 
data center). In addition, Cloud Infrastructure Managers (CIMs) are web-based 
management solutions on the top of IaaS providers (see Fig. 1.2).

1.2.2 � Virtualization Platforms

Virtualization technology has been developed to best utilize computing capacity. Server 
virtualization has been described as follows: “In most cases, server virtualization 

• Web based VM management on top of IaaS providers

Cloud Infrastructure Manager (CIM)

• Deploying, control and monitoring of VMs on a distributed pool of resources

Virtual Infrastructure  Manager (VIM)

• Manage the lifecycle of VMs on a single node

Virtual Machine Manager (VMM)

• Have two main layers, the operating system and a software package that is partially or
 fully configured to perform a specific task

Virtual Machines (VMs)

Fig. 1.2  Different layers of VM management tools and technologies
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is accomplished by the use of a hypervisor (VMM) to logically assign and separate 
physical resources. The hypervisor allows a guest operating system, running on the virtual 
machine, to function as if it were solely in control of the hardware, unaware that other 
guests are sharing it. Each guest operating system is protected from the others and is 
thus unaffected by any instability or configuration issues of the others” [26].

Virtualization methods can be classified into two categories according to 
whether or not the guest OS kernel needs to be modified, as shown in Fig. 1.3: (1) 
full virtualization (supported by VMware [27], Xen [28], KVM [29], and Microsoft 
Hyper-V [30], etc.), and (2) paravirtualization (currently supported only by Xen). 
Full virtualization emulates the entire hardware environment by utilizing hardware 
virtualization support, binary code translation, or binary code rewriting, and thus 
the guest OS does not need to modify its kernel. Having full virtualization is impor-
tant for running non-open-source operating system such as Windows, because it is 
too difficult to modify the Windows kernel without source code. Paravirtualization 
requires the guest OS kernel to be modified to become aware of the hypervisor. 
Because it need not emulate the entire hardware environment, paravirtualization 
can attain better performance than full virtualization.

In paravirtualized architecture, OS-level information about the VM can be 
passed explicitly from the OS to the VMM, and this is done in practice to some 
extent [31,32]. Any explicit information supplied by a paravirtualized OS is guar-
anteed to match what is available inside the OS. However, in some important envi-
ronments, the explicit approach is less valuable, and because paravirtualization 
requires OS-level modification, that functionality cannot be deployed in VMMs 
running beneath legacy or closed-source operating systems anyway.

Table  1.1 compares some of the most relevant commercial and open-source 
software (OSS) technologies for server virtualization, showing the main trade-off 
between the product’s performances.

Fig. 1.3  A comparison between full virtualization and paravirtualization VM hypervisors [33]
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1.2.3 � Virtual Infrastructure Management

A Virtual Infrastructure Manager (VIM) is responsible for the efficient management 
of a virtual infrastructure as a whole, by providing basic functionality for deploying, 
controlling, and monitoring VMs on a distributed pool of resources. This is done 
by communicating with their VMMs. The major issues being addressed by the 
cloud community are:

Improving the distributed and efficient management of the virtual infrastructure •	
as a whole (i.e., deployment, control, and monitoring)
Providing self-provisioning of the virtual infrastructure•	
Improving the integrity and interoperability of the different virtualization tech-•	
nologies (different hypervisors such as Xen, VMware) as well as the different 
cloud providers
Providing administrators with a uniform user-friendly environment that enables •	
access to a wider range of physically distributed facilities improving productivity

Accordingly, many organizations have introduced virtual infrastructure manage-
ment tools as shown in Table 1.2.

In addition to specific systems such as those listed in the table, open standard 
organizations such as OGF and DMTF contribute many standards for remote 
management of cloud computing infrastructures. The scope of the specifications 
covers all high-level functionality required for the life-cycle management of 
VMs. Some of these standards have been widely adopted to construct grid and 
cloud systems, such as the Open Grid Forum Open Cloud Computing Interface 
(OCCI) [40], The Open Virtualization Format (OVF) [41], and the virtualization 
API (libvirt) [42].

Table 1.1  Comparison of some of the most relevant commercial and open-source software (OSS) 
tools for server virtualization [34]

VMM Type Highlights
Guest 
performance License

KVM [29] Full virtualization Assigns every VM 
as a regular 
Linux process

Close to native Open source

Xen [28] Paravirtualization Supports VM  
migration on fly

Native Open source

VMware [27] Full virtualization Provides a mature 
product family to 
manage virtual 
infrastructure

Close to native Commercial

Microsoft  
hyper-V [30]

Full virtualization Able to trap guest  
calls

Close to native Commercial



10 H. Jin et al.

Table 1.2  Comparison of some of the most relevant commercial and open-source software (OSS) 
tools for virtual infrastructure management

System 
name Brief description

VM 
hypervisor Cloud type

Enomaly 
[8]

A programmable virtual cloud infrastructure 
for small, medium, and large businesses. 
Their Elastic Computing Platform (ECP) 
helps users to design, deploy, and manage 
virtual applications in the cloud, and 
also significantly reduces administrative 
and systems workload. A browser-based 
dashboard enables IT personnel to simply 
and efficiently plan deployments, automate 
VM scaling and load-balancing, and 
analyze, configure, and optimize cloud 
capacity.

Xen, KVM Private and 
public

Eucalyptus 
[35]

“Elastic Utility Computing Architecture Linking 
Your Programs To Useful Systems” – is 
an open-source software infrastructure for 
implementing cloud computing on clusters. 
The current interface to Eucalyptus is 
compatible with Amazon’s EC2, S3, and EBS 
interfaces, but the infrastructure is designed to 
support multiple client-side interfaces.

Xen, KVM, 
VMware

Private and 
public

Nimbus  
[36]

Nimbus has been developed in part within the 
Globus Toolkit 4 framework and provides 
interfaces to VM management functions 
based on the WSRF set of protocols. 
There is also an alternative implementation 
implementing Amazon EC2 WSDL.

Xen Private and 
public

Open  
Nebula 
[9]

Orchestrates storage, network, and virtualization 
technologies to enable the dynamic 
placement of multitier services (groups 
of interconnected VMs) on distributed 
infrastructures, combining both data center 
resources and remote cloud resources, 
according to allocation policies.

Xen, KVM, 
VMWare

Private, hybrid, 
and public 
cloud (EC2, 
Elastic 
Hosts[37])

Usher [38] The design philosophy of Usher is to provide an 
interface whereby users and administrators 
can request VM operations (e.g., start, stop, 
migrate, etc.) while delegating administrative 
tasks for these operations out to smart plug-
ins. Usher’s implementation allows for 
arbitrary action to be taken for nearly any 
event in the system.

Xen Virtual cluster

VNIX [39] With VNIX, administrators can deploy various 
VMs rapidly and easily on computing nodes, 
and manage them with related configuration 
from a single easy-to-use management 
console. In addition, VNIX implements 
several specialized features, involving 
easy monitoring, fast deploying, and 
autoconfiguring.

Xen Cluster
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1.2.4 � Cloud Infrastructure Manager

A Cloud Infrastructure Manager (CIM) is a web-based solution focused on deploy-
ing and managing services (deploying, monitoring, and maintaining the VMs) on 
top of Infrastructure as a Service (IaaS) clouds. Third-party application-hosting 
framework service companies provide higher-level application deployment tools on 
top of IaaS. Some of these solutions are listed in Table 1.3.

Table 1.3  Cloud infrastructure management solutions

System name Brief description Pricing Cloud provider Users

Rightscale 
[11]

Rightscale is a cloud 
management 
environment, 
cloud-ready server 
template and best-
practice deployment 
library, adaptable 
automation engine, 
and multi-cloud 
engine.

Starting at 
US$500, 
monthly 
fee

Amazon web 
services, 
GoGrid, 
FlexiScale

G.ho.st, 
Animoto, 
and 
MeDeploy 
[43]

Elastra [12] Elastra’s main features 
are: application 
infrastructure 
modeling, federated 
hybrid cloud 
management, lifecycle 
orchestration, 
and deployment 
management.

Pricing not 
published

AWS

Kaavo [44] IMOD is for Application-
Centric Management 
of virtual resources 
in the clouds. It 
provides easy-to-use 
web interface for 
deploying, running, 
and managing 
complex multiserver 
n-tier applications in 
the cloud.

Pricing not 
published

EC2 The 451 Group 
and Infoworld 
[45]

CohesiveFT 
[46]

PN-Cubed is a 
commercial solution 
that enables customer 
control in a cloud, 
across multiple 
clouds, and between 
private infrastructure 
and the clouds.

Starting with 
US$5,000 
per year

EC2, Elastic 
hosts
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1.3 � The MapReduce System

Google’s MapReduce [12] is a programming model that demonstrates a simpler 
way to develop data-intensive applications for large distributed systems. It can be 
leveraged to utilize the resources available through a cloud.

The MapReduce [12] system runs on top of the Google File System (GFS) [47], 
within which data is loaded, partitioned into chunks, and each chunk replicated. 
Data processing is co-located with data storage: when a file needs to be processed, 
the job scheduler consults a storage metadata service to get the host node for each 
chunk, and then schedules a map process on that node, so that data locality is 
exploited efficiently. At the time of writing, because of its remarkable features 
including simplicity, fault tolerance, and scalability, MapReduce is by far the most 
powerful realization of data-intensive cloud computing programming. It is often 
advocated as an easier-to-use, efficient, and reliable replacement for the traditional 
programming model of moving the data to the computation.

The MapReduce abstraction is inspired by the Map and Reduce functions, which 
are commonly used in the functional languages such as Lisp [12]. Users express the 
computation using two functions, map and reduce, which can be carried out on 
subsets of the data in a highly parallel manner. The runtime system is responsible 
for parallelizing and fault handling. The steps of the process are as follows. They 
are illustrated by the widely used “wordcount” example in Fig. 1.4:

The input is read (typically from a distributed file system) and broken up into •	
key/value pairs. The key identifies the subset of data, and the value will have 
computation performed on it. (In the example, the keys are each input word read 
from files A, B, and C, and the values are all a count of one.) The map function 
maps this data into sets of key/value pairs that can be distributed to different 
processors.

Fig. 1.4  Illustrate the Map and Reduce functions using the Wordcount Example
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The pairs are partitioned into groups for processing, and are sorted according to •	
their key as they arrive for reduction. (In the example, the pairs are now grouped 
according to the key.)
The key/value pairs are reduced, once for each unique key in the sorted list, to •	
produce a combined result. (In this example, this will be the count of each word).

MapReduce has been applied widely in various fields including data- and compute-
intensive applications, machine learning, and multicore programming. Moreover, 
many implementations have been developed in different programming languages 
for various purposes.

The popular open source implementation of MapReduce, Hadoop [48], was 
developed primarily by Yahoo, where it processes hundreds of terabytes of data on 
at least 10,000 cores [49], and is now used by other companies, including Facebook, 
Amazon, Last.fm, and the New York Times [50]. Research groups from enterprises 
and academia are starting to study the MapReduce model as a better fit for cloud 
computing, and explore the possibilities of adapting it for more applications.

1.3.1 � Hadoop MapReduce Overview

The Hadoop common [48], formerly called the Hadoop core, includes filesystem, 
RPC (remote procedure call), and serialization libraries, and provides the basic 
services for building a cloud computing environment with commodity hardware. 
The two main subprojects are the MapReduce framework and the Hadoop 
Distributed File System (HDFS).

The HDFS is a distributed file system designed to run on commodity hardware. 
HDFS is highly fault-tolerant and so can be deployed on low-cost hardware. HDFS 
provides high throughput access to application data and is suitable for applications 
that have large data sets. The Hadoop MapReduce framework is highly reliant on 
its shared file system, and it comes with plug-ins for HDFS, CloudStore [51], and 
the Amazon Simple Storage Service (S3).

The MapReduce framework consists of a single master JobTracker and one slave 
TaskTracker per cluster-node. The master is responsible for scheduling the jobs’ 
component tasks on the slaves (i.e., it queries the HDFS master Namenode about 
data block locations and assigns each task to the TaskTracker that is closest to 
where the data to be processed is physically stored), monitoring them, and re-
executing any failed tasks. The slaves execute the tasks as directed by the master.

1.4 � Web Services

To support cloud computing infrastructure efficiently, and to express business 
models easily, designers and developers need a group of web services technologies 
to construct a real, user-friendly, and content-rich set of applications on the top of 
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their clouds. This section introduces four fundamental tools and technologies, 
which can be employed to construct cloud applications viewed at the infrastructure, 
architecture, and presentational level. These technologies are: Remote Procedure 
Call (RPC), Service-Oriented Architecture (SOA), Representational State Transfer 
(REST), and Mashup.

1.4.1 � RPC (Remote Procedure Call)

Reliable and stable communications among cloud resources are fundamental to the 
infrastructure, and thus are an important consideration. Remote Procedure Call 
(RPC) has proven to be an efficient mechanism for implementing the client-server 
model in a distributed computing environment. It was proposed initially by Sun 
Microsystems as a great advancement in comparison with sockets (e.g., the pro-
grammer is not concerned with the underlying communications, since they are 
embedded inside the RPC). In RPC, the client must know what features the server 
provides, which are indicated by a service definition, written in IDL (Interface 
Description Language). An RPC call is a synchronous operation that suspends the 
calling program until the results of the call are returned. When an RPC is compiled, 
a stub is included in the compiled code that represents the remote service. When 
the program runs, it calls the stub, which knows where the operation is and how to 
reach the service. The stub will send the message through the network to the server. 
The result of the procedure is returned to the client in the same way.

Many commercial products built over the RPC mechanism have been practically 
proven as efficient and convenient to construct enterprise applications.

In 2002, Microsoft released the .NET Remoting [52], which was incrementally 
evolved from DCOM and Active X, to support. NET applications intercommunicat-
ing in a loosely coupled environment. Similar to RPC stubs, .NET Remoting initial-
izes the “Channel” objects to proxy the remote calls. To improve the transparency 
and convenience, the procedure of serialization and marshalling will be completed 
automatically by .NET runtime. Each .NET Remoting object is identified as a 
unique URL and safely accessed by clients remotely.

Extending from Java Remote Method Invocation (RMI) [53], Java community 
presents a complete specification J2EE [54] to standardize the communications 
among loosely coupled Java components. The enhancements include Enterprise 
Java Beans (EJB), connectors, servlets, and portlets. The complete J2EE structure 
of specifications helps designers to easily construct business logic and assists 
developers in clearly implementing them. Although .Net Remoting and J2EE 
have been widely adopted by the industry, RPC mechanism is not feasible to 
construct Cloud applications. One of the problems with RPC is that RPC imple-
mentations, as shown in Table 1.4, can be incompatible with each other. To use 
one of the possible implementations of RPC will result in a high dependence on 
the particular RPC.
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1.4.2 � SOA (Service-Oriented Architecture)

The goal of a Service-Oriented Architecture (SOA) [55,56] is to composite together 
fairly large chunks of functionality to form service-oriented applications, which are 
almost entirely built from the existing software services. SOA hired a bunch of 
open standards (1) to wrap the components in different localized runtime environ-
ment (e.g., in Java or .NET); (2) to enable different clients including pervasive 
devices free access; (3) to reuse the existing components to compose more services. 
This significantly reduces development costs and helps designers and developers to 
concentrate more on business models and their internal logic.

SOAs use several communication standards based on XML to enhance the 
interoperability among application systems. As the atomic access point inside an 
SOA, the web services are formally defined by three kernel standards: Web Service 
Description Language (WSDL), Simple Object Access Protocol (SOAP), and 
Universal Description Discovery and Integration (UDDI). Normally, the functional 
interfaces and parameters of specific services are described using the WSDL. Web 
services exchange messages are encoded in the SOAP messaging framework and 
transported over HTTP or other internet protocols (SMTP, FTP, and so forth). 
A typical web service lifecycle envisions the following scenario: A service provider 
publishes the WSDL description of their service in a UDDI, a registry that permits 
Universal Description Discovery and Integration of web services. Subsequently, 
service requesters can inspect the UDDI and locate/discover web services that are 
of interest. Using the information provided by the WSDL description, they can 
directly invoke the corresponding web service. Further, several web services can be 

Table 1.4  Web service toolkits comparisons

Age Dep. Transport Key Tech. Categories Implementations

RPC 1974 – TCP/IP Stubs, IDL Infrastructure, 
IaaS

Java RMI 
[52], XML 
RPC, .Net 
Remoting 
[53], RPyC, 
CORBA

SOA 1998 WS-RPC HTTP,FTP, 
SMTP

WSDL Architecture 
level, PaaS

IBM Websphere, 
Microsoft .Net 
IIS, Weblogic

UDDI
SOAP

REST 2000 HTTP HTTP,FTP, 
SMTP

Web-oriented Architecture 
level, DaaS

RIP, Rails, 
Restlet, Jboss 
RESTEasy, 
Apache CXF, 
Symfony

MASHUP 2000 
later

REST HTTP Web-oriented 
(Web 2.0)

Application 
level, SaaS

Google Mashup 
editor, JackBe, 
Mozilla 
Ubiquity

SOA
RSS
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composed to achieve more complex functionality. All the invocation procedures are 
similar to RPC except that the communications and deployments are described in 
open standards.

Moreover, the open standards organizations such as W3C, OASIS, and DMTF 
contribute many higher-level standards to help different users construct their reus-
able, interoperable, and discoverable services and applications. Some of these 
standards were widely adopted to construct grid and cloud systems, such as Web 
Services Resources Framework (WSRF) [57], Web Services Security (WS-Security) 
[58], Web Services Policy (WS-Policy) [59], and so on.

1.4.3 � REST (Representative State Transfer)

REST [60] is an architectural style that Roy T. Fielding, now chief scientist at Day 
Software, first defined in his doctoral thesis. REST stipulates mechanisms for 
defining and accessing resources in specific distributed systems such as the web. In 
a REST implementation, resources are addressed via uniform resource identifiers 
(URIs). That is, a given URI is used to access the representational state of a 
resource, and also to modify that resource. For example, web URLs can be used to 
give descriptive information about resources, and consumers then need to know 
only the URL to read the information. Furthermore, an authorized user can also 
modify the information if needed.

REST defines three architectural entities as follows [60–62]:

Data elements: resource identifiers such as URIs and URLs, and resource repre-•	
sentations, such as HTML documents, images, and XML documents
Components: Origin servers, gateways, proxies, and user agents•	
Connectors: Clients, servers, and caches•	

The representational state for resources in an HTTP-based REST system should be 
accessed using the standard HTTP methods.

A simple breakdown of these methods is as follows: GET is used to transfer the 
current representational state of a resource from a server to a client; PUT is used to 
transfer the modified representational state of a resource from the client to the 
server; POST is used to transfer the new representational state of a resource from 
the client to the server; and DELETE is used to transfer information needed to 
change a resource to a deleted representational state.

1.4.4 � Mashup

A mashup has been defined in Wikipedia [63] as “a web page or application that 
combines data or functionality from two or more external sources to create a new 
service. To be more precise, Mashup technology concentrates on the following tasks 
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[64]: (1) Deep access to existing enterprise services and data/content repositories; 
(2) SaaS-style web-based Mashup assembly and use; (3) Assembly models that are 
truly end-user friendly with very little training required; and last, but certainly not 
least, (4) a credible management and maintenance plan for IT departments that must 
support a flood of public end-user built and integrated apps.”

Mashup is concerned with the API (application) level. When building Mashups, 
the developer is always dependent on the providers of the services. As shown in the 
figure, Mashup requires that the XMLHttpRequest is made to third-party domains. 
By compositing services and data from SOA, REST, RSS, ATOM, and other RPC-
like web servers, a Mashup API can conveniently bind the data with AJAX scripts 
to deliver a service to end-users.

Some Mashup editors have been implemented to help developers easily con-
struct Web 2.0 and cloud-oriented applications; currently two are available, Google 
Mashup Editor [65] and Mozilla Ubiquity [66].

1.4.5 � Web Services in Practice

All the aforementioned web services tools and technologies have been widely 
implemented by industry and open-source organizations. Table 1.4 also lists their 
main attributes in terms of when they were proposed, dependencies, transport 
mechanism, key technology, categories, and implementations. Understanding these 
features can help developers to quickly adopt the appropriate technologies and 
develop their clouds effectively.

1.5 � Conclusions

This chapter has presented the main tools and technologies for building and operating 
clouds. Virtualization technology is foundational to cloud computing because it 
provides a safe and flexible platform using VMs, VM Monitors, Virtual 
Infrastructure, and Cloud Infrastructure Managers. Virtualization technology is still 
developing rapidly, and some of the limitations that currently exist are likely to be 
addressed as virtualization technology becomes more mature. We have also pre-
sented the MapReduce programming model, which is a particularly useful approach 
for processing huge amounts of data because the computation is close to the data.

Finally, we have reviewed a number of different web services technologies that 
provide an easy interface for users to configure and access cloud resources.

Cloud computing is a powerful way to provide computing resources, and the 
tools for creating and maintaining cloud systems and their services are becoming 
increasingly flexible and easy to use, providing users with easy on-demand access 
to massive computing power and storage that previously would only have been 
available to extremely well-resourced organizations.
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Abstract  Cloud computing has emerged as a popular computing model to support 
processing of volumetric data using clusters of commodity computers. Nowadays, 
the computational world is opting for pay-for-use models. Hype and discussion 
aside, there remains no concrete definition of cloud computing. This chapter 
describes a comprehensive taxonomy for cloud computing architecture, aiming 
at a better understanding of the categories of applications that could benefit from 
cloudification and that will address the landscape of enterprise IT, management  
services, data governance, and many more. Then, this taxonomy is used to survey 
several cloud computing services such as Google, Force.com, and Amazon. The 
usages of taxonomy and survey results are not only to identify similarities and 
differences of the architectural approaches of cloud computing, but also to identify 
the areas requiring further research.

2.1 � Introduction

Cloud computing appears to be a highly disruptive technology, which is gaining 
momentum. It has inherited legacy technology as well as new ideas on large-scale 
distributed systems. The concept of cloud computing addresses the next evolutionary 
step of distributed computing. The goal of this computing model is to make a better 
use of distributed resources, put them together in order to achieve higher throughput, 
and be able to tackle large-scale computation problems. The computing power 
nowadays is easily available for massive computational processing. For example, 
image processing on Amazon Elastic Cloud Computing (EC2) [20] for New York 
Times is a great success story for Amazon. The input of 11 million articles (4-terabytes 
of TIFF data) was processed successfully using Amazon Simple Storage Service 
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(Amazon S3), EC2 as hardware, and Hadoop [19] with MapReduce as software 
framework [29]. The output data was 1.5 terabytes of PDF format, processed within 
24 h at a computation cost of just $240. Google has used MapReduce to process 
20 petabytes1 of data a day [1]. Similarly, Google used MapReduce running on 1,000 
servers to sort 1 terabyte of data in just 68 s [40]. Hive/Hadoop [51] cluster at 
Facebook stores more than 2 Petabytes of uncompressed data and routinely loads 
15 Terabytes of data daily [50]. Such scenarios prove that cloud computing is becoming 
cheaper, faster, and easy for massive distributed processing and scalable storage.

Cloud computing is not a completely new concept for the development and 
operation of web applications. It allows for the most cost-effective development of 
scalable web portals on highly available and fail-safe infrastructures. In the cloud 
computing system, we have to address different fundamentals like virtualization, 
scalability, interoperability, quality of service, failover mechanism, and the cloud 
delivery models (private, public, hybrid) within the context of the taxonomy. The 
taxonomy of cloud includes the different participants involved in the cloud along 
with the attributes and technologies that are coupled to address their needs and the 
different types of services like “XaaS” offerings where X is software, hardware, 
platform, infrastructure, data, and business.

The taxonomy is more than defining the fundamentals that provides a framework 
for understanding the current cloud computing offerings and suggests what is to 
come. It is provoking those who would seek a single, canonical definition of the term 
cloud computing. The main idea behind this taxonomy is to find out the technical 
strength, weakness, and challenges in the current cloud systems and we suggest 
what should be done in future to strengthen the systems. The emergence of cloud 
fabrics will enable new insights into challenging engineering, medical, and social prob-
lems. The cloud taxonomy should not be a gigantic construct that muddies the water 
of service development. It should be consistent with a set of principles that provides 
architectural and design guidance on the usage and crafting of services. It should 
provide understandable and consistent guidelines that provide clarity and reusability. 
For that reason, this taxonomy is intentionally small and fuzzy, i.e. the boundaries 
of the service layers are not rigid with regard to an emerging service.

Taxonomic information is essential for cloud service providers, enterprise firms, 
and border authorities to detect, manage, and control invasive alien components. 
Taxonomy identifies and enumerates the components of cloud computing that are 
providing basic knowledge underpinning management and implementation of the 
cloud spectrum. Taxonomy is more than defining the fundamentals that provides a 
framework for understanding the current cloud computing offerings and suggests 
what is to come. The criteria for defining the taxonomy is based on the core ideas 
of distributed systems for massive data processing. The criteria focus on cloud 
architecture, virtualization management, services, fault tolerance, and we analyze 
mechanisms like load balancing, interoperability, and scalable data storage.

1 Disk Storage: 1,000 Megabytes = 1 Gigabytes, 1,000 Gigabytes = 1 Terabytes, 1,000 
Terabytes = 1 Petabytes
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This chapter tries to define taxonomy and survey of “Cloud Computing” based 
on recent advances from academia and industry as well as our experience. This 
chapter also describes the comparative study of different cloud service providers 
and their systems. The chapter is organized as follows. Section 2 introduces the 
background and related work. Section 3 defines the taxonomy of cloud computing. 
Section 4 describes the classification and comparative study of cloud computing 
ecosystems. Findings are discussed in Section 5. Some of the issues and opportuni-
ties are explained in Section 6. Finally, Section 7 concludes the chapter.

2.2 � Background and Related Work

XaaS implies everything as a service [17] like SaaS (Software as a Service), PaaS 
(Platform as a Service), HaaS (Hardware as a Service), DaaS ([Data center, 
Database, Desktop] as a Service), IaaS (Infrastructure as a Service), BaaS (Business 
as a Service), FaaS (Framework as a Service), OaaS (Organization as a Service), etc. 
There are many cloud computing systems like Amazon EC2, Google App Engine 
(GAE), Microsoft Azure, IBM Blue Cloud, Nimbus, 3 Tera, etc. There is, however, 
no standard taxonomy, as everyone tries to define cloud computing and its services 
in their own way. There has been prior work reflecting the taxonomy of cloud 
computing. The taxonomy described by the Cloud Computing Use Case Discussion 
Group [23] is categorized into three views: service developer, service provider, and 
service consumers. This taxonomy does not cover the data holding governance 
structure. Crandell [21] defines a taxonomy based on product offerings. He divided 
the product offerings into three layers, namely Application in the cloud (Salesforce 
and other SaaS vendors), Platform in the cloud (GAE, Moso, Heroku), and 
Infrastructure in the cloud (Amazon Web Services, Flexiscale). This taxonomy is 
attractive for any company with an application that runs in a data center or with 
a hosted provider, that does not want to reinvent the wheel or pay a premium. 
Laird’s [22] Cloud Vendor Taxonomy gives the classifications and vendors with 
that related group. This taxonomy divides the cloud vendors into Infrastructure 
(Public Cloud, Private Cloud), platform (Biz User Platforms, Dev Platform), 
services (Billing, Security, Fabric Mgmt, System Integrators), and applications. 
This taxonomy gives a visual map of the SaaS, PaaS, and cloud computing industries. 
Forrester’s Cloud Taxonomy [24] is categorizing cloud services by IT-Infrastructure 
vs. Business value and by the level of privacy. This taxonomy focuses on the 
dimensions of privacy and business value. It focuses on the modes of cloud com-
puting (Public Scale-Out Clouds, Public Server Cloud, Virtual Private Scale-Out 
Clouds, Virtual Private Server Clouds, Private Clouds, Virtual Private SaaS, Public 
SaaS, PaaS, On-Premises, ASP Concepts, etc.) To provide an even clearer and more 
explicit view over cloud computing applications, we propose several incremental 
enhancements of those taxonomies. In this paper, we will adjust, refine, and 
extend those taxonomies, making them even more suitable and flexible for cloud 
computing.
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2.3 � Taxonomy of Cloud Computing

Several taxonomies [21,22,24] of the cloud computing blueprint can be found, but 
most were created from the perspective of vendors that are part of the landscape and 
not from the perspective of enterprise IT, the consumers of cloud services, and 
software. This taxonomy is split into seven major sections as shown in Fig. 2.1.

This includes architecture, virtualization management, core services, security, 
data governance, and management services. The subtaxonomy core services 
include replication, discovery, and load balancing. A scalable, robust, and intelligent 
replication mechanism is crucial to the smooth operation of cloud computing. 
Another subtaxonomy security includes encryption/decryption, privacy, federated 
identification, authorization, and authentication. Ultimately, the cloud computing 
taxonomy describes certain patterns in how to understand the cloud components 
and how to do things. At the same time, it needs to provide some specific grounding 
to address the complex issues of integration of services within cloud computing that 
focus on providing computable semantic interoperability.

2.3.1 � Cloud Architecture

Cloud architecture is the design of software applications that use Internet accessible 
and on-demand service. Cloud architectures are underlying an infrastructure that is 

Fig. 2.1  A taxonomy of cloud computing
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used only when it is needed to draw the necessary resources on-demand and perform 
a specific job, then relinquish unneeded resources, and dispose of them after the job 
is done. The services are accessible anywhere in the world, with the cloud appearing 
as a single point of access for all the computing needs of consumers. Cloud archi-
tectures address the key difficulties surrounding large-scale data processing.

2.3.1.1 � Services and Modes of Cloud Computing

There are different categories of cloud services such as infrastructure, platform, and 
applications. These services are delivered and consumed in real time over the 
Internet. We discuss these services in the broader view.

Software-as-a-Service (SaaS)

Software as a Service is a multitenant platform. It uses common resources and a 
single instance of both the object code of an application as well as the underlying 
database to support multiple customers simultaneously. SaaS [3,4], commonly 
referred to as the Application Service Provider model, is heralded by many as the 
new wave in application software distribution. Examples of the key providers are 
SalesForce.com (SFDC), NetSuite, Oracle, IBM, and Microsoft, etc.

Platform-as-a-Service (PaaS)

Platform-as-a-Service provides developers with a platform, including all the sys-
tems and environments, comprising the end-to-end lifecycle of developing, testing, 
deploying, and hosting of sophisticated web applications as a service delivered by 
a cloud base. It provides an easier way to develop business applications and various 
services over the internet (e.g. a real state service provider). Creating and maintain-
ing an infrastructure is the most time-consuming work in the on-premises systems. 
PaaS was invented to solve exactly this problem. Key examples are Google 
AppEngine, Microsoft’s Azure, Heroku.com, etc. Compared with conventional 
applications development, this strategy can slash development time, offer hundreds 
of readily available tools and services, and quickly scale.

�Hardware-as-a-Service (HaaS)

In HaaS model, the vendor allows customers to license the hardware directly. 
According to Nicholas Carr [18], “the idea of buying IT hardware or even an entire 
data center as a pay-as-you-go subscription service that scales up or down to meet 
your needs. But as a result of rapid advances in hardware virtualization, IT automation, 
and usage metering and pricing, I think the concept of hardware-as-a-service – let’s call 
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it HaaS, may at last be ready for prime time.” This model is advantageous to the 
enterprise users, since they do not need to invest in building and managing data 
centers.

Infrastructure-as-a-Service (IaaS)

Infrastructure-as-a-Service is the delivery of computer infrastructure as a service. 
Aside from higher flexibility, a key benefit of IaaS is the usage-based payment 
scheme. This allows customers to pay as they grow. Another important advantage 
is that of always using the latest technology. Customers can achieve a much faster 
service delivery and time to market. Key examples are GoGrid, Flexiscale, Layered 
Technologies, AppNexeus, Joyent, and Mosso/Rackspace, etc. Basically, cloud 
mode can be defined by three types (1) Private Cloud: Data and processes are man-
aged within the organization without the restrictions of network bandwidth, 
security exposures, and legal requirements that using public cloud services across 
open, public networks might entail. Some examples are Amazon VPC, Eucalyptus, 
Enomaly, VMWare, Redplaid, Platform computing, and Intalio. (2) Public Cloud: 
Describes cloud computing in the traditional mainstream sense, whereby resources are 
dynamically provisioned on a fine-grained, self-service basis over the Internet, via 
web applications/web services, from an off-site third-party provider who shares 
resources. Some examples are Zimory, Azure, SunCloud, Amazon EC2, SymetriQ, 
GigaSpaces, Rackspace, and Flexiscale. (3) Hybrid Cloud: The environment  
is consisting of multiple internal and/or external providers. Some example are 
RightScale, Asigra Hybrid Cloud Backup, Carpathia, Skytap, and Elastra.

2.3.2 � Virtualization Management

Virtualization Management is the technology that abstracts the coupling between 
the hardware and operating system. It refers to the abstraction of logical resources 
away from their underlying physical resources in order to improve agility, flexibility, 
reduce costs, and thus enhance business value. Basically, virtualizations in cloud 
are of different types such as server virtualization, storage virtualization, and network 
virtualization. A common interpretation of server virtualization is the mapping 
of single physical resources to multiple logical representations or partitions. In a 
virtualized environment, computing environments can be dynamically created, 
expanded, shrunk, or moved as the demand varies. Virtualization [2] is therefore 
extremely well suited to a dynamic cloud infrastructure, because it provides impor-
tant advantages in sharing, manageability, and isolation. Different solutions are 
available to manage virtual machines such as XEN, VMWare, KVM, VirtualBox, 
Microsoft Virtual Machine Manager and many more. Virtualization management deals 
with the different types of virtualizations in the context of cloud computing such as 
Desktop Virtualization (Virtual PC), Network Virtualization, Storage Virtualization, 
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Server Virtualization (Virtual Server), Application Virtualization (SoftGrid Application 
Virtualization), and Presentation Virtualization (Terminal Server). Storage capacity 
and performance are scalable because there is no central bottleneck. When expected 
demand exceeds higher server utilization, the storage can be scaled (horizontal 
scalability or vertically scalability) to meet them. One study from Gartner [25] 
shows that fewer than five million PCs were “virtualized” in 2006; by 2011, that 
figure will rise to between 480 million and 846 million. In another study, Gartner 
also estimated [26] that revenue from hosted virtual desktop will more than triple from 
$74.1 million to $298.6 million in 2009, while revenue from server virtualization 
management software will increase 42% from $913.9 million in 2008 to $1.3 billion 
in 2009. Revenue from server virtualization infrastructure will grow 22.5% from 
$917 million in 2008 to $1.1 billion in 2009. These data give a direction that is the 
major infrastructure for cloud computing. Therefore, it is the essential component 
for the cloud taxonomy. It has several benefits such as test and development opti-
mization, resource maximization, business cost reduction, and much more.

2.3.3 � Core Services

This section focuses on the core services of cloud computing. In core services, we will 
discuss discovery, replication, load balancing, and resource management in details.

2.3.3.1 � Discovery and Replication

Service discovery promotes reusability by allowing service consumers to find the 
existing services. RESTful services [48] support discovery and reuse at design 
time. Replication can be used to create and maintain copies of an enterprise’s data 
at these sites. When events affecting an enterprise’s primary location occur, key 
application services can effectively be restarted and run at the remote location 
incurring no capital expenditure, only operational expenditure, until such time as 
the primary site is brought back online. Replication (Eager and Lazy) [54] keeps all 
replicas as a part of one atomic transaction. Replication technology is available in 
storage arrays, network-based appliances, and through host-based software.

2.3.3.2 � Load Balancing

Load balancing prevents system bottlenecks due to unbalanced loads. It also con-
siders implementing failover for the continuation of a service after failure of one 
or more of its components. This means that a load balancer provides a mechanism 
by which instances of applications can be provisioned and deprovisioned automati-
cally without changing network configuration. This is an inherited feature from 
grid-based computing for cloud-based platforms. Energy conservation and resource 
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consumption are not always a focal point when discussing cloud computing; how-
ever, with proper load balancing in place, resource consumption can be kept to a 
minimum. This not only serves to keep costs low and enterprises “greener,” it also 
puts less stress on the hardware infrastructure of each individual component, mak-
ing them potentially last longer. Load balancing also enables other important fea-
tures such as scalability.

2.3.3.3 � Resource Management

Cloud computing provides a way of deploying and accessing massively scalable 
shared resources on demand, in real time, and at affordable cost. Cloud resource 
management protocols deal with all kinds of homogeneous and heterogeneous 
resource environment. Management of virtualized resources, Workload and resource 
scheduling, Cloud resource provisioning with QoS, Scalable resource management 
solutions are the concerning points. Dynamic resource scheduling across a virtualized 
infrastructure for those environments is another issue for cloud.

2.3.4 � Data Governance

When data begins to move out of organizations, it is vulnerable to disclosure or 
loss. The act of moving sensitive data outside the organizational boundary may also 
violate national regulations for privacy. In Germany, passing data across national 
boundaries can be a federal offence. Governance in the cloud “who and how” is the 
big challenge for enterprise clouds. Governance places a layer of processes and 
technology around services (location of services, service dependencies, service 
monitoring, service security, and so on) so that anything occurring will be quickly 
known [45]. There are some questions that need to be solved before mission critical 
data and functionality can be moved outside a controllable environment.

2.3.4.1 � Interoperability

Interoperability means easy migration and integration of applications and data 
between different vendors’ clouds. Owing to different hypervisors (KVM, Hyper-V, 
ESX, ESXi), VM technologies, storage, configuring operating systems, various 
security standards and management interfaces, many cloud systems are not 
interoperable. However, many enterprises want interoperability between their in-
house infrastructure and the cloud. The issue of interoperability needs to be 
addressed to allow applications to be ported between clouds, or to use multiple 
cloud infrastructures, before critical business applications are delivered from the 
cloud. Most clouds are completely opaque to their users. Most of the time, 
users are fine with this until there is an access issue. In such situations, frustration 
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increases exponentially with time, partly because of the opacity. Is a mechanism 
like a network weather map required? In other words, some form of monitoring 
solution like autonomous agents.

2.3.4.2 � Data Migration

Data migration between data centers or cloud systems are important concerns of 
taxonomy. While migrating data, some considerations should be taken into account 
like no data loss, availability, scalability, cost–efficiency, and load balancing. User 
should be able to move their data and applications any time from one to another 
seamlessly, without any one vendor controlling it. Seamless transfer, as in mobile 
communication, is required for cloud computing to work. Many enterprises do not 
move their mission critical data and applications to the cloud because of vendor 
lock-in, security, governance, and many more complications.

2.3.5 � Management Services

The management services contain deployment, monitoring, reporting, service-level 
agreement, and metering billing. We discuss these in detail.

2.3.5.1 � Deployment and Configuration

To reduce the complexity and administrative burden across the cloud deployment, 
we need the automation process life cycle. RightScale Cloud Management Platform 
addresses three stages of the cloud application deployment lifecycle, namely design, 
manage, and deploy. Automated configuration and maintenance of individual or 
networked computers, from the policy specification, is very important in the 
computing arena; it improves robustness and functionality without sacrificing the 
basic freedoms and self-repairing concepts. That is why, to handle complex systems 
like cloud environment and data center, we need such configuration management. 
Tools such as cfengine [35], Chef from Opscode-chef [42], rPath [41], and Puppet 
are available as configuration management frameworks. These tools help software 
developers and engineers to manage server and application configuration by writing 
code, rather than running commands by hand.

2.3.5.2 � Monitoring and Reporting

Developing, testing, debugging, and studying the performance of cloud systems is quite 
complex. Management cost increases significantly as the number of sites increases. 
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To address such problems, we need monitoring and reporting mechanisms. Monitoring 
basically monitors the SLA lifecycle. It also determines when an SLA completes 
and reports to the billing services. There are some services that monitor the cloud 
systems and produce health reports such as Hyperic HQ [32], which monitors 
SimpleDB, SimpleQueue Service, and Flexible Payment Service, all offered by 
Amazon. It collects the matrix and provides a rich analysis and reporting.

2.3.5.3 � Service-Level Agreements (SLAs) Management

Users always want stable and reliable system service. Cloud architecture is 
considered to be highly available, up and running 24 h × 7 days. Many cloud service 
providers have made huge investments to make their system reliable. However, 
most cloud vendors today do not provide high availability assurances. If a service 
goes down, for whatever reason, what can a user do? How can users access their 
documents stored in the cloud? In such a case, the provider should pay a fine to the 
consumer as compensation to meet SLAs. An SLA specifies the measurement, 
evaluation, and reporting of the agreed services level standards such as [39]:

1.	 How raw quality measures will be used to evaluate agreed service component.
2.	 How the raw quality measures will be qualified as a service quality measure.
3.	 How the qualified quality measures will be used to estimate the service quality 

levels.
4.	 How the results of service evaluation will be reported.
5.	 How disputes on service-level evaluation will be resolved.

Currently, Amazon offers a “99.9% Monthly Uptime Percentage” SLA for Simple 
Storage Service (Amazon S3) and credit is limited to 10% [38]. Amazon credits 
25% of charges if the availability drops below 99.0%, whereas 3Tera Virtual 
Private Data Center (VPDC) service will include a 99.999% availability SLA that 
is supposed to help assure customers about putting mission-critical apps and 
services in the cloud.

2.3.5.4 � Metering and Billing

Transparent metering and billing will increase the trust level of users towards cloud 
services. Pay-as-you-go subscription or pay-as-you-consume model of billing and 
metering are popular for cloud. This service gets the status of the SLA, and invokes 
the credit service, which debits the user credit card or account and informs the user. 
There are many pricing strategies such as RAM hours, CPU Capacity, Bandwidth 
(Inbound/Outbound Data Transfer), Storage Space (gigabytes of data), Software 
License Fee), and Subscription-Based Pricing. There are some interesting new bill-
ing models such as GoGrid prepaid cloud hosting plan [33] and IDC cloud billing 
research [34], which are great examples of moving cloud pricing models towards 
telecom models.
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2.3.5.5 � Provisioning

Self-service application provisioning enables application developers to set up application 
infrastructure, such as Java application servers, databases, and messaging servers, with-
out any help or assistance from infrastructure teams. Self-service application provi-
sioning hides the complexity of the enterprise cloud from application developers and 
empowers them to set up and configure complex application infrastructure with the 
click of a button. By building a self-service portal for on-demand provisioning, we 
can reduce process overheads. Provisioning can help to manage the resource manage-
ment, workload management, and autorecovery and task and process automation.

2.3.6 � Security

Security is one of the main hurdles for enterprises to move their in-house data to public 
cloud. Most public cloud providers do not guarantee the security of the data while 
being transported to the public cloud. Many discussions around cloud computing are 
centered around this topic. In June-August 2009, several social networking sites such 
as Twitter, Facebook, Livejournal, and Google blogging pages were hit by DDoS 
attacks [43], [44]. DDoS are more robust and potentially simpler to implement in noisy 
environments such as EC2. Corporate information is not only a competitive asset, but 
it often contains information of customers, consumers, and employees that, in the 
wrong hands, could create a civil liability and possibly criminal charges. The key chal-
lenges of cloud security are performance, risk management, governance, design, and 
deployability. Building trust between various cloud stakeholders (users, corporations, 
network, and service providers) is a major consideration [49]. Establishing best prac-
tices of security in cloud computing for an end-user could be a good idea; for example, 
customers should talk with software vendors about licensing, or should know the 
network scheme.

2.3.6.1 � Encryption/Decryption

Customers who worry about the privacy of their information should encrypt their 
data before moving it to the cloud. The provider should provide the utilities to sim-
plify the process of encrypting the files and storing them in the cloud; similarly, for 
retrieval decryption will need. Cloud provider can use an Advanced Encryption 
Standard (AES) that may be AES-128, AES-192, or AES-256.

2.3.6.2 � Privacy and Federated Identity

In cloud computing, a data center holds information that would more traditionally have 
been stored on the end-user’s computer. This raises concerns regarding user privacy 
protection, since the users do not “own” their data. Also, the move to centralized services 
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may affect the privacy and security of users’ interactions. Federation is the act of com-
bining data or identities across multiple systems. Federation can be done by a cloud 
provider or by a cloud broker. Each user can subscribe to a portal and be given an access 
card, which will be used to identify the subscriber at this particular portal or other 
portals in collaboration.

2.3.6.3 � Authorization and Authentication

In public clouds, safeguards must be placed on machines to ensure proper authen-
tication and authorization. Within the private cloud environment, one can track, 
pinpoint, control, and manage users who try to access machines with improper 
credentials. Single sign-on is the basic requirement for a customer who accesses 
multiple cloud services.

2.3.7 � Fault Tolerance

In case of failure, there will be a hot backup instance of the application, which is 
ready to take over without disruption. Cloud computing outages extend into the more 
refined version of cloud service platforms. Some outages have been quite lengthy. 
For example, Microsoft Azure had an outage that lasted 22 h on March 13–14, 
2008. Cloud reliance can cause significant problems if downtime and outages are 
removed from your control. Table  2.1 shows failover records from some cloud 
service provider systems. These are the significant downtime incidents. Reliance on 
the cloud can cause real problems when time is money.

Google has also had numerous difficulties with its Gmail and application services. 
These difficulties have generated significant interest in both traditional media and 
the blogosphere owing to deep-seated concerns regarding service reliability. 
The incidents mentioned here are just the tip of the iceberg. Every year, thousands 
of websites struggle with unexpected downtime, and hundreds of networks break 

Table 2.1  Outages in different cloud services

Services and outage Duration Date

Microsoft Azure: malfunction in Windows Azure [5] 22 h Mar 13–14, 2008
Gmail and Google Apps engine [6] 2.5 h Feb 24, 2009
Google search outage: programming error [7] 40 m Jan 31, 2009
Gmail: site unavailable due to outage in contacts system [8] 1.5 h Aug 11, 2008
Google AppEngine partial outage: programming error [9] 5 h Jun 17, 2008
S3 outage: authentication service overload leading  

to unavailability [10]
2 h Feb 15, 2008

S3 outage: single bit error leading to gossip protocol blowup [11] 6–8 h Jul 20, 2008
FlexiScale: core network failure [12] 18 h Oct 31, 2008
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or have other issues. So, the major problem for cloud computing is how to minimize 
outage/failover to provide reliable services. It is important to adopt the well-known 
Recovery-Oriented Computing (ROC) paradigm [46] in large data centers. 
Google uses Google File System (GFS) [47] or distributed disk storage; every 
piece of data is replicated three times. If one machine dies, a master redistributes 
the data to a new server.

2.4 � Classification and Comparison between Cloud  
Computing Ecosystems

Even though there has been some comparative research on cloud computing from 
academia and enterprise perspectives, there remains an absence of a comprehensive 
technical study. We study cloud computing systems in terms of various classifications 
such as infrastructure technology, and solutions, PaaS provider, and open source. 
This section provides a technical comparison of several technologies and cloud 
providers. Tables  2.2–2.3 compare between different infrastructure technologies 
and solution providers such as Amazon Web Service (AWS), GoGrid, Flexiscale, 
and Moso. Tables 2.4–2.6 compares different SaaS and PaaS service providers such 
as Google AppEngine (GAE), GigaSpaces, Azure, RightScale, SunCloud, and 
Salesforce.com (SFDC). Similarly, Tables  2.7–2.8 compare open source cloud-
based services like Eucalyptus, Open Nebula, Nimbus, and Enomaly.

2.5 � Findings

Based on the proposed taxonomy, comprehensive technical studies, and survey, we 
notice some of the findings from different cloud computing systems that may help 
in future for new development and improvement on the existing systems.

2.5.1 � Cloud Computing Infrastructure Technology 
and Solution Provider

In EC2 architecture, users are able to monitor and control their applications as an 
instance but not as a service. To achieve service manageability, the following capa-
bilities are required: application-defined SLAs, such as workload capacity and 
concurrent computational tasks, dynamic provision of additional services to handle 
additional workload, and “Focal Server” approach. AWS is becoming popular as a 
de facto standard; many cloud systems are using a similar API. Eucalyptus is an 
open-source implementation of the AWS APIs. The biggest concern of current cloud 
computing system is auditing of the security controls and mechanism in terms of 
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user level. Amazon S3 lacks in access control that supports delegation and auditing, 
and makes implicit trust assumptions between S3 and clients [52]. Amazon’s work 
[13] towards Statement on Auditing Standards No.70: Service Organizations, Type 
II (SAS70 type II) certification may be helpful for those concerned with widely 
varying levels of security competency. Generally, this is better than no certification 
whatsoever. Some of the important security aspects of cloud-centric computing are 
secure cloud resource virtualization, security for cloud programming models, 
binary analysis of software for remote attestation and cloud protection, cloud-cen-
tric regulatory compliance issues, and mechanisms and foundations of cloud-centric 
threat models that need to be considered for future cloud work.

2.5.2 � Cloud Computing PaaS and SaaS Provider

Google App Engine (GAE) provides a useful basis for people and companies to 
make web applications from scratch without needing to worry about infrastructure. 
GAE provides for automatic scaling and load balancing. This alone will be worth 
while for a certain class of application developers. GAE has some clear advantages 
and lowers the barriers to entry for startups and independent developers. The poten-
tial problem is lock-in that creates risk and more cost for long term. The lock-in is 
caused by custom APIs such as BigTable, Python launcher, accounts and transpar-
ent scaling for both Python scripts and database. Google App Engine uses master/
slave replication between data centers. They chose this approach to provide low 
latency writes, data center failure survival, and strong consistency guarantees.

GigaSpaces use an In-Memory Data-Grid (IMDG) technique to manage state 
data in a database, which bridges the bottleneck of scalability. It provides all the basic 
features of a high-end Data Grid as well as unique features, such as continuous 
query and seamless integration with external data sources, and makes it extremely 
easy to deploy, modify, and ensure high availability for applications running on 
Amazon EC2.

GigaSpaces’s Space-Based Architecture (SBA) approaches are based on the 
Tuple Space model [53] that can meet the challenge of running low-latency transac-
tional applications in a highly distributed environment such as Amazon EC2.

Security isolation is managed via virtualization in Azure. The Azure Fabric 
Controller is a service that monitors, maintains, and provisions machines to host the 
application that the developer creates and stores in the Microsoft cloud. Azure storage 
provides persistent, redundant storage in the cloud. It can store data in three different 
ways such as Blobs (large binary data), Queues (service communication abstraction), 
and Tables (service state and user data). Storage can be geo-located, which means 
you can choose in which region it can be hosted.

The agile nature of Sun Cloud provides multiple hardware architectures to cus-
tomize systems for workload, multitenancy, and resource sharing among a large 
pool of users allowing centralized infrastructure with lower costs. Sun modular data 
center is flourishing and ten times faster to deploy than a conventional data center. 
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Sun’s open storage provides a unique business model, which provides snapshot, repli-
cation, and compression without additional cost for data services. Hybrid cloud archi-
tecture is very important. One of the nice mechanisms of it is the open storage model 
that is provided by Sun Cloud, which is a new and unique business model as well.

SFDC introduces the Force.com metadata-driven, multitenant, internet application 
platform. In multitenant architecture, a single instance of the hosted application is 
capable of servicing all customers (tenants). Not all clouds are using virtualization. 
Clouds like GAE and SFDC use completely different technologies to create mul-
titenancy. From the developer point of view, multitenancy is not the main event.

2.5.3 � Open Source Based Cloud Computing Services

The role of open source cloud computing is to build mechanisms around digital 
identity management [14], and outline technological building blocks that are 
needed for controllable trust and identity verification. Nimbus supports the OASIS 
WSRF standard [32] that defines a framework and uses web services to model and 
access stateful resources. Enomaly cloud is focusing on the issue of interoperabil-
ity, which is essential for enterprise cloud system. Most of the open source clouds 
are providing IaaS.

2.6 � Comments on Issues and Opportunities

There are some issues related to mechanisms such as security, privacy, (erosion 
of) data integrity, load balancing, interoperability, and scalable storage. Cloud 
computing services often provide common business applications online that are 
accessed from a web browser, while the software and data are stored on the servers. 
One of the issues is an integration of data and application across clouds. This 
involves leveraging technology such as EAI (enterprise application integration), EII 
(enterprise information integration or federated database), and ESB (enterprise ser-
vice bus). The market prognosis suggests raising the subscription fees as cloud 
vendors provide higher performance, scalability, availability, better support, and 
security. Transmitting huge volumes of multimedia data across clouds will continue 
to be a challenge, and needs further research. Discovery and composition of the 
services between multiple clouds is also a promising arena for enterprise cloud. 
Clouds have a different paradigm for resource utilization, so they need a different 
paradigm for managing these resources. Each previous revolution in computing also 
revolutionized how resources were managed. Collaborating amongst different tech-
nologies, businesses, and people in cloud computing will be an issue that will enable 
the enterprise to play a role as well. Quality assurance and information security are 
always challenging. Researchers should leverage identity and security manage-
ment for business units. Furthermore, there are opportunities for the provision of a 
new range of privacy services. As the user requirement changes, functionality and 
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privacy requirements may change, and so privacy requirements need to be reassessed 
at regular intervals [30]. Policy-based dynamic privacy design patterns may be a 
better technique for cloud computing. Cloud computing brings some novel attacks 
that have not figured in much of the security discussion to date. We need more 
research into this. Cloud computing systems for High-Performance Computing 
(HPC) are also a promising area for future provision. Cloud is not yet mature 
enough for HPC [31]. However, cloud computing helps save enterprise 30–60% of 
their technology expenditure, but owing to lack of agreement on common standards, 
many enterprises are losing opportunities. It is not so easy for cloud computing to 
achieve its aim of being a universally accessible application that is based on open 
standards. Amazon AWS Import/Export supports importing and exporting data into 
and out of Amazon S3 buckets in the USA, but still leaves complications in migration 
of data between clouds. A major challenge of moving applications to the cloud is the 
need to master multiple programming languages and operating environments [27]. 
Special attention is needed for government agencies to integrate their data from tra-
ditional to PaaS, a need to learn some new programming models residing in the 
cloud. Interoperability is another important issue for cloud. There is a need for data 
access interoperability, which is a unique programming interface to access diverse 
databases (such as JDBS, ODBC, Ado.NET). There are lots of standardization 
issues; in the race to standardization, many organizations and forums are working, 
but need to leverage the collaboration and discussions between them. Cloud 
Computing Interoperability Forum (CCIF) [16] was formed to define an organiza-
tion that would enable interoperable enterprise class cloud computing platforms 
through application integration and stakeholder cooperation. Similarly, Microsoft’s 
approach to interoperability principles [28] is a good starting point. Other orga-
nizations such as Open Cloud Consortium (OCC) [36], Open Grid Forum (OGF) 
[37], and Distributed Management Task Force (DMTF) [38] are also working on 
interoperability issues and open formats. Armbrust et al. [15] also identified many 
issues for future research. There are some complications with current programming 
frameworks and programming languages for cloud computing such as Google 
AppEngine with its SQL-like syntax called “GQL.” Select statements in GQL can 
be performed on one table only. GQL does not support a join statement. The cloud 
developers will need more flexible query-oriented and API-oriented programming 
in future. Automated diagnosis is one of the problems in Hadoop. MapReduce is 
better for limited tasks like text searching or data mining, the things Google does 
on an epic scale. For tasks that require relational database capabilities at web scale, 
database sharing has become a favorite practice. The main problem of why several 
users do not use cloud computing yet is the lack of trust in the cloud itself (services, 
providers, etc.) and this lack is based on several issues (no acknowledgement of the 
policies applied for confidentiality of the user’s information, privileges of the users 
in charge of the data, level of satisfaction in regard to compliance with the contract 
specifications, if the provider permits audits, technical support offered). The com-
plexity will be there for developers to apply the disciplines of development across 
multiple platform technologies and computational models. The alignment of user 
needs with business strategy is also a challenging job for CIOs.
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2.7 � Conclusions

Cloud computing is a promising paradigm for delivering IT services as computing 
utilities. Clouds are designed to provide services to external users; providers need 
to be compensated for sharing their resources and capabilities. There are signifi-
cant challenges and opportunities behind the ecosystem of cloud computing such as 
resource management, reliability, fault tolerance, security, SLA, utility model, and 
performance issues. There are many taxonomies, but they are vendor-concern ori-
ented. The proposed taxonomy focused more on engineering approaches such as 
functional as well as structured aspects of cloud computing systems. We provided 
a consistent set of guidelines for clarity, and reusability, which is employed to 
classify a wide range of cloud computing systems. The value of the offered 
taxonomy lies in that it captures a given system’s scope, scalability, generality, 
reusability, manageability, and flexibility. This chapter presented a different way of 
representing a taxonomy to classical approaches. This might be a new way to think 
about the components of taxonomy as layered services that can give a wide range 
of spectrum for flexibility and reusability. This taxonomy has been applied to the 
different cloud systems to find out the technical strengths and weaknesses. A survey 
of different cloud systems has been presented, and captures the different aspects of 
the taxonomy that provide an idea about functional and architectural view of the 
systems that they adopted. We concluded the chapter with a discussion of the con-
sidered systems, as well as directions for future research. It is hoped that this can 
provide stimulus to the researcher and ideas to the developer with respect to current 
cloud systems, hype, and challenges.
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Abstract  In the last few years, cloud computing has emerged as a computational 
paradigm that enables scientists to build more complex scientific applications to 
manage large data sets or high-performance applications, based on distributed 
resources. By following this paradigm, scientists may use distributed resources 
(infrastructure, storage, databases, and applications) without having to deal with 
implementation or configuration details. In fact, there are many cloud computing 
environments already available for use. Despite its fast growth and adoption, the 
definition of cloud computing is not a consensus. This makes it very difficult to 
comprehend the cloud computing field as a whole, correlate, classify, and compare 
the various existing proposals. Over the years, taxonomy techniques have been 
used to create models that allow for the classification of concepts within a domain. 
The main objective of this chapter is to apply taxonomy techniques in the cloud 
computing domain. This chapter discusses many aspects involved with cloud com-
puting that are important from a scientific perspective. It contributes by proposing 
a taxonomy based on characteristics that are fundamental for scientific applications 
typically associated with the cloud paradigm.

3.1 � Introduction

The evolution of computer science in the last decades enabled the advent of e-Science, 
which is entirely carried out in computational environments. The term “e-Science” 
is strictly related to those experiments based on computer simulations that are 
known as silico experiments [27].

The development of technologies such as grids [6] fostered the popularity of 
e-Science and consequently in silico experiments. In silico experiments are com-
monly found in many scientific domains, such as oil exploration [20]. An in silico 
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experiment is conducted by a scientist, who is responsible for managing the entire 
experiment, which comprises composing, executing, and analyzing it. Currently, 
most of the work of scientists during an in silico experiment is related to the execu-
tion of a sequence of programs. Each program produces a collection of data with 
certain semantics. These data are used as input to the next program to be executed 
in the chain sequence. The chaining of these programs may become unfeasible with-
out systematic computational support. A scientific workflow may be defined as an 
abstraction that allows the structured composition of programs and data as a sequence 
of operations aiming at a desired result as defined by Mattoso et al. [16].

Simultaneously, in the last few years, cloud computing [28] emerged as a new 
computational paradigm where web-based services enabled different kinds of users 
to obtain a huge variety of capabilities, in infrastructure, software, and hardware, 
without having to deal with configuration and implementation details.

The programs and data (that are fundamental parts of scientific workflows) are 
moving from local environments to the cloud. Foster et al. [7] examined the differ-
ences between grid and cloud computing, offering a good foundation to categorize 
the existing cloud computing projects and/or services. They define cloud comput-
ing as “A large-scale distributed computing paradigm that is driven by economies 
of scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed 
computing power, storage, platforms, and services are delivered on demand to exter-
nal customers over the Internet.”

The main advantage of cloud computing is that the average user is able to access 
a great variety of resources without having to acquire or configure the whole infra-
structure. This is a fundamental need for scientific applications, since the scientists 
can be isolated from the complexity of the environment, focusing only on their in 
silico experiment.

The volume of published white papers and scientific papers evidences that cloud 
computing has both emerged and is already being adopted by some scientific 
projects [15]. Several technologies, platforms, applications, infrastructures, and 
standards have already been proposed. However, the concepts involved with cloud 
computing are not fully detailed or explained. Considering the growing interest in 
cloud computing and the difficulty in finding organized definitions of concepts 
associated to this paradigm, we present in this chapter a taxonomy for the cloud 
computing from an e-Science perspective.

Taxonomies [4] are a particular classification structure where concepts are arranged 
in a hierarchical way. The proposed cloud taxonomy provides an understanding of the 
domain and aims to help scientists when comparing different cloud computing envi-
ronments. The cloud computing e-Science taxonomy presented in this chapter is useful 
for the scientific community to classify environments and to compare different cloud 
computing environments that are available for use. By consulting this taxonomy, they 
may consider the features that meet their needs, which may vary depending on the 
scientific experiment being conducted. The taxonomy considers a broad view of cloud 
computing, comprising all its major issues. Using the proposed taxonomy as a com-
mon vocabulary may facilitate scientists to find common characteristics of the existing 
environments and may help to choose the most adequate cloud environment.
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3.2 � Scientific Workflows and e-Science

This section presents the main definitions regarding e-Science and scientific work-
flow concepts. These concepts are presented along with some important aspects to 
be considered when modeling or executing scientific experiments using cloud com-
puting. These aspects are used as a basis for elaborating the classes of the cloud 
computing taxonomy.

3.2.1 � Scientific Workflows

According to the Workflow Management Coalition [31], a workflow may be defined 
as “the automation of a business process, in whole or part, during which documents, 
information or tasks are passed from one participant to another for action, according 
to a set of procedural rules.” A workflow defines the order of task invocations or 
conditions under which tasks must be invoked and the task synchronization. This 
definition is related to business workflows; however, it can be exploited in the sci-
entific domain [26], where tasks will be related to scientific applications instead of 
business ones. An example of scientific workflow is presented in Fig. 3.1. This work-
flow is part of a real deep water oil exploitation scientific experiment [20].

3.2.2 � Scientific Workflow Management Systems

Scientific Workflow Management Systems (SWfMSs) are responsible for coordinating 
the invocation of programs, either locally or in remote environments. Many different 
SWfMSs can be found in the literature [1, 5]. Although current SWfMSs have many 
important characteristics and evolutions, according to Weske et  al. [30], these 
SWfMSs need to offer adequate support for the scientist throughout the experimentation 
process, including: (i) designing the workflow through a guided interface; (ii) con-
trolling several variations of workflows; (iii) executing the workflow in an efficient 
way; (iv) handling failures and; (v) accessing, storing, and managing data.

Most of this support can be achieved using the cloud computing paradigm. More 
specifically, efficient execution of scientific experiments, as well as management of 

Fig. 3.1  Deep water oil exploitation scientific workflow [20]
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the large amount of scientific data produced by the experiment, is provided by the 
computational infrastructure of cloud computing environments. The next section 
presents some important aspects for scientific experiments to be considered when 
choosing a cloud computing environment.

3.2.3 � Important Aspects of In Silico Experiments

In silico experiments (that are usually modeled as scientific workflows) have some 
important aspects to be considered when being modeled or executed. Many of these 
aspects should be taken into account when choosing a supporting cloud computing 
environment. Cloud computing environments present some important characteristics 
that are related to those aspects and may influence when scientists choose a cloud 
environment to use. This section presents these aspects (business model, privacy, 
pricing, technological infrastructure, architecture, access, and standards) as they 
guide us to choose the classes of the proposed taxonomy.

One of the most important aspects for scientific experiments is reproducibil-
ity. To reproduce and validate an experiment, scientists must have all available 
information related to the experiment, including which parameter values were 
used in each instance of execution, the results (both final and intermediary) pro-
duced during its execution. This type of information is called provenance [8]. 
This data is stored in databases or via specialized services to store provenance, 
thus handling failures and retaining data integrity. Therefore, to achieve experi-
ment reproducibility, the supporting cloud computing environment should pro-
vide two fundamental features, data storage and environment configuration. 
Data storage is required to store provenance data. Preferably, there should be a 
service that provides storage or database mechanisms to enable the scientist to 
access provenance data and track how the results of an experiment execution 
were obtained. Environment configuration is required since the whole environ-
ment used to execute the experiment should be able to be reconfigured. Those 
characteristics are related to the business model followed by a cloud computing 
environment.

Privacy is also a major issue for the scientific community. Usually, provenance 
data and programs related to a scientific experiment are considered intellectual 
property and because of that, they are not public until the research is published in 
a scientific paper. This way, the privacy aspect of cloud environments must be 
analyzed when dealing with scientific experiments.

Another important aspect to be considered is related to pricing. Scientists fre-
quently use open-source and community environments. This type of programs and 
environments is freely available for general use, thus contributing to the reproduc-
ibility of experiment executions. The open-software culture of the scientific com-
munity must be considered, since most cloud environments are commercial, which 
means that the service is paid for. Thus, scientists should take into account the pricing 
of environments.
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The architecture characteristics of the environment chosen to execute the experi-
ment should also be taken into account. Scientific experiments need to be moni-
tored and controlled by scientists. This way, the chosen cloud environment should 
provide characteristics such as monitoring, as well as individual control of an experi-
ment execution independent from others’ executions. Also, in many scenarios the 
execution of a whole experiment requires running programs in different technological 
platforms (operational systems, database servers), requiring that the cloud computing 
environment deals with heterogeneity.

Another important aspect is related to performance. These experiments usually 
need high-performance computational environments to run. Even using these 
environments, experiments may need days, weeks, or even months to finish. It is 
important to know (and classify) the technology infrastructure involved with the 
experiment to discover if this technology is able to offer the necessary computa-
tional resources to execute the entire experiment.

Another important topic is related to how scientists access the cloud environment 
to run experiments. The in silico scientific experiment must be able to access cloud 
environments in different ways. For example, in a specific experiment, results must 
be provided in a web page through a web browser; in another experiment, there 
must be an API to control the execution of the experiment, and so on.

In silico scientific experiments should be based on standards, ideally already 
used on the experiment domain or recommended by entities such as W3C [29]. 
These standards are important when modeling an in silico scientific experiment. 
Scientific experiments are usually based on open standards. The next section pres-
ents the proposed taxonomy for cloud computing that takes into account the aspects 
listed in this section.

3.3 � A Taxonomy for Cloud Computing

A taxonomy [4] is a particular classification arranged in a hierarchical structure. 
It is typically organized by a parent–child relationship. Originally the term “tax-
onomy” referred only to the classification of living organisms. However, it has 
become popular in certain domains of science to apply the term in a wider, more 
general sense, where it may refer to a classification of things or concepts.

The cloud computing taxonomy presented in this chapter provides the classifica-
tion of the components of the cloud computing domain into categories based on 
different aspects of this field and the requirements of a scientific experiment. This 
section describes a cloud computing taxonomy (presented in Fig.  3.2), which is 
decomposed into eight subtaxonomies.

The proposed taxonomy classifies the characteristics of cloud computing in 
terms of architectural characteristics, business model, technology infrastructure, 
privacy, standards, pricing, orientation, and access. Many of the classes of the tax-
onomy are interrelated. In Fig. 3.2, these relations are represented in orange arrows. 
Each one of these relations is explained throughout the chapter.
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3.3.1 � Business Model

According to the business model adopted, clouds are usually classified into three 
major categories [18] (Fig.  3.3): Software as a Service (SaaS), Platform as a 
Service (PaaS), and Infrastructure as a Service (IaaS), creating a model named 
SPI [34].

In SaaS, the software is deployed by a service provider (just like an application 
to end-users) for commercial or free use as a service on demand. In IaaS, the 
provider delivers a computational infrastructure (such as a supercomputer) to 
the end-user on the web. In IaaS, the end-user is usually responsible for configuring 
the environment to use. PaaS is the delivery of a programming environment as a 
Service. The process of delivering platforms as services facilitates the deployment 
of applications into the cloud.

However, these three categories are too generic. More classification levels are 
indeed needed. For example, in the e-Science field, the generated data is one of the 

Fig. 3.2  Cloud computing taxonomy
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most valuable resources. This classification does not take into account services that 
are based on storage or databases.

Thus, the business model subtaxonomy should include the following areas: 
Storage as a Service (StaaS) and Database as a Service (DaaS), which are funda-
mental for e-Science and scientific workflows. We may define Storage as a 
Service as a service that provides structured ways to access and maintain a stor-
age facility that is remotely located. However, this kind of business model pro-
vides only the space and structure to store data. In scientific experiments, the 
scientists usually need a database to store provenance data, because a database 
provides features such as indexing and concurrency control, that a simple storage 
does not provide.

This way, Database as a Service (DaaS) provides operations and functions of a 
remotely hosted database, sharing it with other users, and having it logically func-
tion as if the database were local. This way, we may see the Database-as-a-Service 
as one specialization of Storage-as-a-Service.

The business model directly influences the orientation of the cloud environ-
ment. For example, an IaaS business model allows a user-centric environment, 
since the user is in control. On the other hand, an SaaS business model does not. 
This class of the taxonomy is essential to guarantee the reproducibility of scien-
tific experiments. The business model directly defines if the cloud environment 
offers data, infrastructure, or application as a service, essential to guarantee repro-
ducibility. For example, there should be a way to store provenance data to be 
further analyzed, thus the cloud computing environment should follow DaaS to 
allow data storage.

3.3.2 � Privacy

According to the privacy aspect, we may classify cloud environments as private, 
public, and mixed (Fig. 3.4). Public clouds may be considered as the most tradi-
tional of all types. In this kind of cloud, the various resources are dynamically 
provided over the Internet, via web applications or web services, to any user. 
Private clouds are environments that emulate cloud computing on private networks, 
inside a corporation or a scientific institution.

A mixed cloud environment is one that is composed by multiple public and/or 
private clouds. The concept of mixed cloud is still dubious. Some authors call a 
mixed cloud also as hybrid [25]. Although this term is not wrong, it is also used to 

Fig. 3.3  Business model 
subtaxonomy
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define clouds that are implemented by different technologies [35], which may cause 
confusion.

This class of the taxonomy is important for e-Science because of the importance 
of privacy levels in scientific experiments. Programs and data are usually not 
public and scientists may prefer not to install programs or store data in public 
environments.

3.3.3 � Pricing

Since it is important for the scientific experiments to deal with costs, we must clas-
sify cloud environment according to a pricing criterion. This subtaxonomy 
(Fig. 3.5) is composed of three main types of pricing. Free pricing is the pricing 
model applied when you are using your own cloud environment, where the 
resources are freely available for authorized users. The pay-per-use model is the 
one where the user pays a specific value related to his resource utilization. Also, it 
can be specialized to a component-based pricing, where each component (storage, 
CPU, and so on) has a different price and the real-time bill broken down by exact 
usage of components. These pay-per-use models are usually applied in both com-
mercial clouds and scientific clouds. Science users pay for cloud usage in the same 
way as commercial users do. To our knowledge, there are no scientific institutions 
that share their resources at no cost.

Pricing is influenced by access characteristics. Since a cloud environment offers more 
access methods, each one of them is a component that can be priced by the provider.

3.3.4 � Architecture

This subtaxonomy (Fig. 3.6) classifies the main architectural characteristics of a 
cloud computing environment. One fundamental architectural aspect of a cloud is 

Fig. 3.4  Privacy subtaxonomy

Fig. 3.5  Pricing subtaxonomy
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heterogeneity. A cloud must support the aggregation of heterogeneous hardware 
and software resources, as it happens with scientific experiments. The concept of 
virtualization [2] is also a key aspect for clouds.

Through virtualization, many users may benefit from the same infrastructure 
using independent instances. Virtualization enables the first security [10] level in 
the clouds, since it allows the isolation of environments. In clouds, each user has 
unique access to its individual virtualized environment. Resource sharing is pro-
vided by clouds, since each resource is represented as a single artifact, giving the 
impression of a single dedicated resource. Scalability is mainly defined by increasing 
the number of working nodes. By definition, clouds offer the automatic resizing of 
virtualized hardware resources. Monitoring refers to the ability of watching the 
current status of virtual machines or services provided.

Each one of those architectural characteristics is standardized by specific stan-
dards (which are in another class of the taxonomy). Besides that, some architectural 
characteristics are important to scientific experiments, such as scalability and moni-
toring to control the execution.

3.3.5 � Technology Infrastructure

The technological infrastructure subtaxonomy (Fig. 3.7) is responsible to classify a 
cloud environment according to the computational power provided by cloud envi-
ronments. Particularly in commercial clouds, scientists have no access to the kind 
of technology that is used to implement it. In fact, in commercial cloud environ-
ments implementation details are hidden from the end-user (scientist). On the other 
hand, in academic or private clouds it is possible to obtain this information. This 
information may be quite useful in e-Science because many experiments need a 
powerful computational environment to run and if the cloud environment is not able 
to provide powerful resources, it will not be able to support these experiments. But, 
it is complicated to scientists to choose between those environments (clusters, 
blades, or grids) to run experiments, since they may not be computer experts. This 
way, we need to classify the environments using another classification.

Fig. 3.6  Architecture subtaxonomy

Fig. 3.7  Technology infrastructure 
subtaxonomy
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This subtaxonomy provides a generic classification of cloud environments 
according to the support provided for high-performance computing (HPC). Since 
many experiments need HPC environments to run, cloud environments need to be 
classified according to these aspects. This way, cloud environments may be classi-
fied into HPC support and non-HPC support. HPC support cloud environments are 
those where multicore programming is allowed, and non-HPC support are those in 
which this kind of mechanism is not provided, for example.

3.3.6 � Access

This subtaxonomy (Fig. 3.8) classifies cloud environments according to its access 
types. In most cases, we may find four types of accesses: web browsers, thin clients, 
mobile clients, and API. Browsers are the most common access way for cloud ser-
vices. Many applications and infrastructures are accessible only on web browsers. 
It is intuitive since almost every computer has at least one browser installed and 
may access cloud services. Thin clients and mobile are types of access to clouds out 
of a desktop within handhelds or mobile phones. It has become popular to access 
services through phones instead of desktops. And finally, API is a fundamental way 
for accessing clouds.

API is a fundamental artifact for access through programming languages such as 
Java, Python, or C. By using an API, more complex applications may use cloud 
infrastructure in a native form. Since the scientific experiments modeled as scien-
tific workflows are enacted using SWfMSs, one important need to connect SWfMSs 
to clouds is using an API because an API can be easily invoked by programmable 
components and most of the scientists follow this tendency.

3.3.7 � Standards

This subtaxonomy (Fig.  3.9) presents some categories and standards found on 
literature for cloud computing. The Extensible Messaging and Presence Protocol 
(XMPP) [33] is an open technology for real-time communication, which powers a 
wide range of applications. Hyper Text Transfer Protocol (HTTP) is the most 
known standard for communication and it is intuitive to use it on the cloud, since 
it is used on basic web applications. OAuth [19] is a security protocol to publish 
and interact with protected data. In addition, it is an open protocol to allow secure 

Fig. 3.8  Access subtaxonomy
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API authorization in a simple and standard way. On the other hand, OpenID [21] 
is an open, decentralized standard for user authentication and access control, 
allowing users to log onto many services with the same digital identity, as adopted 
on grids. In addition, we may find SAML [17], which is a major player in cloud-
based systems. Atom Publishing Protocol [3] (or simply Atom) is a content licens-
ing protocol based on HTTP for creating and updating web resources. RSS [23] 
must be included as a syndication standard as well. Even RSS is not a recom-
mended standard but a de facto standard. As highlighted on the scientific experi-
ments requirements, security is a key aspect and virtualization improves security. 
Virtualization is a key aspect of cloud computing and needs some standards. The 
OVF [22] is being considered as one of the de facto standards for virtualization. 
OVF enables flexible and secure distribution of software and data, facilitating the 
mobility of virtual machines. As happens in many web systems, data is usually 
represented and transferred using XML (and many more XML-based languages 
such as SAML [17], XACML [32], and JSON [11]). JSON is a lightweight data-
interchange format.

3.3.8 � Orientation

One important aspect of cloud computing for e-Science is the orientation (taxon-
omy represented in Fig. 3.10). Usually, the orientation changes as the type of ser-
vice changes. For instance, when an application is provided on the cloud, we may 
consider it task-centric, because it is oriented to the task that will be executed. In 
other words, you need to transfer control to the application owners instead of 

Fig. 3.9  Standards subtaxonomy

Fig. 3.10  Orientation subtaxonomy
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having control of it. However, when the infrastructure is provided as a service, the 
user has control of the process. The programs, applications, and data are chosen by 
the user. Thus, the cloud may be user-centric.

3.4 � Classifying Cloud Computing Environments  
Using the Taxonomy

In this section, we present a summarized survey of the main existing cloud computing 
environments according to the proposed taxonomy. Table 3.1 shows the selected 
cloud computing environments with their categorization based on the taxonomy. 
These cloud computing environments are the most commonly found in scientific 
literature [9, 14, 15, 24].

In Table 3.1, we may observe that none of the analyzed environments pro-
vides all functionalities and characteristics presented in the proposed taxonomy. 
Scientists will have to analyze their needs and verify in the classification the envi-
ronment that is the most suitable. For example, suppose that scientific experiments 
require HPC support, API, and privacy as its main requirements. In a first analysis, 
scientists would choose between Nimbus and Eucalyptus. However, if a database 
service is also an important issue to be considered, they might trade between the 
available environments.

Table 3.1  Classification of cloud computing environments

Categories

Cloud computing environments

Amazon EC2a Microsoft Azureb Nimbusc Eucalyptusd IBM cloude

Pricing Real time Real time Freef Free Freeg

Business 
model

IaaS, DaaS PaaS, DaaSh IaaS IaaS IaaS, DaaS

Orientation User-centric Task-centric User-centric User-centric User-centric
Access API, Browser API, Browser API API Browser
Privacy Public Public Private Private Public
Virtualization OVF OVF OVF OVF OVF
Monitoring Yes N/Ai N/Ai N/Ai N/Ai

Technology HPC support Non-HPC support HPC support HPC support HPC support
a http://aws.amazon.com/ec2/
b  http://www.microsoft.com/windowsazure/
c www.nimbusproject.org/nimbus_cloud
d http://open.eucalyptus.com/
e http://www.ibm.com/ibm/cloud/
f Subject to acceptance
g  Free for tests
h Microsoft Azure is composed by Windows Azure, Microsoft SWL Azure, and Windows Azure 
platform AppFabric
i Information not available
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3.5 � Taxonomies for Cloud Computing

There are some proposals in the literature related to cloud computing taxonomies. 
All presented taxonomies have focused mostly on the commercial aspect (e.g., 
business model), lacking on describing the domain according to important aspects 
for e-Science such as standards, privacy levels, and so on. Cloud computing providers 
adopt a specialized taxonomy to explain their approach, especially if they have to 
distinguish themselves from others. This section presents four taxonomies, already 
developed for the cloud computing domain.

Youseff [34] proposes a unified ontology for cloud computing. It presents a sum-
mary of cloud computing components, with a classification of these components, 
and their relationships. Even though this paper is a step forward, highlighting many 
technical challenges involved in building cloud components, it is not a real ontology, 
but a taxonomy that partially covers the cloud computing domain. In fact, this work 
classifies just the cloud computing components in five main layers. In addition, this 
ontology only takes the business model into account (classifying cloud computing 
as software as a service, hardware as a service, and so on). Many other aspects are 
needed to classify cloud computing environments, particularly for e-Science, such 
as pricing, access methods, and so on.

Leavitt [13], presents the whole cloud scenario with advantages and disadvan-
tages, explaining the adoption of cloud by companies around the world and clas-
sifying cloud computing environments into four types that are equivalent to the 
business models presented in this paper. However, it proposes a type called “gen-
eral services” that consider databases and storage provides as a service, differently 
from our taxonomy that created a new type named DaaS to designate this type of 
business model. This classification may be too generic since it groups in one class 
(general services) many important types for e-Science. Services for different pur-
poses are classified as the same, and this may be not be desirable.

Laird [12] classifies cloud environments in a taxonomy that is composed by four 
main classes: Infrastructure, Platform, Service, and Applications. In each of these 
classes, it details some aspects and presents cloud environments that correspond to 
the classification. Many of the classes used in this work are present in our tax-
onomy. However, it is not focused on e-Science aspects and many important classes 
are not considered. Laird [12] is focused on commercial environments, and because 
of that, some classification is missing, such as HPC supporting. Since it is not a 
fundamental aspect for commercial applications that are executed in clouds, it was 
not considered.

The United States National Institute of Standards and Technology (NIST) 
recently provided definitions for cloud computing through an implicit taxonomy 
[18]. However, different from the taxonomy presented in this chapter, the NIST 
cloud computing taxonomy has focused on the business model aspect, lacking on 
describing the domain according to different aspects such as standards, privacy 
levels, and so on.
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3.6 � Conclusions and Final Remarks

In this chapter, we have introduced a taxonomy for cloud computing from an 
e-Science perspective. The authors believe that it will be useful for the scientific 
community in evaluating and comparing different cloud environments. By classifying 
environments using the proposed taxonomy, they may evaluate which environments 
meet their needs for executing scientific experiments in clouds. Different from the 
existing taxonomies, this taxonomy considers a broad view of cloud computing 
according to important aspects of scientific experiments and aims to explore the 
major properties of it.

This chapter highlights that despite the high interest about the topic, it is still a 
wide open field. New solutions for cloud computing are available, and many others 
are being announced, which makes the cloud computing field very fertile and hard 
to be understood and classified. It is fundamental that scientists are able to choose 
the best cloud environment for their experiments. The use of the taxonomy and its com-
mon vocabulary may facilitate scientists to find common characteristics of the 
existing environments and may help them to choose the most adequate one.
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Abstract  Cloud computing, which refers to services provisioning and consumption 
over the Internet, is the latest paradigm promising to deliver computing as a utility. 
Though it is still in its infancy and facing many challenges, cloud computing has 
drawn and is drawing more interest from both academia and industry. Taking grid 
computing as the baseline and using the findings in computer-supported cooperative 
work (CSCW) research, this chapter tries to answer such questions as why cloud 
computing is so attractive and how to make the vision of cloud computing really 
come true.

4.1 � Introduction

Delivering computing as a utility was envisioned a way back by computing pio-
neer John McCarthy in 1961 as [17] – “If computers of the kind I have advocated 
become the computers of the future, then computing may someday be organized as 
a public utility just as the telephone system is a public utility… The computer util-
ity could become the basis of a new and important industry.”, and by Leonard 
Kleinrock in 1969 [10] – “As of now, computer networks are still in their infancy, 
but as they grow up and become sophisticated, we will probably see the spread of 
‘computer utilities’ which, like present electric and telephone utilities, will service 
individual homes and offices across the country.” Along the journey toward this 
dream, many computing paradigms have been proposed, including cluster comput-
ing, peer-to-peer (P2P) computing, services computing, and grid computing. Cloud 
computing, which refers to service (hardware such as CPU and storage, platform, 
and application) provisioning and consumption over the Internet in an on-demand 
approach, is the latest one joining this family. Though it is just an emerging 
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paradigm, more and more people [3,4,8,11] tend to think that cloud computing is the 
state-of-the-art practice and holds the promise to realize the long-held dream of 
“computing as a utility.”

Nowadays, cloud computing has become a trend, drawing a lot of interest from 
both academia and industry. On the one hand, there are lots of hypes and columns 
available in the media, especially the IT-related ones. For example, using Google’s 
exact search, the term “cloud computing” yields about 25,200,000 web pages, com-
pared with 2,000,000 pages for “grid computing.” Another result given by Google is 
also surprising – it only took 10 months for the cloud computing article by Berkeley 
[2] to get 138 citations. On the other hand, there are quite some products and ser-
vices available on the market and still more products and services are coming. For 
example, besides Amazon’s EC2 (Elastic Compute Cloud) and S3 (Simple Storage 
Service), other well-known cloud computing products and services include 
Salesforce’s Force.com and SFA (Sales Force Automation), IBM’s Blue Cloud, 
Google’s App Engine and various Apps, and Microsoft’s Windows Azure, to name 
but just a few. It is notable that AT&T and Verizon, two major telecom operators in 
the United States, also expanded their horizons into cloud computing by launching 
Synaptic Hosting and CaaS (computing-as-a-service), respectively, in 2009.

In spite of the facts above, cloud computing is still in its infancy with some 
debates on its concept and scope [3,8]. Some people think cloud computing is just 
another name given to utility computing. Others treat it as an upgrade to grid com-
puting. Yet others argue that it is a revolution in computing architecture. Given the 
fact that cloud computing has a history of no more than 3 years, it is natural to see 
such a situation and it is also natural that the debates continue. In this chapter, we 
do not want to give another definition of cloud computing nor outline its boundary. 
Instead, our aim is to explore the following two questions:

Why is cloud computing so attractive?•	
What should we do to make the vision of cloud computing really come true?•	

To do so, we first examine the differences between cloud and grid computing in 
Section 2 with an aim to give a better understanding of the concept and scope of 
cloud computing. Afterwards, we turn to findings in computer-supported coopera-
tive work (CSCW) research and try to give answers to the two questions. Our 
answers aim to give some hints for the development of cloud computing rather than 
solve all the challenges facing cloud computing.

4.2 � Cloud and Grid: A Comparison

It is always effective to understand a new thing by comparing it with the existing 
ones. Here, grid computing is selected because it is the last computing paradigm 
before cloud computing along the journey toward “computing as a utility” and 
because it looks very much like cloud computing in many aspects. Figure 4.1 illus-
trates the paradigms of grid and cloud computing. As both grid and cloud computing 
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are of many shapes and colors, in the following we will concentrate our comparison 
on their origins, system design, and users.

4.2.1 � A Retrospective View

Though cloud and grid look very similar in the sense that they both aim to provide 
enormous resources to their users in an on-demand manner, differences do exist 
between them. In this section, we explore their origins. The purpose is to identify 
the driving force behind grid and cloud computing and set a solid foundation for 
other comparisons.

Grid computing stems from academia, or more precisely the field of high-perfor-
mance computing (HPC), in the 1990s with an aim to facilitate users to remotely 
utilize idle computing power within other computing centers when the local one is 
busy. This can be used to explain why the design of grid adopts a resource-centric 
approach. The grid at the early stage is termed compute grid. It was over nearly  
10 years of development that grid technology became generally accepted as an effective 
way for “coordinated resource sharing and problem solving in dynamic, multi-insti-
tutional virtual organizations” [7]. As a result, compute grid evolved into grid com-
puting, drawing much attention and funding from governments around the world. 
Along this transition, grid technology gets into the scope of enterprises. A milestone 
in the development of grid computing is the convergence of grid and service-oriented 

Computing/Data Center Computing/Data Center Computing/Data Center Computing/Data Center

Grid Middleware Cloudware

Fig. 4.1  A comparison of grid and cloud computing. Each computing/data center in the figure 
represents an administrative domain. The design of grid adopts a resource-centric approach with 
the focus to shield the heterogeneity of underlying resources and policies and to present various 
users with a vast yet uniform resource pool. All users of a grid face the same operating environ-
ment required by the grid middleware. On the contrary, cloud computing adopts a user- and task-
centric design with an aim to deliver resources to users in their desired way. Each user in cloud 
computing has his/her own operating environment independent of the underlying resources



66 J. Jiang and G. Yang

architecture (SOA) [13], resulting in first OGSA (Open Grid Services Architecture) 
and then WSRF (Web Service Resource Framework). It is since then that the poten-
tial of grid computing for business has fully unfolded. However, owing to a lack of 
explicit business model and many other factors that will be analyzed later, today 
there is still no widely accepted commercial-running grid service available on the 
market [12].

In contrast, cloud computing stems from the industry with an aim to sell 
resources as a service to its customers. Three kinds of cloud services identified 
are infrastructure as a service (IaaS, e.g., Amazon EC2 and S3, and IBM Blue 
Cloud), platform as a service (PaaS, e.g., Google App Engine, Microsoft 
Windows Azure, and Salesforce Force.com), and software as a service (SaaS, 
e.g., Salesforce SFA, Google Doc, and Microsoft Dynamic CRM). Before cloud 
computing was born, SOA has been prevalent for quite some time and much 
experience has been gained with grid operation. Cloud computing has a better 
starting point than any other computing paradigms mentioned in Section 1. Based 
on the lessons learned in the past, cloud computing adopts a user- and task-centric 
design as well as a “pay-as-you-go” business model. As a result, users’ experi-
ences with cloud services are enhanced greatly. Though cloud computing has a 
short history to now, many products and services are already available on the 
market.

4.2.2 � Comparison from the Viewpoint of System

Different starting points lead to different systems. In this section, we will examine 
grid and cloud computing from a system point of view. Aspects covered are the 
technology behind the curtain and the system management.

In technical language, the purpose of grid computing is to integrate resources 
from different organizations forming a uniform resource pool, which can provide the 
ability that is impossible with a single computing/data center or that is beyond what 
a single organization can provide. Since these organizations are usually distributed 
geographically and have their own rights in determining vendors of their resources, 
the principal challenge facing grid computing is to shield the inherent heterogeneity 
and distribution of underlying resources. In contrast, the purpose of cloud computing 
is to divide resources into smaller pieces and deliver them to users in their desired 
way whenever needed. Resources in cloud computing are usually possessed or oper-
ated by a single organization and physically, they can be centralized within the same 
computing/data center or distributed across multiple computing/data centers, homo-
geneous or heterogeneous. In other words, resource heterogeneity and distribution is 
no longer a key problem in cloud computing. Instead, the principal challenge is to 
improve scalability, availability, and reliability.

Grid computing achieves its purpose through so-called grid middleware, a 
specific software product that provides necessary yet generic services for shield-
ing the inherent underlying heterogeneity and distribution. Nowadays, there are 
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well-established standards for grid middleware and quite some products and sys-
tems available, including Globus Toolkit (GT), Unicore, and gLite, to name but a 
few. Core services provided by the existing grid middleware are as follows:

•	 Information Service: maintains detailed up-to-date knowledge of all the resources 
or services in a grid environment. Based on the information service, suitable 
resources or services are identified. Information service, is also known as meta-
data service or directory service.

•	 Security Service: resources and users in grids are from multiple autonomous 
administrative domains. Security service is deployed to guarantee secure cross-
organizational resource access that not only protects communications but also 
ensures no violation of the local administration policies.

•	 Data Management: provides some useful mechanisms for data access, data 
movement, data replication and location, and data integration. In GT4, data 
management related services include GridFTP, reliable file transfer (RFT), rep-
lica location service (RLS), data replication service (DRS), and data access and 
integration (OGSA-DAI) where OGSA-DAI is supplied by the third-party rather 
than the Globus team.

•	 Execution Management: deployed to fulfill a task using the resources provided, 
to track the progress of that task, and to manage the computing result. The key 
task of execution management is to determine where to run a given job accord-
ing to the information provided by the information service.

Cloud computing also achieves its purpose by a middleware layer, which is 
called cloudware in this chapter. According to the type of service supplied (e.g., 
IaaS, PaaS, or SaaS), cloudware may provide various functionalities. In summary, 
the core functions of the cloudware are as follows:

Maintains up-to-date information of the available physical resources (e.g., their •	
capability, current load, and so on) as happens in grid computing. The purpose 
is to provide a basis for other functions such as virtual machine (VM) and appli-
cation management. However, unlike in grid computing, this information is even 
transparent to developers.
Create and manage VMs according to users’ request. To utilize resources effec-•	
tively, some algorithms or policies are deployed to determine where to create a 
VM, and when to start and stop a VM based on the information maintained. It 
is the duty of the hypervisor to keep the resource entitlement of a given VM.
Application deployment, configuration, and execution. Meanwhile, the execu-•	
tion progress or status is also tracked.
User management, pricing, and accounting. The purpose is to determine how •	
users’ requests are charged and maintain the actual usage of resources by a cer-
tain request or user.

Grid and cloud computing also show differences in system management as 
stated in the following.

In grid computing, since resources are owned and provided by different autonomous 
organizations, a heavy burden is raised to system management. For each node, 
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besides routine maintenance work, system administrators must do much extra work 
to coordinate local administration policies with global ones. For example, they must 
make sure that resources are shared in a way fully compliant with local regulations. 
In addition, they must separate environments of local users from global ones to guar-
antee reliability and security. None of this work is trivial. Moreover, since there are 
quite some independent or interrelated components and services involved in a grid, 
installing and configuring the grid software itself implies a lot of work and presents 
some challenges even to experienced system administrators.

On the contrary, resources in cloud computing are usually possessed or oper-
ated by a single organization and as a result, there is no need to coordinate differ-
ent administration policies. In addition, since each VM in cloud computing 
provides an isolated and independent running environment that is fully controlla-
ble by the user who creates it, there is also no need for system administrators to 
install and configure users’ programs and to worry that they may interfere with 
each other and cause system disasters. Therefore, the burden of system management 
is greatly eased.

4.2.3 � Comparison from the Viewpoint of Users

Different design philosophies lead to different systems, which in turn place different 
constraints on their users. This section compares grid and cloud computing from the 
viewpoint of users. Two kinds of users distinguished here are end-users who consume 
resources and services, and application developers who develop new applications or 
services using the resources and services supplied by a grid or a cloud.

Both grid and cloud computing provide two ways for end-users to consume 
resources supplied. The first involves using pre-installed software services through 
their own interfaces. Since these services are designed to support the needs of com-
mon users, in both cases end-users with special requirements or habits have to adapt 
themselves to the preset operation styles and instructions. Given the fact that grids 
are usually operated by computer scientists who know little about the domain 
needs, the problem is especially severe. The second involves running a task directly 
in a grid or a cloud. This shows quite some differences in operations and constraints 
as stated below.

To run a task in a grid, end-users need to specify the type and quantity of 
resources desired, information used for authentication, the program to be run and 
its arguments, sources of the input, and the output and its destination. This is an 
annoying procedure that often makes users stop. For example, globusrun-ws, the 
command supplied by GT4 for job submission and management, has 30 options for 
submitting a job and 15 options for monitoring a job. Though some tools have been 
provided as a help, much work is still needed, for example, to compose a job 
description file. Even if end-users have done all the work perfectly, there are still 
other risks that prevent their jobs getting done. One thing often ignored is that, 
because each grid middleware itself is a software system and has its special 
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requirements on the running environment, the existing grids are very tightly bound 
to a specific operating system (OS), software libraries, or applications. For exam-
ple, gLite presently can only run on Scientific Linux 4 and 5, and Debian 4. As a 
result, if the program corresponding to a job is not executable on the platform on 
top of which a grid middleware is running, or if one or more libraries needed by the 
program are unavailable, the job just could not get done even if there are enough 
resources available. Another depressing thing is that, because different grid systems 
in the real world deploy quite different ways for users to express their needs, the 
job description file prepared for one grid usually cannot be used in another one.

In contrast, running a task in clouds is much easier and faces fewer constraints. 
The only thing needed is to reserve the desired resources and configure them for 
the task to be run. Resource reservation can be done by several mouse clicks and 
resource configuration makes no difference when compared with the activity using 
local machines. Owing to the VM technology, users in cloud computing can always 
set up an environment capable of running their programs and thus the constraints 
laid by grids on the running programs as mentioned above no longer exist.

Grid and cloud computing also impose different requirements on application 
developers. Generally speaking, developing applications on a grid is a complex 
task. First, this implies that developers should know many details about the grid 
environment, for example, the way to stage data to and from the execution site, the 
way to find a specific service to be invoked, to name but a few. In addition, they 
must spend much time learning the related APIs (Application Programming 
Interfaces) – even the Simple API for Grid Applications (SAGA)1 has a document 
of more than 300 pages. Second, since the grid is a highly dynamic environment, 
developers must pay more attention to such issues as exception handling, fault 
tolerance, scalability, performance, and so forth. Third, there are no mature tools 
for debugging and measuring the behavior of grid applications. Developers must 
struggle in their own ways (e.g., setting up an experimental grid of their own to 
monitor the behaviors of the application) to ensure the correctness of the applica-
tion developed. It is easy to see from the statements above that programming on a 
grid raises a heavy burden on application developers.

As a comparison, programming in clouds is much easier. For IaaS, developers 
can always customize their working environments with their familiar tools and 
configurations, so there is almost no difference to programming on local machines. 
For PaaS, nearly every service provider supplies a platform SDK (Software 
Development Kit) and/or some debugging tool. For example, Google App Engine 
provides a fully featured local development environment with which developers can 
write, for example, standard Java applications. The Google plug-in for Eclipse pro-
vides an IDE (Integrated Development Environment) with application wizard and 
debug configuration for Google App Engine projects, making the development 

1 SAGA is an open standard defined and maintained by the Open Grid Forum (OGF). Its aim is to 
provide an interface for high-level grid application programming and enable application develop-
ers to write programs without knowing the detail of specific infrastructures.
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process much easier and more efficient. Similarly, Visual Studio 2010 also provides 
a template for developers to write Windows Azure services. In this way, the com-
plexity of the platform is shielded from developers and the pains of application 
development are greatly eased.

4.2.4 � A Summary

Table 4.1 summarizes the differences between grid and cloud computing. The key 
points are highlighted below.

Grid computing adopts a resource-centric design and tries to meet various needs 
by a unified resource pool. As a result, many unnecessary details of the infrastruc-
ture are brought to both end-users and developers, making it difficult to use and 
hard to program. In addition, it also raises a heavy burden of system administration 
due to many administrative domains being involved. Cloud computing, on the con-
trary, adopts a user- and task-centric design and it meets diverse needs by different 
kinds of services, for example, infrastructure services, platform services, and soft-
ware services. In cloud computing, the complexity is shielded from users. As a 
result, it is easy to use and program. In addition, managing a cloud is also easy since 
for most of the time there is only one administrative domain involved in it.

4.3 � Examining Cloud Computing from the CSCW Perspective

In the previous section, we examined the differences between grid and cloud com-
puting. In this section, we present some findings in CSCW research and utilize 
them to analyze the cloud.

Table 4.1  Grid and cloud computing fully compared

Grid computing Cloud computing

Origin Academia, HPC field Industry
Methodology One-size-fit-all Diversified services, e.g., IaaS, PaaS, 

and SaaS
Focus Resource User, task
Business model No explicit one Pay-as-you-go
Purpose Resource integration Resource partition
Technical challenge Resource heterogeneity and 

distribution
Scalability, availability, and reliability

Administrative domain Many One
System management Complex Simple
Constraint Many Few
Usage Complex Simple
Programmability Poor Good
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4.3.1 � CSCW Findings

CSCW is a research field dealing with the issue of how to use computers, or more 
broadly information and communication technology (ICT), to facilitate a group of 
people to fulfill a common task [6]. Over 20 years of development since the term 
was first coined in 1984, people have gained much knowledge about this field. Cloud 
computing holds the promise to deliver computing as a utility, so it is a socio-tech-
nical system. It is in this sense that we think that the following findings of CSCW 
can also be used to answer the questions raised in Section 1 – why cloud computing 
is so attractive and how to make the vision of cloud computing really come true?

Finding 1: To derive the greatest benefit from CSCW, the supporting technology 
must infiltrate as widely as possible throughout the populace [16]. In this way, 
cooperative system designers can relieve themselves from hard work on such issues 
as heterogeneous resource management and interoperability and focus their efforts 
on more essential issues such as understanding and accounting for the characteris-
tics of cooperative work and then devising proper mechanisms to support them.

Finding 2: Besides technical factors such as usability and functionality, the 
deployment of CSCW is affected by social factors such as various administrative 
and policy decisions [16]. Sometimes, the social factors function dominantly in 
making the decision on whether to adopt a certain technology or not.

Finding 3: A successful collaborative system must provide enough respect for 
the social habits of end-users [9]. Human is the most active and dynamic element 
in a collaborative environment, and providing respect for his/her habits means users 
can get better experiences during collaboration. This in turn implies that the col-
laborative system will be adopted by more and more users, and therefore, the criti-
cal mass problem [14] will easily be met.

Finding 4: Incentives are critical [1]. CSCW suffers from Grudin’s inequality 
[9], which says that those who do additional work (capture and record the articula-
tion work associated with collaboration) to make collaboration succeed may not be 
the ones who benefit most from the results, and thus it is necessary to provide some 
incentives or reward to those persons. In this way, more people will join the col-
laboration process and the contribution of people will also increase.

4.3.2 � The Anatomy of Cloud Computing

The attractiveness of cloud computing can be accounted for using Finding 1, 
Finding 3, and Finding 4 as follows.

First, cloud computing, in general, presents no new technology. Virtualization 
technology, which is at the core of cloud computing, was first developed in the 
1960s. Other technologies such as web services and Rich Internet Applications 
(RIA) also have a history of no less than 5 years. Today, all these technologies 
are well supported and popular. For example, Intel and AMD have released several 
processors with support for virtualization technology and there are many virtual 
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machine monitors (VMMs) available on the market (e.g., ESXi and vSphere from 
VMware, Hyper-V from Microsoft, XEN and KVM from the open-source commu-
nity). In addition, web services and RIA have become a must for the development of 
web applications. Thus, adopting these technologies sets up a good basis for the pros-
perity of this market because it makes entrance low. As a contrast, there was no preva-
lent integration technology at the beginning of grid computing and designers have to 
develop their own ways to integrate various resources. Though the convergence of 
grid computing and SOA provides new opportunities for resource integration, much 
work is still needed to reconcile various ways of information representation. Put 
simply, the entrance for grid computing is high. As a result, even after 10 years of 
development, grid computing today is still in its infancy in many aspects [12].

Next, cloud computing provides enough respect for the social habits of users 
because using a machine in the cloud is no different to using a local machine. As 
mentioned above, users of cloud computing can always work with their familiar 
tools and settings. In other words, users of cloud computing adapt the running 
environment to their applications rather than adapt the applications to the environ-
ment. Therefore, they do not need to change habits developed over years, which 
have a solid base. On the contrary, as we discussed in Section 2, users of grid com-
puting, whether end-users or application developers, have limited, if any, control 
over the running environment, and have to bear many constraints being put on 
them. For developers, to take the full advantage of grid computing, they have to 
learn much for developing new applications or adapting the existing ones to the 
grid, which is a heavy burden to them. In addition, system administrators also face 
many new challenges in coordinating resource sharing and in guaranteeing the reli-
ability, availability, and security of the running environment due to the involvement 
of multiple autonomous domains.

The last but the most important point, users of cloud computing need not do 
much, if any, additional work to use the services provided by the cloud. All the 
work they do is necessary and the same as what they do every day without cloud 
computing. For example, reserving a VM in clouds is an analog of buying a physi-
cal machine, but with much greater convenience. Installing software in a VM is no 
different to that in a physical machine. What’s more, users can benefit from the 
advanced features of cloud computing such as unlimited resource being available 
on demand, no upfront commitment and pay-as-you-go usage of resources [2], and 
the great potentials for group collaboration as well as the universal access to infor-
mation and services [15]. These features are especially attractive to small- and 
medium-sized businesses (SMBs) or start-ups that do not have enough resources 
for buying and maintaining servers and developing applications from scratch, for 
they imply a lot of savings of running costs. In contrast, things are quite different 
with grid computing. To use grid computing, much more should be paid on applica-
tion development, system management, and so on. Particularly, since resource 
providers in grid computing receive no reward for sharing their resources, they are 
reluctant to help to solve various problems encountered.

In summary, compared with grid computing, cloud computing provides more 
benefits and rewards without changing the working way that people are familiar with. 
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Therefore, it is not strange at all that cloud computing is attractive. Indeed, cloud 
computing has accumulated a huge (potential) base of both service providers and 
consumers, and many market-research firms (e.g., IDC, Forrester, and Merrill 
Lynch) believe that cloud computing has enormous growth potential.

In spite of the facts above, cloud computing is still in its infancy and only has a 
limited adoption to now [11]. To make the vision of cloud computing really come 
true, we examine the obstacles to (rapid) growth of cloud computing. As with any 
other new paradigm, there are fears and concerns about cloud computing related to 
technology, social factors, or both. For example, Armbrust M et al. [2] listed the 
top ten obstacles as availability of service, data lock-in, data confidentiality and 
auditability, data transfer bottlenecks, performance unpredictability, scalable stor-
age, bugs in large-scale distributed systems, scaling quickly, reputation fate sharing, 
and software licensing; Leavitt N [11] identified the challenges facing cloud com-
puting as control, performance, latency, security and privacy, related bandwidth 
costs, vendor lock-in and standards, transparency, reliability, and others. In our 
opinion, issues such as performance, latency, scalability, and data transfer bottle-
necks are related to technology and have been suffered for a long time before the 
emergence of cloud computing. Though they have some impact on the adoption of 
cloud computing, the impact is limited. It is the following issues that hinder the 
wide adoption of cloud computing.

4.3.2.1 � Security and Privacy

According to a survey by IDC, security and privacy is the main concern of chief 
information officers and IT executives [11]. To us, such a concern arises from the 
violation or change of users’ social habits – data and applications in cloud comput-
ing are usually stored or running on an external infrastructure outside a company’s 
firewall, and users have to rely on service providers, NOT themselves, to protect 
their data and applications. Obviously, this may be quite different from what users 
are used to when using local machines. Since change of habit is a slow process, it 
is a natural result that only cloud computing has a very limited adoption just now 
according to Finding 2 and Finding 3. However security and privacy might be only 
a perceived risk as asserted by Armbrust M et al. [2]:

We believe that there are no fundamental obstacles to making a cloud-computing environment 
as secure as the vast majority of in-house IT environments, and that many of the obstacles can 
be overcome immediately with well-understood technologies such as encrypted storage, 
Virtual Local Area Networks, and network middleboxes (e.g., firewalls, packet filters).

4.3.2.2 � Data and/or Vendor Lock-In

This concern arises from the fact that there are currently no standards for IaaS, 
PaaS, and SaaS interfaces, and as a result, much work is needed for customers to 
port their data or programs from one cloud to another. While we admit that such 
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concerns really matter it will become increasingly important as more and more 
cloud providers emerge, we also argue that its impact may not be as great as people 
think. On the one hand, people undergo such constraints in the real world. For 
example, designers have to make a choice between J2EE and .NET platform when 
developing new applications. When new hardware is bought, people have to install 
system and application software again to deliver their services. If we treat migrating 
an application from one infrastructure to another as the process of buying new 
hardware, the inconvenience caused by incompatible virtual image formats – a 
major problem with IaaS – would no more be a problem. On the other hand, people 
have recognized this problem and as a result, many standardization activities are in 
progress. Some of them are listed below. For more information, please refer to 
http://cloud-standards.org.

Cloud Security Alliance2 was set up recently “to promote the use of best prac-
tices for providing security assurance within Cloud Computing, and provide educa-
tion on the uses of Cloud Computing to help secure all other forms of computing.” 
The Open Grid Forum (OGF) established the Open Cloud Computing Interface 
Working Group (OCCI-WG)3 in March 2009 to develop a clean, open API for 
infrastructure clouds. The Storage Networking Industry Association (SNIA) has 
created a technical workgroup to develop the new Cloud Data Management 
Interface (CDMI).4 The Open Cloud Consortium (OCC),5 another newly estab-
lished organization, aims to “support the development of standards for cloud com-
puting and frameworks for interoperating between clouds.” Finally, the Distributed 
Management Task Force (DMTF) has released the Open Virtualization Format 
(OVF) Specification [5] that “describes an open, secure, portable, efficient, and 
extensible format for the packaging and distribution of software to be run in virtual 
machines.” Therefore, it is reasonable to believe that interoperation between clouds 
will get easier, making the concern about data/vendor lock-in less important.

4.3.2.3 � Service Availability/Reliability

This concern ranked first in the list given by Armbrust M et al. [2]. It is a radical 
requirement of business continuity – users will not adopt a system that is unreliable 
and often unavailable to run their business. The reason why such a concern becomes 
so important lies in the change of operating mode – services are running outside a 
company’s firewall and the quality of services relies not only on software vendors 
who develop services but also on providers who host services. No doubt, the well-
known outages of Amazon S3, Google App Engine, and Salesforce.com make the 

2 http://www.cloudsecurityalliance.org/
3 http://www.occi-wg.org/
4 http://www.snia.org/cloud
5 http://opencloudconsortium.org/
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worry even much severe. However, as pointed out by Armbrust M et al. [2], the IT 
infrastructures of Amazon, Google, and Salesforce are better than their peers.

In summary, as a new paradigm, cloud computing does bring changes to busi-
ness operation; that is, the operation is done remotely, out of the users’ reach and 
full control. Since this differs from what users are used to, it is natural to see that 
much concern is raised according to the Findings 2 and 3. To address this, time 
matters. We need time to tackle technical challenges; we need time to cultivate 
application developers; we need time to build trust between customers and service 
providers; we need time to develop use cases to demonstrate the benefits of cloud 
computing. Once people get to know the reward of cloud computing over its risks, 
the wide adoption of cloud computing will come true as implied by Finding 4.

4.4 � Conclusions

In this chapter, we first examined the differences between cloud and grid computing 
from their development and the viewpoint of system and users, respectively. Then, 
we analyzed the reasons why cloud computing is so attractive and some related 
concerns using the findings in CSCW research. Since cloud computing adopts a 
user- and task-centric design philosophy and shows enough respect for the social 
habits of users in using computers, its popularity is a natural result. At the same 
time, like any other new thing, cloud computing faces some challenges that slow its 
wide adoption. As time goes on and more and more experience is gained, cloud 
computing will eventually become an effective and efficient way to deliver com-
puting as a utility. During this course, we researchers should address how to over-
come the obstacles and demonstrate the real benefits and/or advantages of cloud 
computing.
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Abstract  Cloud computing is slowly transforming itself from a hype to reality. 
However, its maturity and further adoption depends on its ability to address con-
cerns such as security, interoperability, portability and governance at the earliest 
opportunity. This can be accelerated by compliance to guidelines and standards 
defined in consensus by the cloud providers. Without addressing these concerns, 
users would be wary to tread this path in spite of its powerful economic model for 
business computing. This chapter will explore the readiness of various standards 
of interoperability, security, portability and governance for the cloud computing 
model. The market adoption of these standards will also be explored and gaps or 
opportunities for improvement will be discussed.

5.1 � Overview – Cloud Standards – What and Why?

An IDC Survey [1] of senior Information Technology (IT) executives/CIOs shows 
that limited or lack of security, reliability, interoperability, portability and compli-
ance in the cloud are some of the top concerns for its mainstream adoption.

The impact of these challenges and solution responsibility are not limited to the 
cloud providers, but span across all the players in the cloud ecosystem such as the 
service consumers, service providers and governing bodies. Hence, a solution or an 
approach to address these concerns should be built with consensus from all the 
players. Cloud Standardisation is the means to such solutions.
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Standardisation provides predictability for providers and consumers alike. It 
enables innovation, promotes vendor independence, interoperability, encourages 
repeatable processes and increases resources/skills availability.

IT has a fair share of standards that has lead to its maturity and faster adoption. 
Cloud computing can look at re-use/extension of the IT standards, restricting the 
creation of fresh ones to address unique scenarios and challenges of this model. For 
example, Amazon, a public cloud provider, could utilise the existing security stan-
dards for data centres like physical security, network security, etc., to protect its 
cloud environments. However, interoperability of a service between two public 
cloud environments would need fresh standards.

There needs to be cautious balance between the levels of standardisation so that 
it does not stifle innovation and enables early industry adoption. Hence, what will 
be some of the important standards that typical Enterprises look for before adop-
tion? These are (restricting the definitions to IT):

Interoperability/integration – interoperability enables products/software compo-•	
nents to work with or integrate with each other seamlessly, in order to achieve a 
desired result. Thus, it provides flexibility and choice to use multiple products 
to achieve our need. This is enabled by either integrating through standard inter-
faces or by means of a broker that converts one product interface to another.
Security – security involves the protection of information assets through various •	
policies, procedures and technologies, which need to adhere to standards and 
best practices in order to achieve the desired level of security. For example, 
Payment Card Industry (PCI) data security standards from PCI SSC [2] define 
ways to secure credit card data to avoid fraud. This is applicable to all organisa-
tions that hold, process or pass credit cardholder information.
Portability – as per Wikipedia [•	 3], a software is said to be portable when the cost 
of porting the same from an existing platform for which it was originally devel-
oped, to a new platform, is less than the cost of re-writing it for the new plat-
form. Software with good portability thus avoids vendor lock-in. This is 
typically achieved by adhering to standard interfaces defined between the soft-
ware component and vendor platforms. For example, Java programs are set to be 
portable across operating systems (OS) that adhere to standard interfaces defined 
between the Java runtime environment and the OS.
Governance, Risk Management and Compliance (GRC) – governance focuses •	
on ensuring that the enterprise adheres to defined policies and processes. Risk 
management puts in controls to manage and mitigate risks as defined by the enter-
prise. Compliance ensures that the enterprise adheres to various legal/legislative 
as well as internal policies. Standards have been defined for IT systems to adhere 
to certain industry as well as legal standards such as Sarbanes–Oxley (SOX) [4], 
Health Insurance Portability and Accountability Act (HIPAA) [5], etc.

Having discussed the need for standards, the subsequent sections will present the 
various initiatives in this direction.

To understand the need for standards from the cloud perspective and the status of 
various initiatives better, a hypothetical company called Nimbus Corp is considered. 
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Nimbus is actively moving its IT systems to various cloud options. It started its journey 
into clouds with an IBM CloudBurst® private cloud for its marketing applications. 
Having been successful in its pilot, Nimbus started to move some of its data-process-
ing-intensive applications to Amazon Web Services (public cloud) in time for handling 
Christmas volumes. It moved a couple of custom-built applications to Amazon EC2 
and the Marketing data mart to Amazon’s Oracle instance. The SaaS-based BI ven-
dors, Birst or PivotLink, are being looked at for replacing its current marketing dash-
board, having moved the data mart to the cloud. Nimbus is also considering using 
Force.com or Google App Engine (GAE) PaaS environments to build additional mar-
keting applications. The standards are reviewed with this company in mind.

5.2 � Deep Dive: Interoperability Standards 

In using the new cloud setup for its applications, Nimbus faces the following 
interoperability challenges:

The SaaS-based marketing dashboard on one vendor cloud has to fetch the data ––
from the Marketing data mart sitting on Amazon’s infrastructure (IaaS)
The marketing applications built on Force.com or GAE (PaaS) needs to interact ––
with the other applications running on Amazon EC2

Similarly, there could be many such scenarios between public and private cloud 
deployments as well as across various delivery models such as SaaS, PaaS and 
IaaS. What are the expectations from standards to address these challenges?

5.2.1 � Purpose, Expectations and Challenges

Interoperability is typically achieved through APIs or brokers between the two 
interacting parties where the control and the data originating from the requestor is 
converted into a common format and then moved to the provider and vice versa. 
The purpose of the standards is thus to set guidelines for vendors, cloud providers 
and developers of these APIs/brokers to enable interoperability across various 
cloud resources and hence avoid vendor lock-in.

There are, however, additional challenges posed for interoperability in the cloud 
scenario when compared with that of the traditional IT environments, such as:

In addition to the interoperability of application control and data, other support-•	
ing aspects of policy management, security management and deployment/provi-
sioning are also to be managed across all the interfacing environments.
In the infrastructure layer, cloud computing is supported by the concept of vir-•	
tualisation. Interoperability heavily depends on the compatibility of these virtual 
machines (VM).

How do some of the current standardisation initiatives fare?
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5.2.2 � Initiatives – Focus, Sponsors and Status

Tables 5.1 and 5.2 show some of the key initiatives by industry bodies as well as by 
vendors towards interoperability standards.

5.2.3 � Market Adoption

From Tables 5.1 and 5.2, except for industry initiatives like OVF, the standards 
are in very early stages of development. In addition, there are emerging cloud 

Table 5.1  Interoperability – group initiatives

Standard name Group/body Focus Readiness

Unified Cloud 
Interface [6]

Cloud Computing 
Interoperability 
Forum [7]

Vision is to build an API 
of all cloud APIs 
available from different 
vendors using RDF 
based on ontology 
language and thus enable 
interoperability

Draft Model 
defined

Open Cloud 
Computing 
Interface [8]

Open Grid  
Forum [9]

To provide an API 
specification for remote 
management of IaaS 
services across vendors

Draft API 
document 
ready

Open Virtualisation 
Format [10]

DMTF [11] Build an industry standard 
format for portable 
virtual machines. VMs 
thus built can interoperate 
with any other VMs

Version 1.0 of 
OVF available

Standards and 
Interoperability 
of Large Data 
Clouds [12]

Open Cloud 
Consortium 
(OCC) [13]

To work on standards for 
large data clouds and 
interfaces between storage 
and compute clouds

Projects 
MalStone and 
Thriftstore in 
early releases

Table 5.2  Interoperability – vendor initiatives

Standard name Group/body Focus Readiness

GoGrid API [14] GoGrid [15] To build a Public API to 
control their GoGrid Cloud 
infrastructure. The API is now 
open sourced

Available for use

Cloudware Open 
Architecture [16]

3Tera [17] To build an Open Architecture/
framework for Cloud 
Computing for multiple 
players – subscribers, 
publishers, data-centre 
operators, etc. (entire 
ecosystem) to interoperate

Delivered in stages 
planned for 
the next 12–24 
months
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brokering/management vendors (such as RightScale, CloudKick and CloudSwitch) 
whose tools interoperate across cloud environments to provide management capa-
bilities through a single interface. They eventually, as predicted by Gartner [18], 
could provide lot of additional services by building an abstraction layer across the 
clouds. Some of them are a part of the standard bodies driving these standards.

5.2.4 � Gaps/Areas of Improvement

The mature initiatives are focused towards the infrastructure layer. The scenarios 
discussed earlier, such as:

1.	 Interoperability/integration between cloud delivery models (SaaS, PaaS and 
IaaS) is not addressed. Except for Unified Cloud Interface and Cloudware Arch, 
the rest primarily focus on the Infrastructure layer (IaaS).

2.	 Standards for interaction between private and public clouds are also not addressed. 
One such scenario is the usage of hybrid cloud.

Various vendors such as Amazon and other cloud brokers seem to have the required 
technology, but have to contribute by participating in the standardisation initiatives.

5.3 � Deep Dive: Security Standards

Some of the scenarios of security that Nimbus would encounter, having adopted 
cloud computing, would be:

Availability/Reliability – Amazon Web Services or Force.com could have out-––
ages that render Nimbus’ marketing application unusable
Data isolation/multi-tenancy – cloud providers, especially the SaaS vendors, ––
enable multi-tenancy in their environment. This could lead to data isolation 
issues unless secured with proper access controls. Nimbus could have its data 
exposed to another client of Birst if the right controls are not in place.
Data ownership – ideally Nimbus should own the data even if it resides with the ––
cloud provider. However, the cloud provider also has access and could take 
ownership of some of the derived data such as platform usage patterns. This 
needs to be clarified between the parties.
Trust – the relationship between Nimbus and the cloud provider runs on ––
trust. Nimbus could have performed audits or been shown audit reports of, 
say, Amazon’s environment, but it is a matter of trust to believe what has 
been shown is indeed active on Nimbus environment or its data are not mis-
used by the provider’s employees.

There are many more aspects of security such as service levels on data usage, data 
privacy, compliance, etc., that a cloud user would encounter. Are the reasons behind 
these unique challenges understood?
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5.3.1 � Purpose, Expectations and Challenges

Cloud computing brings in certain security challenges not seen in typical on-prem-
ise/enterprise infrastructure due to the nature of its model, such as:

Distributed model – the data and services are spread across multiple data •	
centres and infrastructures causing concerns of availability, ownership and 
compliance.
Shared model – the cloud works on sharing code bases/services and infra-•	
structure for data and services across multiple clients causing concerns of 
data isolation.
Access ubiquity – cloud services are web-based and can be accessed from any-•	
where by means of any client type – secure or non-secure – causing concerns of 
hacking.

The focus is thus to ensure that security controls are effective to address these chal-
lenges. Broadly, the expectation from the standard would be to address:

Cloud Data Security ensuring•	
Accountability (validating claim of identity by a user, user authentication •	
and auditing of user actions)
Authorisation (access control to allow or deny user access based on privilege •	
and confidentiality to prevent information disclosure to unauthorised parties)
Availability (data to be accessible whenever needed and with integrity)•	

Cloud Service access security•	
To avoid Domain Name System (DNS) security threats during service •	
access (e.g. IP hijacking, changing the path to destination IP)
To avoid Denial-of-Service(DoS) attacks on the cloud, impacting its availability•	

Managing compliance due to issues such as data storage across geographies, etc. •	
(this is extensively covered in the compliance section subsequently).

5.3.2 � Initiatives – Focus, Sponsors and Status

Tables 5.3 and 5.4 show some of the key initiatives by industry bodies as well as by 
vendors towards security standards.

Table 5.3  Security – group initiatives

Standard name Group/body Focus Readiness

Cloud Security 
Alliance 
Guidelines [19]

Cloud Security 
Alliance [20]

To outline areas of security 
concern and guidance 
for cloud providers to 
improve security of their 
service offerings

First version ready. 
Ver 2 expected in 
October 2009
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5.3.3 � Market Adoption

Cloud Security Alliance is formed and backed by industry heavy weights such as HP, 
Verizon, VMware, McAfee, etc. This would speed up its adoption. Amazon [25] has 
put into practice several security measures to address all of the discussed issues.

5.3.4 � Gaps/Areas of Improvement

Security is a very broad and most important concern to be addressed in cloud com-
puting. Scenarios discussed are to be addressed before security is removed from the 
top concerns list of various user surveys.

5.4 � Deep Dive: Portability Standards 

Nimbus, having tried with an initial set of cloud providers, now decides to move 
some of its applications to other competitive/well-rated providers and some back to 
its on-premise environments. Portability here becomes a major concern and some 
relevant scenarios will be:

The marketing applications built on Force.com need to be moved to the GAE or ––
Microsoft Azure environment (PaaS) or even back to Nimbus data centre (applica-
tion/service portability)
Nimbus plans to consolidate its data marts into a centralised data warehouse. ––
Hence, it wants its Marketing data mart to be moved back to Nimbus environ-
ment (data portability).

Do the current standards address these scenarios?

Table 5.4  Security – vendor initiatives

Standard name Group/body Focus Readiness

Amazon Virtual 
Private Cloud 
(VPC) [21]

Amazon Web 
Services 
(AWS) [22]

To enable enterprises to 
securely connect their 
existing infrastructure to 
AWS compute resources via 
a Virtual Private Network 
(VPN) connection

Available for use

Online Security 
Services and 
Compliance 
(OSSC) [23]

Microsoft [24] To build a framework ensuring 
security, privacy, risk 
management, business 
continuity management, 
global criminal compliance 
and operational compliance 
of MS cloud infrastructure

Applied to MS cloud 
infrastructure



84 A. Govindarajan and Lakshmanan

5.4.1 � Purpose, Expectations and Challenges

The standards around portability are expected to enable smooth switch of cloud 
providers with minimal impact to cost and service quality. The purpose is thus to 
set guidelines for the cloud providers to build relevant layers of abstraction in their 
environments to help portability. Looking across the delivery models, the following 
are some of the challenges to address portability:

SaaS – the content, data and metadata (application configurations) should be •	
portable to a new environment for a smooth switch
PaaS – the code base, application frameworks, data and metadata would be some •	
things to port
IaaS – the software runtime environments (configurations and APIs) would need •	
to be ported. Typically, this would be the VM.

5.4.2 � Initiatives – Focus, Sponsors and Status

Tables 5.5 and 5.6 show some of the key initiatives by industry bodies as well as by 
vendors towards portability standards.

5.4.3 � Market Adoption

The current status shows that the portability using virtualisation (OVF standard) is 
the one in place. IBM has built an OVF toolkit and Citrix has Project Kensho OVF 
tool as a part of their Xenserver Virtualisation technology. Sun, Eucalyptus and few 
other vendors, however, are claiming portability by using open source-based 
platforms.

Table 5.5  Portability – group initiatives

Standard name Group/body Focus Readiness

Open Virtualisation 
Format [10]

DMTF [11] To build an industry standard 
format for portable virtual 
machines. Services running on 
VMs thus can be ported onto 
any virtualisation platform

Version 1.0 of OVF 
available

Cloud Storage 
Initiative [26]

SNIA [27] To build a standard interface 
(CDMI) between the data and 
the cloud storage provider, 
indicating the data services 
to offer, thus enabling data 
portability across vendors

Cloud storage 
reference model 
and use cases 
drafts are ready 
to allow standards 
development
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5.4.4 � Gaps/Areas of Improvement

OVF standard addresses portability through movement of VMs, which is the typical 
technology basis for the cloud. This addresses the IaaS level portability. Standards/
guidelines for portability of other models (SaaS, PaaS) as discussed earlier need to 
be addressed.

5.5 � Deep Dive: Governance, Risk Management 
and Compliance Standards

Having placed several core and non-core systems on the cloud, Nimbus has a key 
dependency on the provider to ensure that these systems do not fail and impact its 
business. Several assessments and discussions with the provider were done and a 
contract signed up. Now, how does Nimbus ensure the contractual terms are being 
met on an on-going basis by the provider? What if there is a breach? How can this 
risk be managed? Nimbus has signed up for several regulatory measures. How far 
are these adhered to by the provider? What if there is a breach? These are some 
concerns handled by GRC function.

5.5.1 � Purpose, Expectations and Challenges

GRC in cloud computing can be considered as an extension of the traditional model, 
but has to address several new challenges as this is applied to an environment exter-
nal to the organisation. The governance requirements can be classified as:

1.	 Design-time governance covering

(a)	 Service definition (e.g. design, build management, source code manage-
ment, and QA)

(b)	 Service deployment

Table 5.6  Portability – vendor initiatives

Standard name Group/body Focus Readiness

Cloud-Ready Server 
Templates [28]

RightScale [29] To provide server deployment 
templates that allow 
portability of servers across 
multiple cloud environments

Available  
for use

Open Cloud 
Platform [30]

Sun [31] To enable Open cloud based on 
open technologies such as 
Java, MySQL, OpenSolaris, 
Open Storage, etc., enabling 
portability on similar cloud 
platforms

Launched in 
March 2009
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2.	 Runtime governance covering
(a)	 Service policy management (e.g. security, performance, reliability, etc.)
(b)	 Service retirement

3.	 Change management for services, policies, processes, data and infrastructure

The governance spans across all the cloud service types, viz. software (SaaS), plat-
form (PaaS) or infrastructure services (IaaS).

Risk management in a cloud will be relevant to managing all types of IT and 
business risks that ensue due to managing services in an external environment, such 
as operational risk (e.g. outages), security risks (both data and process), financial 
risk and legal risk (due to non-compliance of regulatory needs).

Lastly, compliance of cloud to various regulatory needs brings in typical require-
ments, such as:

1.	 Records management (ensuring records for all activities)
2.	 Auditing (audit of all transactions)
3.	 Legal and eDiscovery needs (support for any forensic investigation)
4.	 Data privacy (meeting privacy laws as per region)
5.	 Geography (restrictions on geography imposed by organisations/governments)

The expectation from the standards is to enable the cloud meet all the above-listed 
requirements.

5.5.2 � Initiatives – Focus, Sponsors and Status

There are very few guidelines focused on GRC. The Cloud Security Alliance [19] 
discussed in Security standards also covers the aspects of GRC and is the only 
industry initiative. Table 5.7 shows the vendor initiatives only.

Table 5.7  Governance, risk and compliance – vendor initiatives

Standard/ 
product name Group/body Focus Readiness

WebLayers Center 
5.0 [32]

WebLayers [33] To provide automated governance 
software with a central policy 
management feature to enforce 
policies and detect violations across 
all service life-cycle stages as well 
as across different infrastructures.

Available 
for use

Cloud-Ready 
Server 
Templates [28]

RightScale [29] To provide server deployment templates 
for the cloud with the server 
configuration and policies pre-
defined, thus ensuring governance 
and compliance

Available 
for use
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5.5.3 � Market Adoption

As seen from Table 5.7, there is only one initiative that is focused on GRC. This 
initiative also has not yet seen large-scale adoption. Furthermore, the initiatives 
from vendors are not yet standardised.

5.5.4 � Gaps/Areas of Improvement

Given the importance of this focus area for an organisation to successfully and 
safely conduct its business with its system on the cloud, there seems to be a dearth 
of standards.

5.6 � Deep Dive: Other Key Standards

5.6.1 � Initiatives – Focus, Sponsors and Status

Apart from standards classified under interoperability, security, portability and 
governance and compliance, there are some key standards that are worth tracking. 
They focus either on other areas such as modelling, architecture frameworks or a 
broad support movement towards a cloud with open standards (Table 5.8).

Table 5.8  Other key standards – Group initiatives

Standard name Group/body Focus Readiness

Open Cloud Open Cloud  
Manifesto [34]

To support movement 
towards building 
a cloud with open 
standards

Initial Goals and 
Principles 
defined

OMG  
collaboration [35]

Object Management 
Group  
(OMG) [36]

To collaborate with other 
leading standards body 
to coordinate and 
communicate standards 
for cloud computing 
and storage

Formed in July 
2009

Multiple standards Organisation for the 
Advancement 
of Structured 
Information 
Standards  
(OASIS) [37]

Cloud as a natural 
extension of SOA. 
Standards already in 
place for security, 
interoperability, data 
import/export, etc.

Available for use

e.g., OASIS SAML, 
ebXML, SOA-RM
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5.7 � Closing Notes

Standardisation historically has been a challenge. Getting competitors to agree on 
standards or switch to another vendor’s standards is tough. However, drive by power-
ful standards, organisations such as DMTF, SNIA, etc., with backing from industry 
leaders, can definitely make it possible whilst avoiding excessive proliferation. The 
aim should be to extend the IT standards to address the new scenarios that cloud 
brings in and not create fresh standards making its definition and adoption tougher.
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Abstract  Cloud computing focuses on the idea of service as the elementary unit 
for building any application. Even though Cloud computing was originally developed 
in commercial applications, the paradigm is quickly and widely spreading in open 
contexts such as scientific and academic communities. Two main research directions 
can thus be identified: provide an open Cloud infrastructure able to provide and 
share resources and services to the community; and implement an interoperable 
framework, allowing commercial and open Cloud infrastructures to interact and 
interoperate. In this chapter, we present the Cloud@Home paradigm that proposes 
to merge Volunteer and Cloud computing as an effective and feasible solution for 
building open and interoperable Clouds. In this new paradigm, users’ hosts are 
not passive interfaces to Cloud services anymore, but can interact (for free or by 
charge) with other Clouds, which therefore must be able to interoperate.

6.1 � Introduction and Motivation

Cloud computing is a distributed computing paradigm that mixes aspects of Grid 
computing, Internet computing, Autonomic computing, Utility computing, and 
Green computing. Cloud computing is derived from the service-centric perspective 
that is quickly and widely spreading in the IT world. From this perspective, all 
capabilities and resources of a Cloud (usually geographically distributed) are 
provided to the users as a service, to be accessed through the Internet without any 
specific knowledge of, expertise with, or control over the underlying technology 
infrastructure that supports them.

Cloud computing offers a user-centric interface that acts as a unique, user 
friendly, point of access for users’ needs and requirements. Moreover, it provides 
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on-demand service provision, QoS guaranteed offer, and autonomous system for 
managing hardware, software, and data transparency to the users [25].

In order to achieve such goals, it is necessary to implement a level of abstraction 
of physical resources, uniforming their interfaces, and providing means for their 
management, adaptively, to user requirements. This is done through virtualizations, 
service mashups (Web 2.0), and service-oriented architectures (SOA). These factors 
make the Kleinrock outlook of computing as the fifth utility [13], following gas, 
water, electricity, and telephone.

Virtualization [4,23] allows execution of a software version of a hardware 
machine in a host system in an isolated way. It “homogenizes” resources: problems 
of compatibility are overcome by providing heterogeneous hosts of a distributed 
computing environment (the Cloud) using the same virtual machine software.

Web 2.0 [20] provides an interesting way to interface Cloud services, imple-
menting service mashups. It is mainly based on an evolution of JavaScript with 
improved language constructs (late binding, closures, lambda functions, etc.) and 
AJAX interactions.

SOA is a paradigm for organizing and utilizing distributed capabilities that may 
be under the control of different ownership domains [14]. In SOA, services are the 
mechanism by which needs and capabilities are brought together. SOA defines 
standard interfaces and protocols that allow developers to encapsulate information 
tools as services that clients can access without the knowledge of, or control over, 
their internal workings [8].

An interesting attempt to fix Cloud concepts and ideas is provided in [26] 
through an ontology that demonstrates a dissection of the Cloud into the five main 
layers shown in Fig. 6.1. In this, higher layers services can be composed from the 
services of the underlying layers, which are:

1.	 Cloud Application Layer: provides interface and access-management tools (Web 
2.0, authentication, billing, SLA, etc.), specific application services, services 
mashup tools, etc. to the Cloud end users. This model is referred to as Software 
as a Service (SaaS).

Cloud Application
(SaaS)

Cloud Sw Environment
(PaaS)

Cloud Sw Infrastructure

Sw Kernel

Firmware/Hardware
(HaaS)

Computational
Resources (IaaS)

Storage
(DaaS)

Communication
(CaaS)

Fig. 6.1  The five main layers of Cloud
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2.	 Cloud Software Environment Layer: providers of the Cloud software environments 
supply the users and Cloud applications’ developers with a programming-language-
level environment with a set of well-defined APIs. The services provided by this 
layer are referred to as Platform as a Service (PaaS).

3.	 Cloud Software Infrastructure Layer: provides fundamental resources to other 
higher-level layers. Services can be categorized into:

(a)	 Computational resources – provides computational resources (VM) to Cloud 
end users. Often, such services are dubbed Infrastructure as a Service 
(IaaS).

(b)	 Data storage – allows users to store their data at remote disks and access 
them anytime from any place. These services are commonly known as 
Data-Storage as a Service (DaaS).

(c)	 Communications – provides some communication capabilities that are 
service-oriented, configurable, schedulable, predictable, and reliable. 
The concept of Communication as a Service (CaaS) emerged toward this 
goal, to support such requirements.

OAP and REST are examples of interface protocols used with some Cloud 
computational resources.

4.	 Software Kernel: provides the basic software management for the physical 
servers that comprise the Cloud. OS kernel, hypervisor, virtual machine monitor, 
clustering, grid middleware, etc.

5.	 Hardware and Firmware: form the backbone of the Cloud. End users directly 
interacting with the Cloud at this layer have huge IT requirements in need of 
subleasing Hardware as a Service (HaaS).

Great interest in Cloud computing has been manifested from both academic and 
private research centers, and numerous projects from industry and academia have 
been proposed. In commercial contexts, among the others, we highlight: Amazon 
Elastic Compute Cloud, IBM’s Blue Cloud, Sun Microsystems Network.com, 
Microsoft Azure Services Platform, Dell Cloud computing solutions, etc. There are 
also several scientific activities driving toward Open Cloud-computing middlewares 
and infrastructures, such as: Reservoir [18], Nimbus-Stratus-Wispy-Kupa [22], 
OpenNebula [7], Eucalyptus [17], etc. All of them support and provide an on-demand 
computing paradigm, in the sense that a user submits his/her requests to the Cloud, 
which remotely, in a distributed fashion, processes them and gives back the results. 
This client–server model fits the aims and scope of commercial Clouds: the busi-
ness. But, on the other hand, it represents a restriction for open/scientific Clouds, 
requiring great amounts of computing-storage resources usually not available from a 
single open/scientific community. This suggests the necessity to collect such 
resources from different providers and/or contributors who could share their resources 
with the specific community, perhaps by making “symbiotic” federations. In fact, one 
of the most successful paradigms in such contexts is Volunteer computing.

Volunteer computing (also called Peer-to-Peer computing, Global computing, 
or Public computing) uses computers volunteered by their owners as a source 
of computing power and storage to provide distributed scientific computing [2]. 
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It is the basis of the “@home” philosophy of sharing/donating network connected 
resources for supporting distributed scientific computing.

We believe that the Cloud-computing paradigm is also applicable at lower 
scales, from the single contributing user who shares his/her desktop, to research 
groups, public administrations, social communities, and small and medium enterprises, 
who can make their distributed computing resources available to the Cloud. Both 
free sharing and pay-per-use models can be easily adopted in such scenarios.

From the utility point of view, the rise of the “techno-utility complex” and the 
corresponding increase in computing resource demands, in some cases growing 
dramatically faster than Moore’s Law, predicted by the Sun CTO Greg Papadopoulos 
in the red shift theory for IT [15], could take us in a close future, toward an oligar-
chy, a lobby or a trust of few big companies controlling the whole computing 
resources market.

To avoid such a pessimistic but achievable scenario, we suggest addressing the 
problem in a different way: instead of building costly private data centers that 
the Google CEO, Eric Schmidt, likes to compare with the prohibitively expensive 
cyclotrons [3], we propose a more “democratic” form of Cloud computing, in which 
the computing resources of single users accessing the Cloud can be shared with 
others in order to contribute to the elaboration of complex problems.

As this paradigm is very similar to the Volunteer computing one, it can be named as 
Cloud@Home. Both hardware and software compatibility limitations and restrictions 
of Volunteer computing can be solved in Cloud computing environments, allowing 
to share both hardware and software resources and/or services.

The Cloud@Home paradigm could also be applied to commercial Clouds, estab-
lishing an open computing-utility market where users can both buy and sell their 
services. Since the computing power can be described by a “long-tailed” distribution, 
in which a high-amplitude population (Cloud providers and commercial data centers) 
is followed by a low-amplitude population (small data centers and private users) that 
gradually “tails off” asymptotically, Cloud@Home can catch the Long Tail effect 
[1], providing similar or higher computing capabilities than commercial providers’ 
data centers, by grouping small computing resources from many single contributors.

In the following, we demonstrate how it is possible to realize all these aims 
through the Cloud@Home paradigm. In Section  2, we describe the functional 
architecture of the Cloud@Home infrastructure, and in Section 3, we characterize 
the blocks implementing the functions previously identified into the Cloud@Home 
core structure.  Section  4 concludes the chapter by recapitulating our work and 
discussing challenges and future work.

6.2 � Cloud@Home Overview

The idea behind Cloud@Home is to reuse “domestic” computing resources to build 
voluntary contributors’ Clouds that are interoperable and, moreover, interoperate 
with other foreign, and also commercial, Cloud infrastructures. With Cloud@Home, 
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anyone can experience the power of Cloud computing, both actively by providing 
his/her own resources and services, and passively by submitting his/her applications 
and requirements.

6.2.1 � Issues, Challenges, and Open Problems

Ian Foster summarizes the computing paradigm of the future as follows [9]: “... we 
will need to support on-demand provisioning and configuration of integrated ‘virtual 
systems’ providing the precise capabilities needed by an end user. We will need to 
define protocols that allow users and service providers to discover and hand off 
demands to other providers, to monitor and manage their reservations, and arrange 
payment. We will need tools for managing both the underlying resources and the 
resulting distributed computations. We will need the centralized scale of today’s Cloud 
utilities, and the distribution and interoperability of today’s Grid facilities....”

We share all these requirements, but in a slightly different way: we want to 
actively involve users into such a new form of computing, allowing them to create 
their own interoperable Clouds. In other words, we believe that it is possible to 
export, apply, and adapt the “@home” philosophy to the Cloud-computing 
paradigm. In this way, by merging Volunteer and Cloud computing, a new para-
digm can be created: Cloud@Home. This new computing paradigm gives back the 
power and control to users, who can decide how to manage their resources/services 
in a global, geographically distributed context. They can voluntarily sustain scien-
tific projects by freely placing their resources/services at the scientific research 
centers’ disposal, or can earn money by selling their resources to Cloud-computing 
providers in a pay-per-use/share context.

Therefore, in Cloud@Home, both the commercial/business and volunteer/
scientific viewpoints coexist: in the former case, the end-user orientation of Cloud 
is extended to a collaborative two-way Cloud in which users can buy and/or sell 
their resources/services; in the latter case, the Grid philosophy of few but large 
computing requests is extended and enhanced to open Virtual Organizations. In 
both cases, QoS requirements could be specified, introducing in to the Grid and 
Volunteer philosophy (best effort) the concept of quality.

Cloud@Home can also be considered as a generalization and a maturation of the 
@home philosophy: a context in which users voluntarily share their resources 
without compatibility problems. This allows knocking down both hardware (pro-
cessor bits, endianness, architecture, and network) and software (operating systems, 
libraries, compilers, applications, and middlewares) barriers of Grid and Volunteer 
computing. Moreover, Cloud@Home allows users to share not only physical 
resources, as in @home projects or Grid environments, but any kind of service. The 
flexibility and extensibility of Cloud@Home can allow to easily arrange, manage, 
and make available with significant computing resources (greater than those in 
Clouds, Grids, and/or @home environments) to everyone who owns a computer. 
Another significant improvement of Cloud@Home with regard to Volunteer computing 
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paradigms is the QoS/SLA management: starting from the credit management sys-
tem and other similar experiments on QoS, a mechanism for adequately monitor-
ing, ensuring, negotiating, accounting, billing, and managing, in general, QoS and 
SLA will be implemented.

On the other hand, Cloud@Home can be considered as the enhancement of the 
Grid-Utility vision of Cloud computing. In this new paradigm, user’s hosts are not 
passive interfaces to Cloud services, but can be actively involved in computing. At 
worst, single nodes and services could be enrolled by the Cloud@Home middle-
ware to build own-private Cloud infrastructures that can with interact with other 
Clouds.

The Cloud@Home motto is: heterogeneous hardware for homogeneous Clouds. 
Thus, the scenario we prefigure is composed of several coexisting and interoperable 
Clouds, as depicted in Fig. 6.2. Open Clouds (yellow) identify open VO operating 
for free Volunteer computing; Commercial Clouds (blue) characterize entities or 
companies selling their computing resources for business; and Hybrid Clouds 
(green) can both sell or give for free their services. Both Open and Hybrid Clouds 
can interoperate with any other Clouds, as well as Commercial, while these latter 
can interoperate if and only if the Commercial Clouds are mutually recognized. In 
this way, it is possible to make federations of heterogeneous Clouds that can work 
together on the same project. Such a scenario has to be implemented transpar-
ently for users who do not want to know whether their applications are running in 
homogeneous or heterogeneous Clouds. The differences among homogeneous 
and heterogeneous Clouds are only concerned with implementation issues, mainly 
affecting the resource management: in the former case, resources are managed 
locally to the Cloud; in heterogeneous Clouds, interoperable services have to be 
implemented in order to support discovery, connectivity, translation, and negotia-
tion requirements amongst Clouds.
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Amazon EC2
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Cloud

Hybrid Cloud

Scientific 
Cloud Open Cloud
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Cloud

Microsoft
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Network.com

Fig. 6.2  Co-existing and interoperable Clouds anticipated for the Cloud@Home Scenario
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The overall infrastructure must deal with the high dynamism of its nodes/
resources, allowing to move and reallocate data, tasks, and jobs. It is therefore 
necessary to implement a lightweight middleware, specifically designed to 
optimize migrations. The choice of developing such middleware on existing 
technologies (as done in Nimbus-Stratus starting from Globus) could be limiting, 
inefficient, or not adequate from this point of view. This represents another signifi-
cant enhancement of Cloud@Home against Grid: a lightweight middleware allows 
to involve limited resources’ devices into the Cloud, mainly as consumer hosts 
accessing the Cloud through “thin client” but also, in some specific applications, as 
contributing hosts implementing (light) services according to their availabilities. 
Moreover, the Cloud@Home middleware does not influence code writing as Grid 
and Volunteer computing paradigms do.

Another important goal of Cloud@Home is security. Volunteer computing has 
security concerns, while the Grid paradigm implements complex security mecha-
nisms. Virtualization in Clouds implements isolation of services, but does not pro-
vide any protection from local access. With regard to security, the specific goal of 
Cloud@Home is to extend the security mechanisms of Clouds to the protection of 
data from local access. As Cloud@Home is composed of an amount of resources 
potentially larger than commercial or proprietary Cloud solutions, its reliability can 
be compared with Grid or the Volunteer computing and should be greater than other 
Clouds.

Lastly, interoperability is one of the most important goals of Cloud@Home. 
This is an open problem in Grid, Volunteer, and Cloud computing, which we want 
to address in Cloud@Home.

The most important issues that should be taken into account in order to 
implement such a form of computing can be listed as follows:

•	 Resources and Services management – a mechanism for managing resources and 
services offered by Clouds is mandatory. This must be able to enroll, discover, 
index, assign and reassign, monitor, and coordinate resources and services. 
A problem to face at this level is the compatibility among resources and services 
and their portability.

•	 Frontend – abstraction is needed in order to provide users with a high-level 
service-oriented point of view of the computing system. The frontend provides 
a unique, uniform access point to the Cloud. It must allow users to submit 
functional computing requests, only providing requirements and specifications, 
without any knowledge of the system-resources deployment. The system 
evaluates such requirements and specifications, and translates them into physical 
resource demands, deploying the elaboration process. Another aspect concerning 
the frontend is the capability of customizing Cloud services and applications.

•	 Security – effective mechanisms are required to provide authentication, resources 
and data protection, data confidentiality, and integrity.

•	 Resource and service accessibility, reliability, and data consistency – it is neces-
sary to implement redundancy of resources and services, and hosts’ recovery 
policies because users voluntarily contribute to the computing, and therefore, 
can asynchronously, at any time, log out or disconnect from the Cloud.



100 V.D. Cunsolo et al.

•	 Interoperability among Clouds – it should be possible for Clouds to 
interoperate.

•	 Business models – for selling Cloud computing, it is mandatory to provide QoS and 
SLA management for both commercial and open-volunteer Clouds (traditionally 
best effort) to discriminate among the applications to be run.

6.2.2 � Basic Architecture

A possible Cloud@Home architecture that could address the issues listed earlier is 
shown in Fig. 6.3, which has been adapted to the ontology provided in [26] and 
reported in Fig. 6.1. Two types of users are distinguished in such an architecture 
according to the role that they assume in the Cloud: end users, if they only interface 
the Cloud for submitting requests, and/or contributing users if they make available 
their resources and services for building up and supporting the Cloud. According to 
this point of view, the Cloud is composed of several contributing hosts offered by 
the corresponding contributing users to end users who interact with the Cloud and 
submit their requests through their consumer hosts. To access a Cloud, both 
contributing and end users must authenticate themselves into the system. One of 
the main enhancements of Cloud@Home is that a user/host can be contributing 
and/or end user/consumer host, establishing a symbiotic mutual interaction with 
the Cloud.

Such an architecture will be described below by identifying and detailing tasks 
and functions of each of the five layers characterized in the Cloud ontology 
presented in Section 1.
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6.2.2.1 � Software Environment

The Cloud@Home software environment implements the user-infrastructure 
frontend interface. It is responsible for the resources and services management 
(enrolling, discovery, allocation, coordination, monitoring, scheduling, etc.) from 
the global Cloud system’s perspective. It also provides tools, libraries, and APIs for 
translating user requirements into physical resource demands. Moreover, in com-
mercial Clouds, it must be able to negotiate the QoS policy to be applied (SLA), 
thus monitoring for its fulfillment and, in case of unsatisfactory results, adapting 
the computing workflow to such QoS requirements.

If the Cloud’s available resources and services do not satisfy the requirements, 
the frontend provides mechanisms for requesting further resources and services 
from other Clouds, both open and/or commercial. In other words, the Cloud@
Home frontend implements the interoperability among Clouds, also checking for 
service reliability and availability. To improve reliability and availability of services 
and resources, especially if QoS policies and constraints have been specified, it is 
necessary to replicate services and resources by introducing redundancy.

The Cloud@Home software environment is split into two parts, as shown in 
Fig. 6.3: the server side, implementing resource management and related problems, 
and the client side, providing mechanisms and tools for authenticating, enrolling, 
accessing, and interacting with the Cloud services and resources. The client fron-
tend is distinguished according to the role assumed by the user/host: for end users, 
only a thin client able to interact with the frontend server and to submit requests to 
the Cloud must be installed into the consumer hosts; for contributing users, contrib-
uting hosts must provide the software for interfacing with the Cloud@Home fron-
tend server and for supporting the Cloud (C@H FS library, storage space, and/or 
hypervisor according to the service supported).

In a widely distributed system that is globally spread, the knowledge of resource 
accesses and uses assumes great importance. To access and/or use the Cloud ser-
vices, a generic user first authenticates him/herself and then specifies whether he/
she wants to make available his/her resources and services for sharing, or he/she 
only uses the Cloud resources for computing. The frontend provides means, tools, 
and policies for managing users. The best mechanism to achieve secure authentica-
tion is the Public Key Infrastructure (PKI) [21], better if combined with smartcard 
devices that, through a trusted certification authority, ensure user identification. In 
order to avoid multiple authentications, a mechanism of authentication manage-
ment and credential delegation, such as single sign-on (SSO), must be provided by 
the server frontend.

Referring to Fig. 6.3, three alternative solutions can be offered to end users 
by the software environment for accessing a Cloud: (a) Cloud@Home frontend 
client, (b) Web 2.0 user interface, and (c) low-level Web interface (directly speci-
fying REST or SOAP queries). These also provide mechanisms for customizing 
user applications by composing (service mashup and SOA) and submitting own 
services.
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6.2.2.2 � Software Infrastructure

The virtualization of physical resources offers a homogeneous view of Cloud’s 
services and resources to end users. Two basic services are provided by the 
software infrastructure to the software environment, and consequently, to end 
users: execution and storage services.

The execution service, implementing the computational resources sublayer of 
Fig.  6.1, allows to create and manage virtual machines. A user, sharing his/her 
resources within a Cloud@Home, allows the other users of the Cloud to execute 
and manage virtual machines locally at his/her node, according to policies and 
constraints negotiated and monitored through the software environment. In this 
way, a Cloud of virtual machine’s executors is established, where virtual machines 
can migrate or can be replicated in order to achieve reliability, availability, and QoS 
targets. As shown in Fig. 6.3, from the end user’s point of view, an execution Cloud 
is seen as a set of virtual machines available and ready-to-use. The virtual machines’ 
isolation implements protection and therefore security. This security is ensured by 
the hypervisor that runs the virtual machine’s code in an isolated scope, similarly 
to a sandbox, without affecting the local host environment.

The storage service implements a storage system distributed across the storage 
hardware resources composing the Cloud, highly independent of them because data 
and files are replicated according to QoS policies and requirements to be satisfied. 
From the end user’s point of view, a storage Cloud appears as a locally mounted 
remote disk, similar to a Network File System or a Network Storage. Tools, libraries, 
and API for interfacing to storage Clouds are provided by the frontend client to end 
users, while the service is implemented by the Cloud@Home software infrastructure 
and software kernel.

In a distributed environment where any user can host a part of private data, it is 
necessary to protect such data from unauthorized accesses (data security). A way 
to obtain data confidentiality and integrity could be cryptography, as better 
explained in the software kernel description.

6.2.2.3 � Software Kernel

The software kernel provides infrastructure, mechanisms, and tools to the software 
for locally managing the physical resources of the Cloud in order to implement 
execution and storage services.

Cloud@Home negotiates with users who want to join a Cloud about his/her 
contribution. This mechanism involves the software kernel that provides tools for 
reserving execution and/or storage resources for the Cloud, and monitors these 
resources so that constraints, requirements, and policies specified are not violated. 
This ensures reliability and availability of the resources, avoiding overloading 
of the local system and therefore reducing the risk of crashes.

To implement the execution service in a generic device or to enroll it into an 
execution Cloud, the device must have a hypervisor ready to allocate and run virtual 
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machines, as shown in Fig. 6.3 . If a storage service is installed into the device, a 
portion of the local storage system must be dedicated for hosting the Cloud data. 
In such cases, the Cloud@Home file system is installed into the devices’ shared 
storage space.

The software kernel also implements data security (integrity and confidentiality), 
ensuring that stored data cannot be accessed by those who physically host them 
(insider attacks, identity thefts, account hijacking, etc.). We propose an approach that 
combines the inviolability of the Public Key Infrastructure asymmetric cryptography 
and the speed of symmetric cryptography (details in [6]). Data are first encrypted by 
the symmetric key and then stored into the selected host with the symmetric key 
encrypted by the user private key. This ensures that only authorized users can 
decrypt the symmetric key and consequently access the data.

In order to implement secure and reliable connections amongst nodes, we 
choose the Extensible Messaging and Presence Protocol (XMPP) protocol [19]. 
XMPP is an open technology for real-time communication, which powers a wide 
range of applications including instant messaging, presence, multi-party chat, voice 
and video calls, collaboration, lightweight middleware, content syndication, and 
generalized routing of XML data, also supporting security features. However, as 
the data stored in a Cloud@Home storage are encrypted, it is not necessary to use 
a secure channel for data transfers, and hence, a more performant protocol, such as 
BitTorrent [5] can be used. The XMPP secure channel is required for sending and 
receiving nonencrypted messages and data to/from remote hosts.

6.2.2.4 � Firmware/Hardware

The Cloud@Home firmware/hardware layer is composed of a “cloud” of generic 
contributing nodes and/or devices geographically distributed across the Internet. 
They provide the physical-hardware resources to the upper layers for implementing 
the execution and storage services.

6.2.3 � Application Scenarios

Several possible application scenarios can be imagined for Cloud@Home:

•	 Research centers, public administrations, and communities – the Volunteer 
computing inspiration of Cloud@Home provides means for the creation of 
open, interoperable Clouds for supporting scientific purposes, overcoming the 
portability and compatibility problems highlighted by the @home projects. 
Similar benefits could be experienced in public administrations and open 
communities (social networks, peer-to-peer, gaming, etc). Through Cloud@
Home, it could be possible to implement resources and service management 
policies with QoS requirements (characterizing the scientific project importance) 
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and specifications (QoS classification of resources and services available). 
A new deal for Volunteer computing, since this latter does not take into consi
deration QoS, follows a best effort approach.

•	 Enterprises – planting a Cloud@Home computing infrastructure in business-
commercial environments can bring considerable benefits, especially in small 
and medium, as well as big enterprises. Usually, in every enterprise, there 
exists a capital of stand-alone computing resources dedicated to a specific task 
(office automation, monitoring, designing, and so on). Since such resources are 
only (partially) used in office hours, through Internet connectivity, it becomes 
possible to build up a Cloud@Home data center, in which shared services are 
allocated (web server, file server, archive, database, etc.) without any compati-
bility constraints or problems.
The interoperability amongst Clouds allows to buy computing resources from •	
commercial Cloud providers if needed or, otherwise, to sell the local Cloud com-
puting resources to the same or different providers. This allows reducing and 
optimizing business costs according to QoS/SLA policies, improving perfor-
mances and reliability. For example, this paradigm allows dealing with the peaks 
economy: data centers could be sized for managing the medium case, and worst 
cases (peaks) could be managed by buying computing resources from Cloud pro-
viders. Moreover, Cloud@Home drives towards resource rationalization: all the 
business processes can be securely managed over the web, allocating resources 
and services where needed. In particular, this can improve marketing and trading 
(E-commerce), making available a lot of customizable services to sellers and cus-
tomers. The interoperability could also point to another scenario, in which private 
companies buy computing resources in order to resell them (subcontractors).

•	 Ad-hoc networks, wireless sensor networks, and home automation – the Cloud-
computing approach, in which both software and computing resources are 
owned and managed by service providers, eases the programmers’ efforts in facing 
device heterogeneity problems. Mobile application designers should start to 
consider that their applications, besides needing to be usable on a small device, 
will need to interact with the Cloud. Service discovery, brokering, and reliability 
are important issues, and services are usually designed to interoperate. In order 
to consider the arising consequences related to the access of mobile users to 
service-oriented grid architecture, researchers have proposed new concepts such 
as mobile dynamic virtual organizations [24].
An open research issue is whether or not a mobile device should be considered •	
as a service provider of the Cloud itself. The use of modern mobile terminals, 
such as smart-phones, not just as Web service requestor but also as mobile hosts 
that can themselves offer services in a true mobile peer-to-peer setting, is also 
discussed in [16]. Context-aware operations involving control and monitoring, 
data sharing, synchronization, etc, could be implemented and exposed as 
Cloud@Home Web services. Cloud@Home could be a way to implement 
Ubiquitous and Pervasive computing: many computational devices and systems 
can be engaged simultaneously for performing ordinary activities, and may not 
necessarily be aware of the fact that they are doing so.
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6.3 � Cloud@Home Core Structure

Once the functional architecture of Cloud@Home has been introduced, it is 
necessary to characterize the blocks implementing the functions thus identified. 
These blocks are pictorially depicted in the layered model of Fig. 6.4 that reports 
the core structure of the overall system implementing the Cloud@Home server-side. 
As done for the functional architecture, the core structure is also specified by fol-
lowing the Cloud ontology characterized in Fig. 6.1. Moreover, the Cloud@Home 
core structure is subdivided into two subsystems: management and resource subsys-
tems. Such subsystems are strictly interconnected: the management subsystem imple-
ments the upper layer of the functional architecture, while the resource subsystem 
implements the lower level functionalities.

Figure 6.5 pictorially depicts the deployment of the Cloud@Home core structure 
into the physical infrastructure. Such implementation highlights the hierarchical-
distributed approach of Cloud@Home. On top of the hierarchy, there are the blocks 
implementing the management subsystem that can be deployed into different servers/
nodes, one for each block, or can be grouped into the same node. Nevertheless, in 
order to achieve reliability and availability goals, it is necessary to adequately 
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replicate such nodes, in particular if all the management subsystem blocks are 
deployed into the same unique node.

VM schedulers and storage masters manage smaller groups (grid, clusters, multi-
core nodes, etc.) of resources. They can be designated both globally by the management 
subsystem and/or locally by applying self-organizing/autonomic algorithms such as 
election mechanisms. A VM scheduler and a storage master can be deployed into 
the same node/server, while, obviously, two or more VM schedulers/storage masters 
cannot coexist in the same node. For reliability/availability purpose, they can also 
be replicated and/or hierarchically organized.

At the bottom of the hierarchy, there are the contributing hosts. Each contains 
the software for supporting the specific service for what was enrolled into the 
Cloud. Thus, a node contributing to the execution Cloud has a hypervisor, a VM 
provider, and a VM resource monitor, while a storage Cloud contributing host has 
a chunk provider and a storage resource monitor. As shown in Fig. 6.4 and also 
stated earlier, it is possible that the same host contributes to both execution and 
storage Clouds, and therefore, has both execution and storage components.

6.3.1 � Management Subsystem

In order to enroll and manage the distributed resources and services of a Cloud, provid-
ing a unique point of access for them, it is necessary to adopt a centralized approach 
that is implemented by the management subsystem. It is composed of four parts: the 
user frontend, the Cloud broker, the resource engine, and the policy manager.
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The user frontend provides tools for Cloud@Home-user interactions. It collects 
and manages the users’ requests issued by the Cloud@Home clients. All such 
requests are transferred to the blocks composing the underlying layer (resource 
engine, Cloud broker, and policy manager) for processing.

An important task carried out by the user frontend is the Clouds interoperability, 
implemented point-to-point, connecting the interface of the Clouds wishing to 
interoperate. If one of the Clouds does not have the Cloud@Home core structure 
of Fig.  6.3, it is necessary to translate the requests between Cloud@Home and 
foreign Clouds formats, a task delegated by the user frontend to the Cloud broker. 
The Cloud broker collects and manages information about the available Clouds and 
the services they provide (both functional and non-functional parameters, such as QoS, 
costs, and reliability, request formats’ specifications for Cloud@Home-foreign 
Cloud translations, etc.).

The policy manager provides and implements the Cloud’s access facilities. 
This task falls into the security scope of identification, authentication, authorization, 
and permissions management. To achieve this target, the policy manager uses an 
infrastructure based on PKI, smartcard devices, Certification Authority, and SSO. 
The policy manager also manages the information about users’ QoS policies and 
requirements.

The resource engine is the heart of Cloud@Home. It is responsible for the 
resources’ management, the equivalent of a Grid resource broker in a broader 
Cloud environment. To meet this goal, the resource engine applies a hierarchical 
policy. It operates at a higher level, in a centralized way, indexing all the resources 
of the Cloud. Incoming requests are delegated to VM schedulers or storage masters 
that, in a distributed fashion, manage the computing or storage resources, respectively, 
coordinated by the resource engine.

The management subsystem is implemented as a centralized subsystem managing 
the whole infrastructure. Although this solution introduces a single point of failure 
into the architecture, this is the only possible way to manage resource QoS, SLA, 
dynamic provisioning, and monitoring because there has to be a subsystem that 
aggregates information and has to know the condition of the whole infrastructure, 
there needs to be a coordinator. Reliability, availability, and fault-tolerance issues 
can be achieved by replicating the management subsystem and its components, 
adequately managing the consistency of redundant replicas.

6.3.2 � Resource Subsystem

The resource subsystem contains all the blocks implementing the local and distributed 
management functionalities of Cloud@Home. This subsystem can be logically split 
into two parts offering different software infrastructure services: the execution Cloud 
and the storage Cloud. The management subsystem is also able to merge them, 
providing a unique Cloud that can offer both execution and/or storage services.
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The execution Cloud provides tools for managing virtual machines according to 
users’ requests and requirements coming from the management subsystem. It is 
composed of four blocks: VM scheduler, VM provider, VM resource monitor, and 
hypervisor.

The VM Scheduler is a peripheral resource broker of the Cloud@Home infra-
structure, to which the resource engine delegates the management of computing/
execution resources and services of the Cloud. It establishes which, what, where, 
and when to allocate a VM; moreover, it is responsible for moving and managing 
VM services. From the end user’s point of view, a VM is allocated somewhere on 
the Cloud; therefore, its migration is transparent for the end user that is not aware of 
any VM migration mechanism. However, some problems can affect VM migrations 
into the Cloud@Home environment. As the nodes implementing the Cloud are, 
generally, widely distributed across the Internet, for migrating a VM with its entire 
context from one node to another (remote) node, great transfer delays are introduced. 
In a highly dynamic environment, where VM migrations could be highly frequent, 
this could become a serious problem.

A possible solution to such a problem is the introduction of technique-based 
difference algorithms, similar to the one implemented in the union file system 
(UnionFS) [27]. In each node contributing to the execution Cloud of the Cloud@
Home infrastructure, redundant basic VM images must be available (if possible). 
Thus, in case of migration, starting from the selected data/files comparison algo-
rithm (diff), instead of transferring the whole VM with its context, a lighter (diff) 
file only containing the differences between a new VM and the one to migrate is 
sent to the destination host, which recomposes the original VM starting from a new 
VM instance and runs it. This technique can considerably reduce the amount of 
data to transfer, and consequently the corresponding transfer times.

Differentiation techniques might be appropriate for moving VM disk images 
(although they would require some fundamental restrictions to be placed on the 
images that could be used), but they do not address the problem of migrating 
VM memory state. Such a problem could be addressed by exploiting specific and 
advanced live migration techniques implementing reduced bandwidth usage, 
just-in-time live migration behavior, and live migration across WAN, mainly based 
on compression algorithms [11,12].

The VM provider, the VM resource monitor, and the hypervisor are responsible 
for managing a VM locally to a physical resource. A VM provider exports func-
tions for allocating, managing, migrating, and destroying a virtual machine on the 
corresponding host. The VM resource monitor allows taking the local computing 
resources under control, according to requirements and constraints negotiated in 
the setup phase with the contributing user. If during a virtual machine execution, the 
local resources crash or become insufficient to keep the virtual machine running, 
the VM resource monitor asks the scheduler to migrate the VM elsewhere.

In order to implement the storage Cloud, we specify the Cloud@Home file system 
(FS), adopting an approach similar to the Google FS [10]. The Cloud@Home FS splits 
data and files into chunks of fixed or variable size, depending on the storage resources 
available. The architecture of the storage file system is hierarchical: data chunks are 
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physically stored on chunk providers and corresponding storage masters index the 
chunks through specific file indexes (FI). The storage master is the directory server, 
indexing the data stored in the associated chunk providers. It directly interfaces with the 
resource engine to discover the resources storing data. In this context, the resource 
engine can be considered, in its turn, as the directory server indexing all the storage 
masters. To improve the storage Cloud reliability, storage masters must be replicated. 
Moreover, a chunk provider can be associated to more than one storage master.

In order to avoid a storage master becoming a bottleneck, once the chunk providers 
have been located, data transfers are implemented by directly connecting end users 
and chunk providers. Similar techniques to the ones discussed about VM schedulers 
can be applied to storage masters for improving performance and reliability of the 
storage Clouds.

Chunk providers physically store the data that, as introduced earlier, are encrypted 
to achieve the confidentiality goal. Data reliability can be improved by replicating 
data chunks and chunk providers, consequently updating the corresponding storage 
masters. In this way, a corrupted data chunk can be automatically recovered and 
restored through the storage masters, without involving the end user.

In order to achieve QoS/SLA requirements in a storage Cloud, it is necessary to 
periodically monitor its storage resources, as done in the execution Cloud for VM. 
For this reason, in the Cloud@Home core structure of Fig. 6.3, we have introduced a 
specific storage resource monitor block. As it monitors the state of a chunk provider, 
it is physically located and deployed into each chunk provider composing the 
storage Cloud. The choice of replicating the resource monitor in both execution and 
storage Clouds is motivated by the fact that we want to implement two different, 
separated, and independent services.

6.4 � Conclusions

In this chapter, we have discussed an innovative computing paradigm merging 
volunteer contributing and Cloud approaches into Cloud@Home. This proposal 
represents a solution for building Clouds, starting from heterogeneous and independent 
nodes, not specifically conceived for this purpose. Cloud@Home implements a 
generalization of both Volunteer and Cloud computing by aggregating the compu-
tational potentialities of many small, low-power systems, exploiting the long-tail 
effect of computing.

In this way, Cloud@Home opens the Cloud computing world to scientific and 
academic research centers, as well as to public administration and communities, 
and potentially single users: anyone can voluntarily support projects by sharing his/
her resources. On the other hand, it opens the utility computing market to the single 
user who wants to sell his/her computing resources. To realize this broader 
vision, several issues must be adequately taken into account: reliability, security, 
portability of resources and services, interoperability among Clouds, QoS/SLA, 
and business models and policies.
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It is necessary to have a common understanding regarding an ontology that 
fixes concepts, such as resources, services, virtualization, protocol, format, 
interface, and corresponding metrics, including Clouds’ functional and nonfunc-
tional parameters (QoS, SLA, and so on), which must be translated into specific 
interoperable standards.
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Abstract  MapReduce is a programming model widely used in Cloud computing 
environments for processing large data sets in a highly parallel way. MapReduce 
implementations are based on a master-slave model. The failure of a slave is man-
aged by re-assigning its task to another slave, while master failures are not managed 
by current MapReduce implementations, as designers consider failures unlikely in 
reliable Cloud systems. On the contrary, node failures – including master failures – are 
likely to happen in dynamic Cloud scenarios, where computing nodes may join 
and leave the network at an unpredictable rate. Therefore, providing effective 
mechanisms to manage master failures is fundamental to exploit the MapReduce 
model in the implementation of data-intensive applications in those dynamic Cloud 
environments where current MapReduce implementations could be unreliable. The 
goal of our work is to extend the master-slave architecture of current MapReduce 
implementations to make it more suitable for dynamic Cloud scenarios. In particular, in 
this chapter, we present a Peer-to-Peer (P2P)-MapReduce framework that exploits 
a P2P model to manage participation of intermittent nodes, master failures, and 
MapReduce job recovery in a decentralized but effective way.

7.1 � Introduction

Cloud computing is gaining increasing interest both in science and industry for its 
promise to deliver service-oriented remote access to hardware and software facili-
ties in a highly reliable and transparent way. A key point for the effective imple-
mentation of large-scale Cloud systems is the availability of programming models 
that support a wide range of applications and system scenarios. One of the most 
successful programming models currently adopted for the implementation of data-
intensive Cloud applications is MapReduce [1].
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MapReduce defines a framework for processing large data sets in a highly parallel 
way by exploiting computing facilities available in a large cluster or through a 
Cloud system. In MapReduce, users specify the computation in terms of a map 
function that processes a key/value pair to generate a list of intermediate key/value 
pairs, and a reduce function that merges all intermediate values associated with the 
same intermediate key.

MapReduce implementations (e.g., Google’s MapReduce [2] and Apache Hadoop 
[3]) are based on a master-slave model. A job is submitted by a user node to a master 
node that selects idle workers and assigns each one a map or a reduce task. When all map 
and reduce tasks have been completed, the master node returns the result to the user node. 
The failure of a worker is managed by re-executing its task on another worker, while 
current MapReduce implementations do not cope with master failures, as designers 
consider failures unlikely in large clusters or reliable Cloud environments.

On the contrary, node failures – including master failures – can occur in large 
clusters and are likely to happen in dynamic Cloud environments such as an 
Intercloud, a Cloud of clouds, where computing nodes may join and leave the system 
at an unpredictable rate. Therefore, providing effective mechanisms to manage master 
failures is fundamental to exploit the MapReduce model in the implementation of 
data-intensive applications in large dynamic Cloud environments where current 
MapReduce implementations could be unreliable. The goal of our work is to study 
how the master-slave architecture of current MapReduce implementations can be 
improved to make it more suitable for dynamic Cloud scenarios such as Interclouds.

In this chapter, we present a Peer-to-Peer (P2P)-MapReduce framework that 
exploits a P2P model to manage participation of intermittent nodes, master failures, 
and MapReduce job recovery in a decentralized but effective way. An early version 
of this work, presenting a preliminary architecture of the P2P-MapReduce frame-
work, has been presented in [4]. This chapter extends the previous work by describing 
an implementation of the P2P-MapReduce framework and a preliminary perfor-
mance evaluation.

The remainder of this chapter is organized as follows. Section  2 provides a 
background to the MapReduce programming model. Section 3 describes the P2P-
MapReduce architecture, its current implementation, and preliminary evaluation of 
its performance. Finally, Section 4 concludes the chapter.

7.2 � MapReduce

As mentioned earlier, MapReduce applications are based on a master-slave model. 
This section briefly describes the various operations that are performed by a generic 
application to transform input data into output data according to that model.

Users define a map and a reduce function [1]. The map function processes a 
(key, value) pair and returns a list of intermediate (key, value) pairs:

map (k1,v1) → list(k2,v2).
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The reduce function merges all intermediate values having the same intermedi-
ate key:

reduce (k2, list(v2)) → list(v2).

The whole transformation process can be described through the following steps 
(see Fig. 7.1):

1.	 A master process receives a “job configuration” describing the MapReduce job to 
be executed. The job configuration specifies, amongst other information, the loca-
tion of the input data, which is normally a directory in a distributed file system.

2.	 According to the job configuration, the master starts a number of mapper and 
reducer processes on different machines. At the same time, it starts a process that 
reads the input data from its location, partitions that data into a set of splits, and 
distributes those splits to the various mappers.

3.	 After receiving its piece of data, each mapper process executes the map function 
(provided as part of the job configuration) to generate a list of intermediate key/
value pairs. Those pairs are then grouped on the basis of their keys.

4.	 All pairs with the same keys are assigned to the same reducer process. Hence, 
each reducer process executes the reduce function (defined by the job configura-
tion), which merges all the values associated with the same key to generate a 
possibly smaller set of values.

5.	 The results generated by each reducer process are then collected and delivered to 
a location specified by the job configuration, so as to form the final output data.

Besides the original MapReduce implementation by Google [2], several other 
MapReduce implementations have been realized within other systems, including 
Hadoop [3], GridGain [5], Skynet [6], MapSharp [7], and Disco [8]. Another system 

Fig. 7.1  Execution phases in a generic MapReduce application
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sharing most of the design principles of MapReduce is Sector/Sphere [9], which has 
been designed to support distributed data storage and processing over large Cloud 
systems. Sector is a high-performance distributed file system, and Sphere is a paral-
lel data processing engine used to process Sector data files. In [10], a distributed data 
mining application developed using such system has been described.

Several applications of the MapReduce paradigm have been demonstrated. In [11], 
some examples of interesting applications that can be expressed as MapReduce com-
putations, including: performing a distributed grep, counting URL access frequency, 
building a reverse Web-link graph, building a term-vector per host, and building 
inverted indices, performing a distributed sort. In [3], many significant types of appli-
cations that have been (or are being) implemented by exploiting the MapReduce 
model, including machine learning and data mining, log file analysis, financial analy-
sis, scientific simulation, image retrieval and processing, blog crawling, machine 
translation, language modeling, and bioinformatics have been mentioned.

7.3 � P2P-MapReduce

The objective of the P2P-MapReduce framework is twofold: (i) handling master 
failures by dynamically replicating the job state on a set of backup masters; 
(ii) supporting MapReduce applications over dynamic networks composed by 
nodes that join and leave the system at unpredictable rates.

To achieve these goals, P2P-MapReduce exploits the P2P paradigm by defining 
an architecture in which each node can act either as a master or slave. The role 
assigned to a given node depends on the current characteristics of that node, and 
hence, it can change dynamically over time. Thus, at each time, a limited set of 
nodes is assigned the master role, while the others are assigned the slave role.

Moreover, each master node can act as a backup node for other master nodes. 
A user node can submit the job to one of the master nodes, which will manage it as 
usual in MapReduce. That master will dynamically replicate the entire job state 
(i.e., the assignments of tasks to nodes, the locations of intermediate results, etc.) 
on its backup nodes. In case those backup nodes detect the failure of the master, 
they will elect a new master among them that will manage the job computation 
using its local replica of the job state.

The remainder of this section describes the architecture of the P2P-MapReduce frame-
work, its current implementation, and a preliminary evaluation of its performance.

7.3.1 � Architecture

The P2P-MapReduce architecture includes three basic roles, shown in Fig. 7.2: user 
(U), master (M), and slave (S). Master nodes and slave nodes form two logical P2P 
networks called M-net and S-net, respectively. As mentioned earlier, computing 
nodes are dynamically assigned the master or slave role, and hence, M-net and 



1177  A Peer-to-Peer Framework for Supporting MapReduce Applications in Dynamic Cloud

S-Net change their composition over time. The mechanisms used for maintaining 
this infrastructure are discussed in Section 3.2.

In the following, we describe, through an example, how a master failure is 
handled in the P2P-MapReduce architecture. We assume the initial configuration 
represented in Fig. 7.2, where U is the user node that submits a MapReduce job, 
nodes M are the masters, and nodes S are the slaves.

The following steps are performed to submit the job and recover from a master 
failure (see Fig. 7.3):

1.	 U queries M-net to get the list of the available masters, each one characterized by 
a workload index that measures how busy the node is. U orders the list by ascend-
ing values of workload index and takes the first element as a primary master. In 
this example, the chosen primary master is M

1
; thus, U submits the MapReduce 

job to M
1
.

2.	 M
1
 chooses k masters for the backup role. In this example, assuming that k=2, M

1
 

chooses M
2
 and M

3
 for this role. Thus, M

1
 notifies M

2
 and M

3
 that they will act as 

backup nodes for the current job (in Fig. 7.3, the apex “B” to nodes M
2
 and M

3
 

indicates the backup function). This implies that whenever the job state changes, 
M

1
 backs up it on M

2
 and M

3
, which in turn will periodically check whether M

1
 

is alive.
3.	 M

1
 queries S-net to get the list of the available slaves, choosing (part of) them to 

execute a map or a reduce task. As for the masters, the choice of the slave nodes 
to use is done on the basis of a workload index. In this example, nodes S

1
, S

3
, and 

S
4
 are selected as slaves. The tasks are started on the slave nodes and managed as 

usual in MapReduce.
4.	 The primary master M

1
 fails. Backup masters M

2
 and M

3
 detect the failure of M

1
 

and start a distributed procedure to elect a new primary master among them.
5.	 The new primary master (M

3
) is elected by choosing the backup node with the 

lowest workload index. M
2
 continues to play the backup function, and to keep k 

backup masters active, another backup node (M
4
, in this example) is chosen by 

M
3
. Then, M

3
 proceeds to manage the MapReduce job using its local replica of 

the job state.
6.	 As soon as the MapReduce job is completed, M

3
 returns the result to U.

Fig. 7.2  Basic architecture of a P2P-MapReduce network
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It is worth noticing that the master failure and the subsequent recovery procedure 
are transparent to the user. It should also be noted that a master node may simulta-
neously play the role of primary master for one job and that of backup master for 
another job.

7.3.2 � Implementation

We implemented a prototype of the P2P-MapReduce framework using the JXTA 
framework [12]. JXTA provides a set of XML-based protocols that allow computers 
and other devices to communicate and collaborate in a P2P fashion. Each peer 
provides a set of services made available to other peers in the network. Services 
are any type of programs that can be networked by a single or a group of peers.

In JXTA, there are two main types of peers: rendezvous and edge. The rendez-
vous peers act as routers in a network, forwarding the discovery requests submitted 

1) 2)

3) 4)

5) 6)

Fig. 7.3  Steps performed to submit a job and to recover from a master failure
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by edge peers to locate the resources of interest. Peers sharing a common set of 
interests are organized into a peer group. To send messages to each other, JXTA 
peers use asynchronous communication mechanisms called pipes. Pipes can be 
either point-to-point or multicast, so as to support a wide range of communication 
schemes. All resources (peers, services, etc.) are described by advertisements that 
are published within the peer group for resource-discovery purposes.

In the following, we briefly describe how the JXTA components are used in the 
P2P-MapReduce system to implement basic mechanisms for resource discovery, 
network maintenance, job submission, and failure recovery. Then, we describe the 
state diagram that steers the behavior of a generic node and the software modules 
provided by each node in a P2P-MapReduce network.

7.3.2.1 � Basic Mechanisms

�Resource Discovery

All master and slave nodes in the P2P-MapReduce system belong to a single JXTA 
peer group called MapReduceGroup. Most of these nodes are edge peers, but some 
of them also act as rendezvous peers, in a way that is transparent to the users. Each 
node exposes its features by publishing an advertisement containing basic informa-
tion, such as its Role and WorkloadIndex.

An edge peer publishes its advertisement in a local cache and sends some keys 
identifying that advertisement to a rendezvous peer. The rendezvous peer uses those 
keys to index the advertisement in a distributed hash table called Shared Resource 
Distributed Index (SRDI), managed by all the rendezvous peers of MapReduceGroup. 
Queries for a given type of resource (e.g., master nodes) are submitted to the JXTA 
Discovery Services that uses SRDI to locate all the resources of that type without 
flooding the entire network.

Note that M-net and S-net, represented in Fig. 7.2, are “logical” networks in the 
sense that queries to M-net (or S-net) are actually submitted to the whole 
MapReduceGroup, but restricted to nodes having the attribute Role set to 
“Master” (or “Slave”) using the SRDI mechanisms.

�Network Maintenance

Network maintenance is carried out cooperatively by all nodes on the basis of their 
role. The maintenance task of each slave node is to periodically check the existence 
of at least one master in the network. In case no masters are found, the slave promotes 
itself to the master role. In this way, the first node joining the network always assumes 
the master role. The same happens to the last node remaining into the network.

The maintenance task of master nodes is to ensure the existence of a given per-
centage p of masters on the total number of nodes. This task is performed periodically 
by one master only (referred to as coordinator), which is elected for this purpose among 
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all the masters using a variation of the “bully” election algorithm. The coordinator has 
the power of changing slaves into masters, and vice versa. During a maintenance 
operation, the coordinator queries all nodes and orders them by ascending values of 
workload index: the first p percent of nodes must assume (or maintain) the master 
role, while the others will become or remain slaves. Nodes that have to change their 
role are notified by the coordinator in order to update their status.

Job Submission and Failure Recovery

To describe the JXTA mechanisms used for job submission and master-failure 
recovery, we take the six-point example presented in Section 3.1 as reference:

1.	 The user node invokes the Discovery Service to obtain the advertisements of the 
master nodes published in MapReduceGroup. Based on the WorkloadIndex, 
it chooses the primary master for its job. Then, it opens a bidirectional pipe 
(called PrimaryPipe) to the primary master and submits the job configuration.

2.	 The primary master invokes the Discovery Service to choose its backup masters and 
opens a multicast pipe (BackupPipe) to the backup masters. The BackupPipe has two 
goals: replicating job state information to the backup nodes and allowing backup nodes 
to detect a primary master failure in case the BackupPipe connection times out.

3.	 The primary master invokes the Discovery Service to select the slave nodes to be 
used for the job. Slave nodes are filtered on the basis of WorkloadIndex attri-
bute. The primary master opens a bidirectional pipe (SlavePipe) to each slave 
and starts a map or a reduce task on it.

4.	 The backup masters detect a primary master failure (i.e., a timeout on the 
BackupPipe connection) and start a procedure to elect the new primary master 
(to this end, they connect each other with a temporary pipe and exchange infor-
mation about their current WorkloadIndex).

5.	 The backup master with the lowest WorkloadIndex is elected as the new 
primary master. This new primary master binds the pipes previously associated 
with the old primary master (PrimaryPipe, BackupPipe and SlavePipes), 
chooses (and connect to) a substitute backup master, and then continues to manage 
the MapReduce job using its replica of the job state.

6.	 The primary master returns the result of the MapReduce job to the user node 
through the PrimaryPipe.

The primary master detects the failure of a slave by getting a timeout to the associated 
SlavePipe connection. If this event occurs, a new slave is selected and the failed map 
or reduce task is assigned to it.

7.3.2.2 � State Diagram and Software Modules

The behavior of a generic node is modeled as a state diagram that defines the dif-
ferent states that a node can assume, and all the events that determine the transitions 
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from one state to another one. Figure 7.4 shows such a state diagram modeled using 
the UML State Diagram formalism.

The state diagram includes two macro-states, SLAVE and MASTER, which 
describes the two roles that can be assumed by each node. The SLAVE state has 
three states, IDLE, CHECK_MASTER_EXISTENCE, and ACTIVE, which repre-
sent a slave waiting for task assignment, a slave checking the existence of a master, 
and a slave executing a given task, respectively.

The MASTER state is modeled with three parallel macro-states, which represent 
the different roles that a master can perform concurrently: possibly acting as a pri-
mary master for one or more jobs (MANAGEMENT), possibly acting as a backup 
master for one or more jobs (RECOVERY), and coordinating the network for main-
tenance purposes (COORDINATION).

The MANAGEMENT macro-state contains two states: NOT_PRIMARY, which 
represents a master node currently not acting as a primary master for any job, and 
PRIMARY, which in contrast, represents a master node currently managing at least 
one job as a primary master.

Similarly, the RECOVERY macro-state includes two states: NOT_BACKUP (the 
node is not managing any job as a backup master) and BACKUP (at least one job is 
currently being backed up on this node).

The COORDINATION macro-state includes four states: NOT_COORDINATOR 
(the node is not acting as coordinator), COORDINATOR (the node is acting as coor-
dinator), WAITING_COORDINATOR, and ELECTING_COORDINATOR for 

Fig. 7.4  UML state diagram describing the behavior of a generic node in the P2P-MapReduce 
framework
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nodes currently participating in the election of the new coordinator, as mentioned 
in Section 3.2.1.

The combination of the concurrent states [NOT_PRIMARY, NOT_BACKUP, 
NOT_COORDINATOR] represents the abstract state MASTER.IDLE. The transi-
tion from master to slave role is allowed only to masters in the MASTER.IDLE 
state that receive a becomeSlave message from the coordinator. Similarly, the tran-
sition from slave to master role is allowed to slaves that receive a becomeMaster 
and are not in ACTIVE state.

Finally, we briefly describe the software modules inside each node and how 
those modules interact with each other in a P2P-MapReduce network. Figure 7.5 
shows such modules and interactions using the UML Deployment/Component 
Diagram formalism.

Each node includes three software modules/layers: Network, Node, and 
MapReduce. The Network module is in charge of the interactions with the other 
nodes and the JXTA Discovery Service. The Node module controls the lifecycle of 

Fig. 7.5  UML deployment/component diagram describing the software modules inside each node 
and the interactions among nodes
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the node in its various aspects, including network maintenance, job management, 
and so on; its core is represented by the FSM component that implements the logic 
of the finite state machine described in Fig. 7.4. The MapReduce module manages 
the local execution of jobs (when the node is acting as a master) or tasks (when the 
node is acting as a slave).

7.3.3 � Evaluation

We carried out a preliminary set of experiments to evaluate the behavior of the 
P2P-MapReduce framework when compared with a centralized implementation of 
MapReduce, in the presence of dynamic-nodes participation. The experimental 
results demonstrate that by using a P2P approach, it is possible to extend the 
MapReduce architectural model making it suitable for highly dynamic Cloud 
environments where failure must be managed to avoid a critical loss of computing 
resources and time.

The evaluation has been carried out by implementing a simulator of the system 
in which each node is represented by an independent thread. Each thread executes 
the algorithms specified by the state diagram in Fig. 7.4, and communicates with 
the other threads by invoking local routines having the same interface of the JXTA 
pipes. Our simulation analyzes the system in steady state, that is, when M-net and 
S-net are formed and the desired ratio between the number of masters and slaves is 
reached.

The network includes 1,000 nodes. To simulate dynamic-nodes participation, a 
joining rate R

J
 and a leaving rate R

L
 are defined. On average, for every 1/R

J
 s, one 

node joins the network, while for every 1/R
L,
 another node abruptly leaves the net-

work so as to simulate an event of failure (or a disconnection). In our simulation, 
R

J
 = R

L
 in order to keep the total number of nodes and the master/slave ratio 

approximately constant during the whole simulation. In particular, we considered 
the following values for R

J
 and R

L
: 0.05, 0.1, and 0.2, which correspond to the join/

failure of one node (out of 1,000 nodes)–every 20, 10, and 5 s, respectively.
For every 120 s (mean value), a user entity submits one job to the system. The 

average sequential duration of a job is 20 h that are distributed, on an average, to 
100 nodes. On the basis of the actual number of slaves, the system determines the 
amount of time each slave will be busy to complete its task. Every node, other than 
managing a job or a task, executes the network-maintenance operations described 
earlier (election of the coordinator, choice of backup masters, etc.).

The main task performed by the simulator is evaluating the number of jobs failed 
versus the total number of jobs submitted to the system. For the purpose of our 
simulations, a “failed” job is a job that does not complete its execution, that is, it 
does not return a result to the submitting user. The failure of a job is always caused 
by an unmanaged failure of the master responsible for that job. The failure of a 
slave, on the contrary, never causes a failure of the whole job because its task is 
re-assigned to another slave.
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The system has been evaluated in two scenarios: (i) centralized, where there is 
only one primary master and there are no backup masters; (ii) P2P, where there are 
ten masters and each job is managed by one master that periodically replicates the 
job state on one backup master. Figure 7.6 presents the percentage of completed 
jobs in centralized and P2P scenarios after the submission of 100 jobs.

As expected, in the centralized scenario the number of failed jobs increases as 
the leaving rate increases. In contrast, the P2P-MapReduce scenario is able to com-
plete all the jobs for all the considered leaving rates, even if we used just one 
backup per job. It is worth noticing that when a backup master becomes primary 
master as a consequence of a failure, it chooses another backup in its place to main-
tain the desired level of reliability.

The percentages given in Fig.  7.6 can be translated into lost CPU hours, by 
multiplying the average job duration to the average number of failed jobs. In the 
centralized scenario, the absolute number of failed jobs is 4, 15, and 22 for leaving 
rates of 0.05, 0.1, and 0.2, respectively. Hence, with an average sequential duration 
of 20 h per job, the total number of lost computing hours equals, in the worst case, 
80, 300, and 440 h.

We can further estimate the amount of resources involved in a typical MapReduce 
job by taking the statistics about a large set of MapReduce jobs run at Google, 
presented in [1]. In March 2006, the average completion time per job was 874 s, using 
268 slaves on average. By assuming that each machine is fully assigned to one 
job, the overall machine time is 874 × 268 s (about 65 h). In September 2007, the 
average job completion time was 395 s using 394 machines, with an overall 
machine time of 43 h.

Fig. 7.6  Percentage of completed jobs in centralized and P2P scenarios for a leaving rate ranging 
from 0.05 to 0.2
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From the statistics reported earlier, and from the results generated by our experiments, 
we see that a master failure causes loss of dozens of CPU hours for a typical 
MapReduce job. Moreover, when the number of available machines per user is limited 
(as in a typical Cloud systems where resources are shared among thousands of users), 
a master failure also produces a significant loss of time because the job completion 
time increases as the number of machines decreases.

7.4 � Conclusions

Providing effective mechanisms to manage master failures, job recovery, and participa-
tion of intermittent nodes is fundamental to exploit the MapReduce model in the imple-
mentation of data-intensive applications in dynamic Cloud environments or Cloud of 
clouds scenarios where current MapReduce implementations could be unreliable.

The P2P-MapReduce model presented in this chapter exploits a P2P model to 
perform job state replication, manage master failures, and allow participation of 
intermittent nodes in a decentralized but effective way. Using a P2P approach, we 
extended the MapReduce architectural model, making it suitable for highly 
dynamic environments where failure must be managed to avoid a critical loss of 
computing resources and time.
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Abstract  We introduce the concept of network resource visibility and performance 
awareness in the cloud control logic, aiming at optimizing the transport layer activi-
ties within the cloud, and thus coping with the scalability problems experienced in 
traditional Internet-based clouds by large-scale data processing applications. With 
the aid of new dynamic “network on demand” facilities complementing the existing 
cloud services portfolio, we can gain some form of control on the underlying transport 
layer, bypassing the actual locality constraints in resource allocation and allowing 
the flexible orchestration of resources available in different sites and belonging to 
different administrative domains.

8.1 � Introduction

Sharing of computer and storage resources has become a popular solution for a 
number of key enterprise applications, including resolving complicated simulation 
tasks, distributing high workloads between several sites, and dispersing critical 
data and/or information technology assets among several locations to minimize the 
risk of catastrophic failures. During times of limited budgets, resource sharing has 
also become a popular means to reduce cost. Traditionally, this approach was 
limited to data center infrastructures, but the latest trends such as virtualization 
and broadband interconnects have pushed resource-sharing concepts even further. 
The emerging cloud-computing paradigm allows us to locate computing and 
storage resources anywhere in the world. No longer does the computer (whether it 
is a PC or supercomputer) have to be co-located with its users or funding institution. 
More precisely, cloud computing is referred to as an information service that is 
available to an end-user out of a “transparent” cloud, whereby the cloud is an 
abstract model for the end-user, which has no specific physical location. The cloud 
is generally a conglomerate of interconnected, redundant data centers built to provide 
certain services. Originally starting with Internet-related services such as search 
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engines, more traditional services, applications, and tasks that used to reside on an 
end-user’s terminal or computer get transferred to the cloud. The only requirement 
to gain access to them is a broadband connection. With the available high band-
width optical networks, it is now possible to locate the available resources on the 
cloud within properly equipped sites in remote locations throughout the world. A 
move towards clouds signals a fundamental shift in how we handle information. At 
the most basic level, it is the computing equivalent of the evolution in electricity a 
century ago when farms and businesses shut down their own generators and bought 
power instead from efficient industrial utilities. Unfortunately, the best-effort deliv-
ery system of the Internet, often used as the underlying transport network for most 
of the existing cloud infrastructures, imposes severe constraints on the transfer of 
massive amounts of data, and thus restricts the deployment of the above-men-
tioned applications on wide-area scales. Besides the lack of bandwidth, the inability 
to provide dedicated links makes the current network technology not well suited for 
performance-critical Grid computing. A solution is needed for providing dedicated 
end-to-end connections, dynamically allocable on-demand or by scheduled reserva-
tion, to critical data-intensive applications. Accordingly, in this chapter, we intro-
duce the concept of network resource visibility and network performance awareness 
into the cloud control logic for coping with the severe scalability limits (with 
respect to the more demanding data-intensive application) of cloud infrastructures 
operating in a network-oblivious fashion. We present the benefits of such an 
extended cloud by proposing a new service and resource management model, 
where each service is associated with specific performance requirements to be 
enforced by considering both the needed runtime resources available and the end-
to-end communication features of the connections between them. We focus our 
efforts on the transport facilities located at the “lowest” layer of the cloud systems, 
because here we can provide a solid foundation on top of which language-, service-, 
and application-level cloud-computing systems can be explored and developed. By 
introducing some form of control of the underlying transport layer, we bypass the 
usual locality constraint in computation and storage resource allocation needed to 
ensure acceptable performances within the cloud runtime system, allowing the flex-
ible orchestration of resources available in different sites and belonging to different 
administrative domains. Also, by adopting proven circuit switched network 
concepts with modern wavelength-routed networks as an improved hybrid transport 
facility within clouds, we address the “missing link” in the cloud networking “big 
picture”, i.e. the concept of dynamic “network on demand” services complementing 
the existing cloud resource-sharing and computing-services portfolio.

8.2 � The Cloud Evolution

The upcoming evolution of cloud computing is a major change in our computing 
technology. One of the most important parts of that evolution is the advent of the first 
production platforms based on the cloud paradigm. Such platforms promise real 
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gains in terms of performance scalability and agility to their users. By leveraging 
cloud computing, an organization can rapidly deploy applications where the under-
lying technological components can expand and contract with the natural ebb and 
flow of the involved business lifecycle. Traditionally, once an application was 
deployed, it was bound to a particular infrastructure until the infrastructure was 
upgraded/improved. The result was low efficiency, poor utilization, and limited 
flexibility. Cloud enablers such as virtualization and grid computing allow applica-
tions to be dynamically deployed onto the most suitable infrastructure at runtime. 
Cloud computing takes these concepts further, by allowing more automated resource 
and workload management practices. This elastic aspect of cloud computing allows 
applications to scale and grow without needing traditional “fork-lift” upgrades. Like 
any new paradigm, Cloud computing represents an architectural shift from the tradi-
tional distributed computing approaches. Such a shift is best described by the addition 
of a new and as transparent as possible middleware layer on top of the existing com-
puter and device operating systems that we can call a Cloud Operating System 
(COS). It can be considered as a network operating system running atop a cloud, i.e. 
a hyper network of computers. As its name suggests, this kind of runtime platform 
lets users write applications that run in the cloud, or to use services provided from 
the cloud, or both. But the transformation that cloud computing makes possible goes 
beyond simply running applications on a virtualized platform built on someone 
else’s hardware. It extends the computing model with the transparent utilization of a 
platform that the provider has created, and which, to some degree, abstracts the 
essence of scalability and distributed processing. More generally, the concept of 
cloud computing can incorporate various computer technologies including web 
infrastructure, Web 2.0, and many other emerging technologies. People may have 
different perspectives from different views. For example, from the view of the end-user, 
the cloud-computing service moves the application software and operation system 
from desktops to the cloud side, which enables users to plug-in anytime from any-
where and utilize large-scale storage and computing resources. On the other hand, 
the cloud-computing service provider may focus on how to distribute and schedule 
the computer resources. Nevertheless, storage and computing on massive data are 
the key issues for a cloud infrastructure.

8.3 � Improved Network Support for Cloud Computing

The promise of cloud computing is ubiquitous access to a broad set of applications 
and services, which are delivered over the network to multiple customers. Such 
services are essentially offered through interfaces available within the “clouds,” 
rather than spread over the single computers connected through the Internet. On the 
other hand, such cloud infrastructures, because of their high degree of abstraction, 
have the potential to introduce unpredictable performance behaviours. In fact, while 
sharing the resources available on a large distributed infrastructure can average out 
the variability of individual workloads, it is extremely difficult to predict the exact 
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performance characteristics of your application at any particular time. Like in any 
shared infrastructure, varying individual workloads, resource demands, of and net-
work load conditions, can result in unpredictable performance behaviour of the 
combined applications. Furthermore, as cloud computing enables users and appli-
cations to store all their data on the network, handling and moving large volumes 
of data within the cloud or between the users and the cloud may become a challeng-
ing issue. Consequently, cloud-service providers must guarantee that data are pro-
cessed automatically and transferred transparently when and where they are needed. 
Also important to the notion of cloud is the automation of these tasks. An environ-
ment in which the system requires human intervention to allocate bandwidth on 
communication links or resources to processes is not a cloud: it is simply a data 
center. Integrating an accurate network view into the cloud management in order to 
support these types of services would make the cloud more flexible and also 
increase the efficient use of the available resources and communication infrastruc-
ture. The underlying network architecture building the foundation for cloud com-
puting consists of interconnected server farms within the data centers and a 
high-speed transport network providing connectivity to remote and backup sites. 
These high-speed connections form the backbone of the cloud network and are 
required to run at highest bandwidth with lowest transmission latency, and in gen-
eral, according to a properly defined QoS degree. Cloud-computing resources can 
be made accessible through the public Internet, private high-performance networks, 
and often through a hybrid mixing of the two. Providers and users of cloud services 
must understand the performance, redundancy, and cost associated with all the 
available options, because not all the applications that have to be run on the cloud 
have the same features: some will only require the basic capabilities available on 
the public Internet or traditional public connection services, while others may 
require the enforcing of specific network performance constraints.

8.3.1 � Why the Internet is Not Enough?

The public Internet is the simplest choice for delivering cloud-based services. In this 
model, the cloud provider simply purchases Internet connectivity and its customers 
access the services via their own Internet connections. However, modern high-
performance applications are raising communication and bounded-time execution 
requirements that the public Internet cannot meet neither at the present nor even in 
the foreseeable future. In fact, the traditional Internet-shared network paradigm is 
based on the best-effort packet-forwarding service that is a proven efficient technol-
ogy for transporting burst transmission of short data packets, e.g., for remote login, 
consumer-oriented email, and web applications. Unfortunately, this is not enough to 
meet the challenge of the large-scale data transfer and connectivity requirement of the 
modern cloud-based collaborations. More precisely, the traditional packet-forwarding 
paradigm, based on statistical multiplexing, is not scalable in its ability to rapidly 
move very large data quantities. Making forwarding decisions every 1,500 bytes is 
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sufficient for emails or 10–100 KB web pages. This is not the optimal mechanism if 
we have to cope with data size of six to nine orders larger in magnitude. For example, 
copying 1.5 TB of data using packet switching requires making the same forwarding 
decision about one billion times, over many routers along the path. Internet-based 
cloud infrastructures lack the scalability features required by modern data-transfer-
intensive applications in several aspects: network resources cannot be reserved in 
advance, bandwidth is too low, QoS is not guaranteed, and hence, neither application 
success nor a bounded completion time can be ensured to the users. Particularly, 
reservation of connectivity resources is needed to facilitate the transportation of enor-
mous datasets between distant sites within the cloud in predictable times. Clearly, this 
cannot be easily achieved in traditional packet-switched networks, where the resource 
needs are usually not known and hence cannot be planned in advance.

8.3.2 � Transparent Optical Networks for Cloud  
Applications: The Dedicated Bandwidth Paradigm

Creating a dedicated circuit over several available high-speed links will be a much 
more effective multiplexing technique for large data transfers. Consequently, there 
is the need to develop new architectures and services that support cloud infrastruc-
tures in association with emerging networks technologies, having the potential to 
always provide in advance the available large bandwidth pipes with a capacity of 
several orders of magnitude beyond that of today’s communication infrastructures. 
Only a modern optical transport network provides the capacity and bandwidth 
needed to support these demanding cloud-computing applications. Accordingly, in 
order to achieve connectivity resources in terms of bandwidth and quality of service 
(QoS) when and where the applications need, it is necessary to perform advanced 
provisioning of end-to-end dedicated optical “virtual circuits” through the network, 
implemented on properly reserved wavelengths on the available Wavelength 
Division Multiplexing (WDM)-based optical transport infrastructures. In detail, 
according to the WDM paradigm, the optical transmission spectrum can be carved 
up into a number of non-overlapping wavelength bands, each supporting a single 
communication channel operating at whatever protocol or rate one desires (protocol 
and bit-rate transparency). Thus, by allowing multiple independent channels to 
coexist on a single fiber, we can make the most of the available optical infrastruc-
tures, with the corresponding challenges being the design and development of 
appropriate network architectures, control-plane protocols, and algorithms that 
make these connectivity resources available to cloud applications. As such network 
control plane provides an advance reservation capability to the circuit, the 
data-intensive applications can be guaranteed to achieve certain bandwidth and 
QoS in specific time slots. This can be considered the most promising mechanism 
to meet all the future data transfer demands from applications running on the cloud 
through the provisioning of huge amounts of cheap bandwidth through dedicated 
end-to-end connections fulfilling the proper QoS requirements.
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8.4 � Architecture and Implementation Details

The solution to all the above-mentioned issues will result in a flexible and evolu-
tionary architecture that supports cooperation between different entities (computing 
systems/clusters, storage, scientific instruments, etc.) within the cloud, based on a 
scalable framework for dynamic and transparent configuration and interconnection 
of multiple types of resources for high-performance cloud-computing services over 
globally distributed optical network systems. To achieve this, we have to abstract 
and encapsulate the available network resources into manageable and dynamically 
provisioned entities within the cloud in order to meet the complex demand patterns 
of the applications and to optimize the overall network utilization. More precisely, 
we need to conceive a new cloud architecture considering the network resources as 
key resources that can be managed and controlled like any other resource by the 
cloud middleware/distributed operating system services. In such architecture, the 
cloud system is modeled by using a three-layer hierarchical schema:

The •	 infrastructure layer, providing a virtualized interface to hardware resources, 
such as CPU, memory, connectivity/bandwidth, and storage, and aggregating 
and allocating them on a totally distributed basis
The •	 platform layer including the components that implement the cloud basic 
services and runtime environment, such as the cloud operating system kernel, a 
distributed file system (DFS), cloud input/output (I/O) facilities, computing and 
virtualization engine, network management, and interface modules
The •	 application layer hosting domain-specific application and realizing the 
cloud service abstraction through specific interfaces

The interfaces provided at the infrastructure layer make the platform layer almost 
totally independent from the underlying hardware resources, and thus ensure high 
scalability and flexibility benefits to the whole cloud architecture. Accordingly, the 
infrastructure layer can be implemented by using a public service such as Amazon 
EC2/S3 [1,2] or another private-owned infrastructure or solution such as a comput-
ing cluster or a grid.

Analogous to the operating system that manages the complexity of an individual 
machine, the COS handles the complexity at the platform layer and aggregates the 
resources available in all the data centers participating in the cloud. In particular, it 
runs applications on a highly unified, reliable, and efficient virtual infrastructure 
made up of distributed components, automatically managing them to support 
pre-defined service-level agreements (SLAs) in terms of availability, security, and 
performance assurance for the applications. It also dynamically moves the applica-
tions with the same service-level expectations across on-premise or off-premise 
sites within the clouds for the sake of highest operational efficiency.

A DFS platform provides a consistent view of the data seen by all the clients 
named in a hierarchical name space among multiple naming/directory servers, and 
ensures their distribution across the cloud to handle heavy loads and reliability in 
case of failures.
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The I/O subsystem provides data-exchange services in the same infrastructure 
or among different clouds by using several protocols and facilities. Such services 
are implemented within the network control logic that has the role of collective 
broker for network connectivity requirements, keeps track of the resources and 
interfaces available on the cloud, and copes with all the necessary network opera-
tions by hiding the complexity of the resource-specific allocation tasks. These 
functions are implemented in the cloud middleware platform by relying on infor-
mation models responsible for capturing structures and relationships of the 
involved entities. To cope with the heterogeneity of the network infrastructure 
resources, we propose a new technology-independent network resource abstrac-
tion: the Traffic Engineered end-to-end virtual circuit that can be used for virtual-
connection transport. Such virtual circuit mimics a direct point-to-point connection 
or pipe with specific bandwidth and QoS features. The network control logic 
handles each connectivity request; it then coordinates the setting up of the needed 
tunnels between the nodes on the cloud hosting the requesting applications. 
This schema guarantees access to dedicated circuits, which may be requested 
on-demand or by advance reservation to deliver more reliable and predictable 
network performance.

Finally, the user interface supports administrators and clients to monitor and 
manage the cloud platform and the applications running on it through specific user-
friendly interfaces. It includes configuration, accounting, performance, and secu-
rity-management facilities. In this domain, many open-source technologies can be 
considered. The web services technology is a good candidate to play a role in building 
such user interface, which makes the cloud easily accessible through the network 
by delivering desktop-like experience to the users (Fig. 8.1).

Fig. 8.1  The cloud-reference architecture
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8.4.1 � Traffic Management and Control Plane Facilities

In our proposed architectural framework, an application program running on a cloud 
has the view of a virtualized communication infrastructure unifying all the needed 
computational and storage resources into a common “virtual site” or “virtual net-
work” abstraction, and should be able to dynamically request some specific service 
levels (bandwidth/QoS, protection, etc.) on it. The fulfilment of the above-mentioned 
requests triggers the on-demand construction of one or more dedicated point-to-point 
or multipoint “virtual” circuits or pseudo-wires between the cloud sites hosting the 
application’s runtime resources, and is accomplished co-operatively by the network 
devices on the end-to-end paths between these sites. The above-mentioned circuits 
can either be dedicated layer-2 channels, realizing the abstractions of a transport 
network behaving as a single virtual switching device, or traffic engineered paths 
with guaranteed bandwidth, delay, etc. All the involved network resources have to 
be defined in advance at the “virtual network” configuration time. Control-plane 
protocols define the procedures for handling such traffic engineering operations, 
i.e., immediate requests for connectivity at a guaranteed rate. The transparency and 
adaptability features of cloud infrastructures make support for these operations 
absolutely necessary in a suitable transport network, which may be a mesh of pri-
vate or public shared networks, owned and managed by some co-operating service 
providers and/or enterprises. The underlying network must be as transparent as 
possible with respect to the cloud infrastructure, so that all the necessary network 
operations are almost totally hidden to the applications and/or Virtual Machines 
running on it. Traffic management in our model should work on a pure “peer-
based” model based on MPLS/GMPLS [3,4] technology that introduces a circuit-
switching paradigm on top of the basic IP packet-switching framework. We 
consider a network built on label switching routers (LSR), optical wavelength 
switches, and communication links that may be under the administrative control of 
several cooperating NSP, realizing a common transport infrastructure. The optical 
devices implement an intelligent all-optical core where packets are routed through 
the network without leaving the optical domain. The optical network and the sur-
rounding IP networks are independent of each other, and an edge LSR interacts 
with its connected switching nodes only over a well-defined User-Network 
Interface (UNI). A subset of the routers are known to be ingress and egress points 
for the network traffic within the cloud and these are typically the customer edge 
(CE) devices directly attached to the NSP’s point-of-presence locations or Provider 
Edge (PE) devices. There are no requirements for CE devices in order to map 
the logical connections to the remote sites – they have to be configured as if they 
were connected to a single bridged network or local area network. Also, the NSP 
edge nodes and the optical switches within the core do not have any information 
related to the cloud, and only transfer the tagged packets or cross-connect optical 
ports/wavelengths from one LSR to another in a transparent way. The key idea in 
such architecture is to realize a strict separation between the network control and 
forwarding planes. The space of all possible forwarding options in a network 
domain is partitioned into “Forwarding Equivalence Classes” (FECs). The packets 



1358  Enhanced Network Support for Scalable Computing Clouds

are labelled at the ingress depending on the FEC they belong to. Here, the FEC 
concept clearly resembles that of a point-to-point or multipoint dedicated logical 
connection or virtual circuit. Each of the intermediate nodes uses the label (or the 
incoming transport wavelength in the optical core) of each incoming packet to 
determine its next hop. Labels can be pushed, swapped, and popped by the LSRs 
and a specific label distribution protocol (such as LDP [5] or RSVP [6]) is used for 
label information exchange between all the nodes. All the network intelligence is 
located in the edge nodes, where the virtual connection originates and terminates, 
and where all the necessary tunnels are set up to connect to all the other NSP nodes. 
The main advantage of such a circuit-switching paradigm is that it enables perfor-
mance isolation between traffic streams that belong to different virtual connections – 
something that packet switching alone cannot guarantee. By performance isolation, 
we mean that we can prevent the performance of a virtual connection from being 
affected by a traffic stream belonging to another one. All the above-mentioned 
facilities need pre-determined “conduits” or label switched paths (LSPs) to be 
established to specific destinations. Traffic is steadily mapped onto them according 
to the dynamic needs of the involved users and their capabilities. More precisely, 
LSPs can be characterized by optional properties, such as the amount of bandwidth, 
type of packet treatment, or class of service. The former parameter is used at a set-
up time in a traffic engineering capable network to select LSP routes with an 
amount of available bandwidth sufficient to satisfy the LSP request. This attribute 
can also be used for subsequent LSP route optimizations. On the other hand, the 
class of service can be used to identify the MPLS packets that belong to the same 
traffic aggregate and have to be forwarded according to the same behaviour. In this 
way, the LSP can be regarded as a Differentiated Service Path. The LSPs can thus 
be used to implement explicit virtual connections on the underlying transport net-
work, supporting precise reservations on a service-level basis and obeying traffic-
isolation constraints. Such virtual connections are long-lived ones, possibly lasting 
for several months at a stretch. At the network control plane level, for each virtual 
connection between two CE nodes, at least a couple of reserved LSPs must be set 
up through the underlying network to carry a service-guaranteed traffic stream from 
the ingress router to the egress one where the CE nodes are attached.

8.4.2 � Service Plane and Interfaces

In the proposed scenario, the network turns out to be a resource as important as 
computation and/or storage. As such, the cloud operating system requires the same 
level of control towards the subsets of well-defined amounts of network resources 
for the entire execution of a specific task. A chief goal of this control is to turn the 
network into a virtualized resource that can be acted upon and controlled by other 
layers of software, realizing a service plane available to applications and virtual 
machines. Such a service plane is typically concerned with dedicated end-to-end 
optical channel/circuit allocation, optimization, monitoring, and restoration across the 
network that becomes the fundamental architectural “glue” unifying all the distributed 
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resources into a “virtual site” and “virtual computing system” abstraction, so that 
they can be made available to the applications as if they were in the same Server 
Farm/data center and LAN. The service plane must be designed to be extensible 
from the ground up. It should allow adaptation of the above-mentioned control plane 
interfaces and abstract their network view, or element set, into its service portfolio. 
In other words, the network becomes a resource managed by the cloud as much as 
computation or storage, and the service virtualization is layered upon the available 
network control plane technology in the IP/optical environment.

8.4.2.1 � Providing Network Services to Cloud-Computing Infrastructures

When network connections are considered as resources to be managed and shared 
within the cloud framework, one needs to exactly specify what is meant by network 
resources, how to encapsulate them into the cloud-services paradigm, and how to man-
age these services. A specific cloud service is a self-contained, self-described application 
that can be published, located, and invoked over a network. By this definition, capacities 
offered by a network endpoint do not constitute a service offered by the cloud. Multiple 
endpoints must co-operate to establish a network service for the cloud. By comparison, 
other resources, such as storage capacity or processing capacity, can be offered by a 
node without co-operation with other nodes. For this reason, we believe that a different 
abstraction is required to model network resources as a cloud service.

8.4.2.2 � The Cloud Operating System–Network Interface

A natural choice for modeling this interface is the Web Service Resource Framework 
(WSRF) [7] aiming at providing specialized web services enhanced for cloud users 
and applications. Implementing each high-level system component as a stand-alone 
web service has the following benefits: first, each web service exposes a well-
defined language-agnostic API in the form of a WSDL document containing both 
operations that the service can perform and I/O data structures. Second, we can 
leverage the existing web-service features such as WS Security policies for secure 
communication between the components. The Interface’s WS service can advertise 
a single multiprotocol endpoint for authenticating and consuming user requests, 
while also translating the request to an internal protocol. Communication with the 
top-level service interface may take place via SOAP/http eventually secured by SSL 
and some authentication mechanisms, such as X509 or HMAC signatures. This can 
be achieved through the introduction and utilization of pluggable request-handling 
interfaces in the supporting web services stack software. All the offered web ser-
vice interfaces need to be stateless and persistent, where data is not retained among 
invocations and services outlive their clients. The internal services must be uncon-
cerned with the details of the outward-facing interfaces utilized by users while 
benefitting from enforcement of message-validation requirements. The network 
control logic must support these basic service functions within the cloud middleware 
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by relying on information models responsible for capturing structures and relation-
ships of the involved entities. Access to the optical transport network control plane 
may be realized through an optical user-network interface (O-UNI) standardized by 
the Optical Internetworking Forum (OIF) [8]. The optical network services can be 
made available to the upper middleware layers through an O-UNI compliant pro-
grammatic interface library interfacing the client-side middleware services with the 
underlying edge routers. Every interface function can be in turn mapped to a set of 
UNI primitives for network resource setting. Each network resource or node has to 
be described by a set of XML interface elements, and the main interface methods 
should allow the management and monitoring of the available LSPs and relative 
traffic and performance parameters. Thus, every connection created will be charac-
terized by the virtual channel or LSP (identified by the addresses engaged) that in 
turn is characterized by a set of attributes (service class, bandwidth available and 
utilized). In detail, the proposed abstractions, supporting the connectivity services, 
concern:

The creation of a virtual point–to-point or multipoint network that transparently •	
allows the connection between its endpoints with specific performance attributes 
(bandwidth, latency, and protection)
The deletion/release function that allows an existing virtual network to be •	
deleted and its resource released for further usage
The modification of a virtual point-to-point or multipoint network by adding or •	
removing some participants or changing its service-level requirements

8.5 � Proof of Concept Implementation 
and Performance Analysis

We proved the main concepts beyond the presented model and analyzed its perfor-
mance by using a very simple cloud prototype testbed, implemented on the existing 
Federico II University high-performance network and scientific computing infra-
structure. In particular, the infrastructure-layer services have been implemented on 
top of the distributed grid infrastructure that unifies all the main computing and 
storage resources belonging to the SCoPE (Italian acronym for high Performance, 
Cooperative and distributed System for scientific Elaboration) project. Such grid 
infrastructure is based on the gLite [9] middleware and spans several data centers 
geographically distributed in the Naples urban area. Its connectivity is supported by 
a metropolitan optical fiber network that offers high-performance communication 
facilities to all the involved research sites.

8.5.1 � The Prototype Details

The architecture of the cloud prototype matches the three-layer paradigm presented 
in the previous sections (see Fig. 8.2).
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The main technological choices underlying our prototype implementation are:

gLite at the infrastructure layer. Such solution realizes a resource-virtualization •	
facility based on the traditional gLite core and collective services, specifically 
conceived for e-science applications. gLite provides computing and storage 
facilities through a web services based interface by using the CREAM and SRM 
protocols, and implements data-movement services, resource brokering, work-
load management, and accounting. The gLite middleware can be integrated with 
other infrastructure management facilities, such as VM-based runtime environ-
ments (i.e. OpenNebula [10]) and map-and-reduce [11] services (i.e. Hadoop 
[12]). For our testbed, we extended the gLite middleware by introducing the 
support of some basic network control services and interfaces.
The platform layer is implemented by using the eyeOS [•	 13], a Cloud Operating 
System. EyeOS offers Web 2.0 like tools, available through a flexible and pow-
erful Web Desktop interface for the creation of new cloud applications, simply 
by using a meta-language based on PHP/AJAX. EyeOS manages user profiles 
and interacts with the underlying infrastructure layer.
Finally, the application interface has been implemented through a portlet con-•	
tainer that guarantees the seamless integration of different technologies and 
exposes the cloud prototype user interface, monitoring facilities, and Wiki 
pages. The product of choice is LifeRay, an open-source solution based on a 
Service Oriented Architecture (SOA) that supports Single Sign-On (SSO) for 
simplifying user authentication and authorization tasks.

The above-mentioned software stack guaranteed the abstraction and virtualization 
services needed at each layer of the cloud architecture, and offered simple and 
effective mechanisms for creating new applications and making them available to 
the final users throughout the cloud infrastructure.

8.5.1.1 � The Underlying Network Infrastructure

The physical transport infrastructure, on which our prototype is based (see Fig. 8.3), 
is approximately 50-km long, consists of 156 single-mode fibers connecting, in a 

Application

Platform

Infrastructure

Fig. 8.2  The prototype architecture
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multi-ring shape with multiple differentiated ways, four ring-to-ring interchange 
and service aggregation centers strategically placed on the metro area, which real-
izes the main transport and access distribution infrastructure. The backbone is built 
on a fully meshed core realized between four high-performance Cisco routers 
(a 12410 GSR and three 7606 OSRs), each acting as an access aggregation point 
(POP) in the metropolitan area. On the multi-ring backbone, we deployed an 
MPLS-based control plane architecture capable of establishing, managing, and 
tearing down bandwidth and QoS-guaranteed end-to-end connections.

8.5.1.2 � The Prototype Cloud Network Control Logic and its Services

The network control logic has been implemented within our prototype testbed, by 
integrating a set of Perl scripts realizing some simple interface services at the gLite 
middleware layer, with the eyeOS interface. Such simple kernel of network services 
interacts with other cloud services/applications at different levels of the cloud stack, 
and enables location-independent data transfer and replication, together with band-
width on demand and virtual-switch implementation through the user-interface 
facilities. The basic functions provided are reserving, releasing, and querying or 
modifying the status of end-to-end virtual circuits between different sites of the 
underlying distributed computing infrastructure. They have been made available 
through a web-service interface, in which every basic operation is characterized by 
a set of user-layer attributes (i.e. service class, bandwidth, and traffic-flow identi-
fier) that in turn is implemented at the control-plane layer by a couple of unidirec-
tional traffic-engineered LSP tunnels, together with some flow-specific routing 
policies. Every basic service function is in turn mapped to a set of Cisco CLI com-
mands for network resource configuration, submitted to the network elements 
within the MPLS core using the Net::Telnet::Cisco standard Perl interface. Each 
invocation of specific function triggers the execution of a Perl script using a dedicated 
CLI session for the duration of its execution. When triggering the creation of pseudo-
wire connections between the nodes, the requiring application needs to supply detailed 
information about all the physical nodes and ports involved to the network control 
logic. These data can be obtained on each node through the Cisco CDP protocol 
using a simple Perl interface agent (based on the Net::CDP standard class/module).  

Fig. 8.3  The prototype network
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The interaction with the network control logic is realized by a new set of cloud 
services created on top of eyeOS web-desktop. The authentication/authorization 
process is based on x509 proxy certificates with the Virtual Organization Membership 
Services (VOMS)-extension, in the gLite-style. A user with the proper privileges can 
ask for a virtual circuit operation through the eyeOS network interface.

8.5.2 � Performance Evaluation and Results Discussion

In this section, we present some simple performance evaluation experiences done on 
our Cloud prototype to show how an application working on large data volumes dis-
tributed in the different sites within the cloud can greatly benefit from the introduction 
of the above-mentioned network control facilities in the cloud stack, and to demon-
strate the effectiveness of the implemented architecture in providing QoS or band-
width guarantees. To better emphasize the above-mentioned benefits and improvements 
to application behaviour, we performed our tests under real-world extreme traffic load 
conditions, by working between the Monte S. Angelo Campus site, actually the largest 
data center in the SCoPE infrastructure, and the Medicine Campus site, currently 
hosting the other largest storage repository available to the university’s research com-
munity. More precisely, the presented results have been obtained by analyzing the 
throughput associated to the transfer of 1-GB datasets between two EMC2 Clarion 
CX-3 storage systems located in the above-mentioned sites.

Both the involved storage area networks are connected to their respective access 
switches through dedicated resource manager nodes equipped with 1 Gbps full-duplex 
Ethernet interfaces. Here, for simplicity sake, we considered several sample-transfer ses-
sions moving more than 2 TB of experimental data. During the first data transfer, per-
formed on the cloud without any kind of network resource reservation, the underlying 
routing protocol picks the best but most crowded route between the two sites (owing to 
the strong utilization of the involved links in peak hours) through the main branch of the 
metro ring, so that we were able transfer 500 GB of data in 4 h (average 30 s/file) with 
an average throughput of 33 MB/s (about 270 Mbit/s) and a peak rate of 86 MB/s. We 
also observed a standard deviation equal to 12.0 owing to the noise present on the link, 
as it can be appreciated from the strong oscillation illustrated in the picture in Fig. 8.4. 
During the second test, we created a virtual point-to-point network between the two 
storage sites by reserving a 1-Gbps bandwidth channel to the above-mentioned data-
transfer operation. Such action triggered the creation of a pair of dynamic end-to-end 
LSPs (one for each required direction) characterized with the required bandwidth on the 
involved PE nodes. In the presence of background traffic saturating the main branch, 
such LSPs were automatically re-routed through the secondary (and almost unused) 
branch to support the required bandwidth commitment. In this case, we observed that 
the whole 500-GB data transfer was completed in 1 h and 23 min (9.9 s/file) with an 
average throughput of 101 MB/s and a peak of 106 MB/s. We also observed an improve-
ment in standard deviation achieving an acceptable value of 2.8 against the 12.5 of the 
best-effort case. We also evidenced a 20-MB/s loss with respect to the theoretical 
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achievable maximum bandwidth, due to the known TCP and Ethernet overhead and 
limits. This simple test evidences how the above-mentioned facility can be effective in 
optimizing the data-transfer performance within the cloud, and the results are more 
impressive when expressed in graphical form, as presented in Fig. 8.5, showing the gain 
achieved by concatenating a sequence of 300 file transfers in the best effort network 
with the other 300 transfers on the virtual 1-Gbps point-to-point network.

Fig. 8.4  The best effort transfer behaviour
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Fig. 8.5  The gain achieved through a virtual connection
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We also examined the end-to-end connection stability by copying the same data 
volumes (500 GB) between the SANs, both in the presence of a virtual connection and 
without it. In the following graphs (Fig. 8.6), we have compared the average through-
put observed in the first best-effort transfer operation (where an average throughput of 
300 Mbps is achieved) and when the same bandwidth is reserved across the cloud sites. 
In both the sessions, we were able to transfer the whole 500 GB of data in 
approximately the same time (about 4 h) with an average throughput of 34 MB/s 
(about 272 Mbit/s versus the theoretical 300 Mbit/s), but with a standard deviation 
equal to 1.13 against a value of 12.0 of the best-effort case.

This demonstrated the much higher stability of the virtual circuit arrangement 
exhibiting a guaranteed bandwidth within a 10% range.

8.6 � Related Work

To the best of our knowledge, few experiences about network-empowered cloud 
infrastructures can be found in the literature. One of the most interesting approaches 
[14] focuses on the migration of virtual machines and proposes a scheduling model 
to minimize the migration-related risks of network congestions with respect to 
bandwidth-demand fluctuations. A more experimental approach is presented in 
[15], where an effective large-scale cloud testbed called the Open Cloud Testbed 
(OCT) is proposed. In contrast with other cloud testbeds spanning small geo-
graphic areas and communicating through commodity Internet services, the OCT is 

Fig. 8.6  Connection-stability comparison
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a wide-area testbed based on four data centers that are connected with a high-
performance 10-Gbps network, based on a foundation of dedicated lightpaths. 
However, such an infrastructure, even if empowered by a high-performance net-
work, does not provide dynamic bandwidth allocation mechanisms driven by the 
application requirements, and its network-management facilities are limited to 
basic monitoring. Other interesting issues regarding the benefits of a network-
aware approach can be found in [16], where the authors present the performance 
improvements obtained through network resource engineering in running bioinfor-
matics application such as Lattice-Boltzmann simulations and DNA analysis. Other 
examples of the introduction of a network-aware philosophy in high-performance 
distributed computing systems are described in [17–21]. Finally, there is an active 
open discussion about “End-to-end Network Service Level agreements (SLAs)” 
within the EGEE project [22] exploring several strategies for advanced network-
services provision and analyzing the benefits of using specific SLAs for the most 
demanding applications.

8.7 � Conclusions

We introduced a new network-centric cloud architecture in which the traditional 
resource-management facilities can be extended with enhanced end-to-end con-
nectivity services that are totally under the control of the cloud control logic. Such 
framework enables simple and affordable solutions that facilitate vertical and hori-
zontal communication, achieved through proper interfaces and software tools 
between the existing network control plane and provisioning systems and the appli-
cations requiring dynamic provisioning of high bandwidth and QoS. Accordingly, 
we proposed and developed a new service-oriented abstraction based on the existing 
web services architecture and built on the WSRF framework,which introduces a 
new network control layer between the cloud customers and the network infrastruc-
ture, decoupling the connection service provisioning from the underlying network 
implementation. Such a control layer provides the necessary bridge between the 
cloud and its data-transfer facilities so that the capabilities offered by the combina-
tion of the features of modern network and distributed computing systems greatly 
enhance the ability to deliver cloud services according to specific SLAs and strict 
QoS requirements.
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Abstract  Cloud computing platforms such as Amazon EC2 provide customers 
flexible, on-demand resources at low cost. However, while the existing offerings are 
useful for providing basic computation and storage resources, they fail to consider 
factors such as security, custom, and policy. So, many enterprises and research 
institutes would not like to utilize those public Clouds. According to investigations on 
real requirements from scientific computing users in China, the project YML-PC 
has been started to build private Clouds and hybrid Clouds for them. In this paper, 
we will focus on the first step of YML-PC to present a reference architecture based 
on the workflow framework YML for building scientific private Clouds. Then, 
some key technologies such as trust model, data persistence, and schedule mecha-
nisms in YML-PC are discussed. Finally, some experiments are carried out to 
testify that the solution presented in this paper is more efficient.

9.1 � Introduction

Cloud computing, as a term for internet-based services, was launched by famous IT 
enterprises (e.g. Google, IBM, Amazon, Microsoft, Yahoo, etc.). It promises to 
provide on-demand computing power in the manner of services with quick imple-
mentation, little maintenance, and lower cost. Clouds aim at being dynamically 
scalable and offer virtualized resources to end-users through the internet. Solutions 
deployed in Clouds can be characterized as easy-to-use, pay-by-use, less time to 
solution, and lower cost. Clouds can be divided into three types: public Clouds, 
private Clouds, and hybrid Clouds. Generally speaking, public Clouds refer to 
entities that can provide services to external parties, such as Amazon and Google. 
Private Clouds are used to provide services to internal users who would not like to 
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utilize public Clouds for some issues that span over security, custom, confidence, 
policy, law, and so on. Hybrid Clouds share resources between public Clouds and 
private Clouds through a secure network.

Scientific computing requires an ever-increasing number of computing resources 
to deliver for growing sizes of problems in a reasonable time frame, and cloud 
computing holds promise for the performance-hungry scientific community [1]. 
Several evaluations have shown that better performance can be achieved at lower 
cost using Clouds and cloud technology than based on previous technologies. For 
example, papers [2, 3] make an evaluation of cloud technology on public Clouds (e.g. 
EC2). Papers [4, 5] evaluate cloud technology based on private Clouds (e.g. clusters 
in internal research institute). Paper [6] shows the potential to utilize volunteer 
computing resources to form Clouds. Papers [7–9] present methods to improve the 
performance of a Desktop Grid platform. Paper [10] analyzes the cost-benefit of 
cloud computing versus Desktop Grids. Papers [11–13] introduce some Clouds solu-
tions based on volunteer computing resources.

An investigation is made into requirements for building scientific computing 
environments for non-large enterprises and research institutes in China. Those 
issues can be summarized as follows: First, most of the enterprises and research 
institutes have their computing environment, but they suffer from shortage of 
computing resources. Second, they would not like to spend a lot of money to 
expand their computing resources. On the other hand, they hope that they can 
make full use of wasted CPU cycle of individual PCs in labs and offices. Third, 
they need a high-level programming interface to decrease their costs (time, 
money) in developing applications that suit computing environments. Last but 
not least, they would like to utilize their own computing environments for 
addressing the importance and security of their data. After all, these data are 
bought from other corporates with high cost and they are required to keep those 
data secret. To meet these requirements, a project has been started between the 
University of Science and Technology of Lille, France, and Hohai University, 
China. Its general goal is to build a private Cloud environment that can provide 
end-users with a high-level programming interface, and users can utilize com-
puting resources they need without considering where these computing resources 
come from (i.e. the layer of program interface is independent of the layer of 
computing resources).

YML [14–16] is a large-scale workflow programming framework, developed 
by PRiSM laboratories at the university of Versailles and Laboratoire 
d’Informatique Fondamentale de Lille (LIFL, Grand Large Team, INRIA Futurs) 
at the University of Science and Technology of Lille. The aim of YML is to pro-
vide users with an easy-to-use method to run parallel applications on different 
distributed computing platforms. The framework can be divided into three parts: 
end-users interface, YML frontend, and YML backend. End-users interface is 
used to provide an easy-to-use and intuitive way to submit applications, and appli-
cations, can be developed using a workflow-based language, YvetteML. YML 
frontend is the main part of YML, which includes compiler, scheduler, data 
repository, abstract component, and implementation component. The role of this 
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part is to parse parallel programs, into executable tasks and schedule these tasks 
to appropriate computing resources. YML backend is the layer to connect differ-
ent Grid and Desktop Grid middleware through different special interfaces, and 
users can develop these interfaces very easily. The YML is a component-based 
framework in which components can interact with each other through well-
defined interfaces and researchers can add/modify one or several interfaces for 
other middleware to YML very easily.

Paper [18] presents a method of resource management in Clouds through a 
grid middleware. Here, we will extend YML to build scientific private Clouds 
for non-big enterprises and research institutes. We call this project “YML-PC.” 
Three steps are needed to make this project a reality. The first step is to inte-
grate volunteer computing resources into dedicated computing resources 
through YML and make them work in co-ordination. Volunteer computing 
resources can be a supplement to dedicated computing resources and a volun-
teer computing resources-based platform has the ability to expand computing 
resource pools dynamically by nature. If dedicated computing resources are not 
enough for users, volunteer computing resources can be utilized to implement 
their tasks. But users do not know whether their tasks are run on dedicated 
computing resources or volunteer computing resources, and they need not 
know. The key issue of this step is how to allocate tasks to different kinds of 
computing resources more reasonably and make those computing resources 
work with high efficiency. The second step is to develop an interface for 
Hadoop and integrate it into YML. Then, some evaluations will be made on 
cluster environment + Hadoop. The third step is to try to build a hybrid Clouds 
environment through combining step one with step two. The solution is that 
step one can stand for a kind of private Clouds and step two can be deployed 
on public Clouds, then YML as a workflow-based framework can harness private 
Clouds and public Clouds.

In this paper, our work focuses on the first step. To do that, our research-in-progress 
on YML focuses on the following aspects:

Data flows. Added in the application file. Through adding this flow, data persis-•	
tence and data replication mechanisms can be realized in YML-PC. Also, it can 
help to improve the efficiency of the platform greatly.
Monitor and Trust model. Introduced to monitor the available status of non-•	
dedicated computing resources and predict their future status. Also, a method to 
evaluate expected execution time based on standard virtual machine is adopted. 
Through this method, heterogeneous computing resources can be changed into 
homogeneous computing resources and then can be evaluated. According to this 
evaluation and prediction, tasks can be allocated to appropriate computing 
resources.

The remainder of this paper is organized as follows: Section 2 is the general 
introduction of YML. Section 3 describes the design and implementation of the YML-
based private Clouds in detail. In Section 4, some evaluations are made and some 
related works are discussed. Section 5 gives conclusions and describes future work.
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9.2 � Overview of YML

YML is a workflow-based framework dedicated to execution of parallel applications 
on various middleware. Now it can support two middlewares: OmniRPC [19] and 
XtremWeb[20]. OmniRPC can harness dedicated computing resources in cluster 
and grid environments, while XtremWeb can collect volunteer computing resources 
in Desktop Grid. Condor is on the way to being integrated into YML. Figure 9.1 
shows us the overview of YML.

There are four parts in the Fig. 9.1, which are CLIENT, Data Repository, YML, 
and YML workers.

CLIENT provides the end-users an intuitive way to express parallel applications 
by means of a workflow. The description language of YML is called YvetteML and 
can express several execution structures of parallel programs, such as sequential 
execution, parallel execution, and conditional branch and event notification/recep-
tion (event signals are used to control when an operation can be executed). A simple 
example can be presented through Fig. 9.2. What we want to emphasize here is that 
end-users just use YvetteML to describe the workflow and he/she must not know 
how to program using special programming languages (e.g. Java, C, C++, Fortune, 
MPI). The parallel program described using YvetteML can be run on different plat-
forms without any change. We will explain this point in the part of YML workers 
in detail.

Fig. 9.1  Overview of YML framework [17]
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Data Repository contains four parts, which are Development catalog, Resources 
information, Execution catalog, and Data server. Development catalog has func-
tions (e.g. function A, B in Fig. 9.2.) developed using C or C++. These functions 
can be reused in other applications. For example, application 1 and application 2 
both need “function A” and if you develop “function A” for application 1, you can 
reuse it in application 2 without any change. After “function A” in Development 
catalog is registered in YML, “function A” will become the executable function in 
the Execution catalog. Resources information is information about which comput-
ing nodes can be utilized. The information is dynamically changed according to the 
availability of computing resources. As well known to us all, the key characteristic 
of volunteer computing resources is volatility. So, accurate prediction of volunteer 
computing resources is very important and it is also the key research point of this 
paper. Data server is used to store data, and its transport model is based on server/
worker. So, adopting server/worker-based data transport model is another key 
research point of this paper.

YML is the core of the “sandwich” architecture of YML framework. It can hide 
the complexity and heterogeneity of the underlying computing platforms and pro-
vide a unique programming interface to end-users. YML has two layers, which are 
Front-end and Back-end. Front-end can parse the pseudocode-based program in 
CLIENT and invoke executable functions accordingly to form an executable graph. 
According to this graph, YML scheduler will allocate tasks to Back-end scheduler. 
Then, Back-end scheduler allocates those tasks to different computing resources 
according to Resources information. Back-end provides different interfaces to 
different middleware.

Fig. 9.2  Sketch of high-level program interface
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YML workers is the interface layer for middleware. Different middleware can be 
used to harness different kinds of computing resources. For example, XtremWeb 
can be used to collect volunteer computing resources and OmniRPC can harness 
dedicated computing resources such as clusters and Grids. Here, what we want to 
emphasize is that whatever kinds of middleware are used to harness computing 
resources, the program in CLIENT can be run without any change.

9.3 � Design and Implementation of YML-PC

9.3.1 � Concept Stack of Cloud Platform

This section presents a detailed design for how to build the environment of cloud 
computing based on previous work from papers [21–24]. As shown in Fig.  9.3, 
generally speaking, cloud computing can have four main layers. The base is the 
layer of “computing resources” and above this layer, “Operating system” and “Grid 
middleware” can be used to harness those different kinds of computing resources. 

Fig. 9.3  Concept stack of cloud platform
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Then, “cloud middleware” layer can help users compose applications without con-
sidering the underlying infrastructure; this layer hides different interfaces from 
different platforms/systems/middleware and provides a uniform, high-level abstrac-
tion and easy-to-use interface for end-users. The top layer is “application layer” and 
cloud platform will provide different interfaces according to different requirements. 
Business model helps to support “pay-by-use” model, and users can get the best 
services within their budget through “bidding mechanism.”
Next, detailed explanation will be made on those layers one by one:

Computing Resource pool: this layer consists of different kinds of computing •	
resources, which can be clusters, supercomputer, large data center, volunteer 
computing resources, and some devices. It aims at providing end-users with 
on-demand computing power.
Grid middleware and OS: the role of this layer is to harness all kinds of computing •	
resources in the computing resource pool. Some virtual machines can be generated 
through virtual technology based on cluster (perhaps also based on volunteer 
computing resources).
Cloud middleware layer: in the cloud platform, cloud middleware can be •	
divided into three parts according to their roles. Cloud middleware backend 
aims to monitor all kinds of computing resources and encapsulate those het-
erogeneous computing resources into homogeneous computing resources. 
Cloud middleware frontend is used to parse application programs into execut-
able subtasks. Cloud platform always provides end-users with higher-level 
abstract interfaces. Through parsing the application program, this layer can 
generate a file in which some necessary services (executable functions, com-
puting resources, third-party service library) are listed. The core of cloud 
middleware includes a “matchmaker factory” in which appropriate matches 
can be made based on business models between tasks and computing resources 
according to their requirements and properties. Then, scheduler allocates those 
“executable functions” and “third-party services” to appropriate computing 
resources.
Application layer: this layer is generated according to real requirements by •	
end-users based on SOA. And SOA can make sure that all the interfaces from 
different service providers are common and easy to invoke.
Business model: this model can support a pay-by-use model to end-users. It can •	
also help end-users get the best services within their budget.
End-user interface: The interface must be a high-level abstraction and easy to •	
use. It is very helpful for nonexpert computer users to utilize Cloud platform.

9.3.2 � Design of YML-PC

The detailed design of YML-PC is made based on a concept stack of cloud platform 
(see Fig. 9.4). As mentioned earlier, the development on YML-PC can be divided 
into three steps. The components with dashed border will be developed in the second 
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step. In this paper, we are focussed on the first step. So, the detailed description will 
also focus on the design and implementation of first step of YML-PC. YML-PC is 
designed to build private Clouds for scientific computing based on workflow. Some 
features of YML-PC can be summarized as:

YML-PC can harness two kinds of computing resources at the same time and •	
this can help to improve computing power greatly through integrating volun-
teer computing resources. At the same time, no extra cost is needed to do 
that and volunteer computing resources can also help YML-PC to scale in a 
dynamic way.
YML-PC shields the heterogeneity of program interfaces of underlying middleware/•	
system/platform and provides a high-level abstraction, unique interface for end-
users.
YML-PC can make full use of different kinds of computing resources according •	
to their properties. To improve the efficiency of YML-PC, prescheduling and 
“data persistence” mechanisms are introduced into YML-PC.

Computing resource pool:  The computing resource pool of YML-PC consists of 
two different kinds of computing resources: dedicated computing resources (serv-
ers or clusters) and non-dedicated computing resources (PCs). As well known to us 
all, a cluster is too expensive to scale up for non-big research institutes and enter-
prises. At the same time, there are a lot of PCs in which a lot of CPU cycles are 
wasted. So, it is appealing (from the viewpoint of both economy and feasibility) to 
harness these two kinds of computing resources together. Computing resource pool 
with a lot of PCs has features like being low cost, and scalabile by nature; these 
features are key points of Clouds.

Fig. 9.4  Reference architecture of YML-PC
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OS:  Operating system is the base for installing other software. Now YML-PC and 
OmniRPC (used to harness dedicated computing resources) only support Linux OS. 
XtremWeb, used to collect volunteer computing resources, can support Windows OS 
and Linux OS.

Grid middleware:  The construction of a computing resource pool in YML-PC is 
based on state-of-the-art technology: Grid and Desktop Grid technology. For YML-PC, 
we utilize gird middleware OmniRPC to harness cluster-based computing resources 
and Desktop Grid middleware XtremWeb to manage volunteer computing resources. 
Also, we can utilize these two middleware at the same time to form a computing 
resource pool consisting of two kinds of computing resources. As well known to us all, 
traditional scientific computing mostly runs based on cluster or supercomputer and it 
is necessary to make full use of this kind of computing resource. At the same time, the 
power of volunteer computing is huge and it has been proved by existing volunteer 
platforms such as Seti@home. It is very meaningful to make volunteer computing 
resources be the supplement/extension of traditional computing resources.

Application layer and Interface:  The main design goal of YML-PC is for sci-
entific computing and numerical computing. So, to make scientific computing more 
easy, a pseudocode-based high-level interface is provided to end-users.

YML frontend, YML backend and the core of YML will be described in the next 
section.

9.3.3 � Core Design and Implementation of YML-PC

Fig.  9.5 will show us the core design and implementation of YML-PC. We will 
explain these components in Fig. 9.5 one by one.

YML frontend: This provides end-users with an easy-to-use interface and allows 
them to focus only on the design of the algorithm. Users need not take low-level 
software/hardware into consideration when they develop their application pro-
grams. For the program interface of YML-PC, we still adopt the interface of YML. 
For those “reusable services” (functions described in Fig. 9.2), two ways exist the 
first is that users can develop those “reusable services” by themselves or with com-
puter engineers; the second way is to invoke those functions from a common library 
(e.g. LAPACK, BLAS; we also call these “third-party services”). Here, what we 
want to emphasize is that both the pseudocode-based program and those functions 
developed are reusable and both are platform-independent and system-independent. 
System independence means that users need not know what kinds of operating 
system/middleware are utilized. Platform independence means that code can be run 
on any platform (cluster, grid, Desktop Grid) without any change. That is, these 
codes developed by users can be reused without caring about the middleware, 
system, and platform. You can use OmniRPC on a grid/cluster platform or 
XtremWeb on a Desktop Grid platform or both, but users’ code can be reused with-
out change.
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The core of YML: Three components are included in this layer: YML register, 
YML compiler, and YML scheduler.

YML register is used to register reusable services and third-party services. Once 
registered, these services can be invoked by YML scheduler automatically.

YML compiler is composed of a set of transformation stages that lead to the 
creation of an application file from pseudocode-based program. The application file 
consists of a series of events and operations. Events are in charge of sequences of 
operations. In other words, which operation can be executed in parallel/sequence is 
decided by the events table. Operations refer to those services registered by YML 
register. One important work made in this paper is that a data flow table is gener-
ated in the application file. Through the data flow table, data dependence between 
operations can be found (see “data flow table” in Fig. 9.6). As well known to us all, 
these data dependencies determine the execution (in parallel/sequence) of different 
operations. According to these data dependencies, prescheduling mechanisms 
can be realized (see column “node” in “IP address table” of Fig. 9.6). Then, col-
laborating the “IP address table” (in Fig. 9.6), data persistence and data replication 
mechanisms can be realized. The general idea of this part of work can be described 
using Fig. 9.6.

YML scheduler is a just-in-time scheduler. It is in charge of allocating the 
executable YML services to appropriate computing resources shielded by 

Fig. 9.5  Core part of YML-PC
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YML back-end layer. YML scheduler is always executing two main operations 
sequentially. First, it checks for tasks ready for execution. This is done each time a 
new event is introduced and leads to allocating tasks to the YML back-end. The 
second operation is to monitor those tasks currently being executed. Once tasks 
have started to execute, the scheduler regularly checks whether these tasks have 
changed to the finished state. The scheduler will push new tasks with its input data 
set and related YML services to an underlying computing node when the node’s 
state is completion or unexpected error.

To make the process presented above a reality, two parts of this work are in 
mentioned this paper. The first is to introduce monitoring and a prediction model 
for volunteer computing resources. It is well known that volatility is the key char-
acteristic of volunteer computing resources and if we do not know any regularity 
of volunteer computing resources, the problem with data dependence between 
operations means that it cannot run on a Desktop Grid platform. The reason is 
that frequent task migration will render the program incomplete forever. We call 
this a “deadlock of tasks.” To avoid this situation, we introduce a monitor and pre-
diction model TM-DG [25]. TM-DG is used to predict the probability of availabil-
ity of computing nodes in the Desktop Grid during a certain time slot. The time slot 
depends on users’ daily behaviors. For example, the availability of computing 
nodes in the lab has relation to students’ school timetable. If students go to classes, 
computers in the lab can be utilized for scientific computing. So the choice of time 
slot is related to time slots of classes. It is because 2 h is needed for each class that 
the time slot in [25] is set as 2 h. TM-DG collects two bodies of independent evi-
dence: (1) percentage of completion of the allocated task, and (2) an active probe 
by a special test node, based on the time slot. Considering the “recommendation 
evidence” from other users, Dempster-Shafer’s theory [26] is used to combine these 
bodies of evidence to get the degree of node trustworthiness. The result of TM-DG 
can be expressed by a four-tuple <I, W, H, m(T)>, in which I represents the identity 
of computation node, W represents the day of the week, H represents a time inter-
val in a day, and m represents the probability of node availability. The four-tuple 

Fig. 9.6  General idea of “Data Persistence” in YML-PC
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<node I, Monday, 1, 0.6> represents that the time slot is from 0 to 2 a.m. on Monday, 
and the probability of successful execution on node I during this time slot is 0.6. So 
in this paper, monitor component in YML-backend and schedule component in 
Core of YML are based on the time slot.

The second part involves making full use of computing resources, so evaluation 
of capability of heterogeneous computing nodes has to be made. So, a standard 
virtual machine (VM) is proposed in this paper. The standard VM can be set in 
advance. For example, the VM is set through a series of parameters (Ps, Ms, Ns, 
Hs), in which Ps stands for CPU power of VM (2.0 MHz CPU), Ms represents 
memory of VM (1 G Memory), Ns means network bandwidth of VM (1G), and Hs 
stands for disk storage space required (10 G). Users can adapt the number of param-
eters according to real situation. A real computing node ‘Rm’ can be described as (Pr, 
Mr, Nr, Hr). The capacity (Crm) of ‘Rm’ can be presented as follows: Crm= a1 * Pr/
Ps + a2 * Mr/Ms + a3 * Nr/Ns + a4 * Hr/Hs, in which a1 + a2 + a3 + a4 = 1. The 
value of ax (x = 1, 2, 3, 4) can be set according to different influences on final 
results from different parameters in real situations. We can set an appropriate value 
to ax (x = 1…n) based on historic information. Through the VM, expected execu-
tion times of tasks on a computing node can be estimated.

Scheduler can choose appropriate computing nodes according to predictions of 
availability of computing resources (from TM-DG) and time needed to execute a 
task on this node (from VM). Scheduler will get the detail time and form the sched-
uler table and then schedule tasks to appropriate computing nodes. The YML 
scheduler mechanism can be described using Fig. 9.7. When a fault is generated, 
the task will be rescheduled. Future research about fault tolerance in YML-PC will 

Fig. 9.7  Description of YML scheduler
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focus on: (1) allocating the same task to three or more volunteer computing nodes; 
(2) preemptive scheduling based on multi-queue scheduling mechanisms.

YML backend:  YML backend encapsulates different underlying middleware and 
provides a consistent executable environment to tasks from the layer “core of 
YML.” Concurrently, it permits to utilize one or several middleware through a 
specific interface for each middleware. The back-end layer consists of three parts 
named Monitor, worker coordinator, and data manager. In general, YML backend 
sends requests for executing a task on a computing node and if the task finishes, it 
also notifies the scheduler that the task is terminated successfully. Data manager 
is a component for managing all data exchanges between nodes and data server. 
This component provides two services: distributing appropriate data to workers 
and retrieving the final results. Worker coordinator maintains a list of active 
requests and a list of finished requests. The status can change dynamically accord-
ing to the status of computing nodes. It will allocate those tasks from YML sched-
uler to appropriate computing nodes in computing resource pools. Monitor 
component is used to monitor the status of computing nodes. The monitoring 
mechanism is based on users’ daily behavior, which is adopted to predict the 
available time of computing resources and make prediction for data migration.

9.4 � Primary Experiments on YML-PC

In this section, three kinds of primary experiments (emulations) are made to show 
that: (1) the computing resource pool can be scaled very easily; (2) great improve-
ments on platform efficiency can be made through emulating the data persistence; 
(3) great improvements on platform efficiency can be made through emulating 
appropriate task distribution between different virtual organizations.

Here, inter-iterative parallel-based block-based Gauss-Jordan algorithm [27, 28] 
is used. According to the algorithm, q2 is the number of block-counts of matrix. The 
number of total tasks the algorithm will generate is q3. All these experiments are 
based on YML+OmniRPC, YML+XtremWeb, YML+OmniRPC/XtremWeb, and 
Grid 5,000 platform [29]. In our experiments, the computational resources can be 
described as follows (Table 9.1):

Table 9.1  Parts of computing resources in Grid’5000 platform

Site Cluster Nodes CPU/memory

Nancy Grelon 120 2 × Inter xeon, 1.6 GHz/2 GB
Rennes Paravent   99 2 × AMD opteron, 2 GHz/2 GB
Lyon Sagittaire   70 2 × AMD opteron, 2.4 GHz/2 GB
Bordeaux Bordereau   93 2 × AMD opteron, 2.6 GHz/2 GB
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9.4.1 � YML-PC Can Be Scaled Up Very Easily

In this experiment, we set the block-size of submatrix to 1,500 * 1,500, and the 
middleware is YML+Xtremweb. The reason is that XtremWeb can be easily scaled 
up for its “pull model” based task allocation mechanism. “R-B” represents that 
the computing resource pool has ten computing nodes, while “R-A” implies that 
the computing resources have scaled up to 20 computing nodes. Scale up occurs 
during the process of program execution.

Figure 9.8 shows that when the block-count is less than 32, there is little influ-
ence on the elapsed time whether computing resource pool scales up or not. But 
when the block-count is more than 32, scalability of computing resource pool has 
an important influence on the elapsed time. The reason stems from the algorithm 
itself. When the block-count is small, tasks generated are few; ten computing 
resources can be enough for generated tasks. So, the influence on the elapsed time is 
small. With the increase in block-count of matrix, the generated tasks increase 
greatly. More computing resources are needed. So, the influence on elapsed time 
becomes more obvious. In a word, from Fig. 9.8, we can conclude that, whether 
the block count is small or large, scalability of a computing pool can improve the 
efficiency of the platform. At the same time, this experiment testifies that YML-PC 
has the ability to scale.

Fig. 9.8  Feature of scalability of YML-PC
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9.4.2 � Data Persistence in YML-PC

The efficiency of YML-PC can be improved with the help of data persistence 
technology. In this experiment, we set block-size of submatrix as 1,500 * 1,500. 
The middleware is YML+OmniRPC. YML in Fig. 9.9 represents that the platform 
does not support data persistence, while YML+DP stands for the YML-PC sup-
porting data persistence.

Figure 9.9 shows that data persistence is very important for scientific computing 
especially for scientific computing with substantial data. It can save a lot of time 
and thus improve the efficiency of the platform. With increase in block-counts of 
matrix, more tasks are generated and therefore a lot of data transfers between data 
server and workers are generated. If we take data persistence technology in cloud 
computing platform, less communication overhead is generated and the efficiency 
of cloud platform can be improved.

9.4.3 � Schedule Mechanism in YML-PC

Appropriate selection of computing resources based on trust model in YML-PC 
is very important. In this experiment, we set block-size as 1,500 * 1,500, and 
the middleware is YML+Xtremweb. ‘No fault’ in Fig.  9.10 represents the no 

Fig. 9.9  Data persistence in YML-PC
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faults happen on the computing nodes. In other words, the trust model is totally 
correct. ‘10% faults’ stands for 10% of computing nodes in cloud platform fail 
during the process of program execution. In other words, the accurate rate of 
trust model is 90%. ‘20% faults’ stands for 20% of computing nodes in cloud 
platform failing during program execution. In other words, the accurate rate of trust 
model is 80%.

Figure 9.10 tells us that choosing appropriate computing resources to execute 
tasks is very important. Improper match-making between computing resources and 
tasks will decrease efficiency greatly. So, monitoring the computing resources in 
cloud computing is very important and we had better find the regularity behind its 
appearance through monitoring. Trust model in paper [25] can be utilized in cloud 
platform and it can be improved by adopting a better behavior model to describe 
users’ behavior regularity.

9.5 � Conclusion and Future Work

Cloud computing has gained great success for search engines, social e-networks, 
e-mail, and e-commercial. Amazon can provide different levels of computing 
resources to users by the way of pay-by-use. Many research institutes, such as the 
University of Berkeley, Delft University of Technology, and so on, have made 

Fig. 9.10  Schedule mechanism in YML-PC
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evaluations on Amazon cloud platform. At the same time, Kondo et  al try to 
evaluate the cost-benefits of public Clouds and Desktop Grid platform and 
conclude that Desktop Grid platform is promising and can be the base of cloud 
platform. So, based on the research mentioned above and real situation of non-big 
enterprises and research institutes in China, this paper extended the YML framework 
and presented YML-PC, which is a workflow-based framework for building scien-
tific private Clouds. The project YML-PC will be divided into three steps: (1) Build 
private Clouds based on YML through harnessing dedicated computing resources 
and volunteer computing resources and make them work together with high effi-
ciency. (2) Extend YML to support Hadoop and run Hadoop on cluster-based vir-
tual machines. (3) Combining step 1 and step 2, build a hybrid Cloud based on 
YML. This paper focused on step 1. To improve the efficiency of YML-PC, “trust 
model” and “data persistence mechanism” are introduced in this paper. Simulations 
demonstrate that our idea is appropriate for building YML-PC.

Future work will focus on developing components to make YML-PC a reality. 
Then, more users’ behavior models will be researched to improve the accuracy of 
prediction on available “time slot” of volunteer computing nodes. Fault-tolerant-based 
schedule mechanism is another key issue of our future work. A new idea, which is to 
deploy virtual tool (Xen, VMware for example) on volunteer computing resources and 
form several virtual machines on volunteer computing node, is also to be evaluated.
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Abstract  Since the appearance of distributed computing technology, there has 
been a significant effort in designing and building the infrastructure needed to 
tackle the challenges raised by complex scientific applications that require massive 
computational resources. This increases the awareness to harness the power and 
flexibility of Clouds that have recently emerged as an alternative to data centers 
or private clusters. We describe in this chapter an efficient high-level Grid and 
Cloud framework that allows a smooth transition from clusters and Grids to Clouds.  
The main lever is the ability to move application infrastructure-specific information away 
from the code and manage them in a deployment file. An application can thus easily 
run on a cluster, a grid, or a cloud, or any mix of them without modification.

10.1 � Introduction

Traditionally, HPC relied on supercomputers, clusters, or more recently, computing 
grids. With the rise of cloud computing and effective technical solutions, questions 
such as “is cloud computing ready for HPC” or “does a computing cloud constitute 
a relevant reservoir of resources for parallel computing” are around. This chapter 
gives some concrete answers to such questions. Offering a suitable middleware 
and associated programming environment to HPC users willing to take advantage 
of cloud computing is also a concern that we address in this chapter. One natural 
solution is to extend a grid computing middleware in such a way that it becomes able 
to harness cloud computing resources. A consequence is that we end up with a 
middleware that is able to unify resource acquisition and usage of grid and Cloud 
resources. This middleware was specially designed to cope with HPC computation 
and communication requirements, but its usage is not restricted to this kind of 
application.
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This chapter explores in detail the relevance of using hybrid grid/Cloud envi-
ronments and the technical challenges that such mixing raises at the middleware 
level. In particular, this chapter provides and analyzes performance results that we 
obtained on Amazon Elastic Cloud computing (EC2) running some of the NAS paral-
lel benchmarks. Then, we provide some insight into two complementary and rel-
evant concepts: Cloud bursting and seeding: (1) Cloud bursting is relevant whenever 
the amount of available resources on a cluster or grid is not sufficient to face a 
required level of computing power, and hence must be augmented with some Cloud 
resources, be it in a static and anticipated way or dynamically in an on-demand way; 
and (2) Cloud seeding is relevant whenever some specific kinds of resources are not 
available within the computing cloud, and hence must be acquired from outside.

The remainder of this chapter is organized as follows: Section 2 presents some 
existing Cloud frameworks and our position in relation to them. Section  3 gives 
some benchmarks and proposes solutions to deploy applications in a Cloud, through 
the proposed framework. Section 4 details the application deployment in a unified 
environment mixing grids, cluster, and Clouds. Section 5 deals with the deployment 
process under Cloud bursting and Cloud seeding scenarios. Lastly, Section  6 
concludes this chapter and outlines future directions.

10.2 � Related Work

10.2.1 � General View of Cloud Computing frameworks

Cloud services are mainly divided into three service delivery models: Software as a 
Service (SaaS), for example, Google Mail; Platform as a Service (PaaS), for example, 
Google AppEngine; and, Infrastructure as a Service(IaaS), for example, Amazon EC2. 
As the work presented in this chapter is strongly related to the IaaS model, in this section, 
we only focus on this category of service. IaaS providers aim to offer resources to 
users in a pay-as-you-go manner. A key provider of such a service is Amazon through 
its Elastic Cloud Computing (EC2) and Simple Storage Service (S3).

Some services or tools have been proposed to ease the use of Clouds or enhance 
their functionalities. enStratus[6] provides a set of tools for managing Cloud infra-
structure and handling the “confidence” questions about moving an application into 
a Cloud. The user does not need to change a line of code for enStratus. Scalr[11] is 
a hosting environment for Amazon EC2. It provides services such as load balancing, 
fault tolerance, and self-scaling. Vertebra [12] is a Cloud computing framework 
for the orchestration of complex processes. It takes into consideration security, 
fault tolerance, and portability aspects. The OpenNebula Toolkit [2] is a virtual 
infrastructure engine that allows a dynamic deployment and reallocation of 
virtual machines. It leverages existing virtualization platforms to come up 
with a new virtualization layer between the service and the physical infrastructure. 
It supports private, public, and hybrid Cloud deployment models. Nimbus [1] is a 
set of open source tools that provide an IaaS Cloud computing solution. It allows 
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users to lease remote resources by deploying virtual machines on those resources. 
Using the Nimbus Cloud, the requested resources can be dynamically adjusted as a 
function of the application needs.

10.2.2 � Cloud Computing Middleware

In order to run applications on a Cloud, one needs a flexible middleware that eases 
the development and the deployment process. GridGain [8] provides a middleware 
that aims to develop and run applications on both public and private Clouds without 
any changes in the application code. It is also possible to write dedicated applications 
based on the map/reduce programming model. Although GridGain provides mecha-
nism to seamlessly deploy applications on a grid or a Cloud, it does not support the 
deployment of the infrastructure itself. It does, however, provide protocols to dis-
cover running GridGain nodes and organize them into topologies (Local Grid, 
Global Grid, etc.) to run applications on only a subset of all nodes.

Elastic Grid [7] infrastructure provides dynamic allocation, deployment, and 
management of Java applications through the Cloud. It also offers a Cloud virtuali
zation layer that abstracts specific Cloud computing provider technology to isolate 
applications from specific implementations.

10.3 � Deploying Applications in the Cloud

In the rest of our study, we will focus on the Amazon EC2 Web Service. Initially, we 
seek to determine the performance that can be expected. Then, we propose solutions 
to facilitate the deployment of applications in this context and to enable the usage of 
hybrid grid/Cloud environments. To reach this goal, we will use the ProActive Parallel 
Suite [3]. This framework is composed of three parts: (1) ProActive Programming 
offers a Java API for parallel and distributed computing, (2) ProActive Resource 
Manager gathers heterogeneous computing resources (parallel machines, clouds, 
grids, etc.) into an unified access mechanism (further details are given in Sections 3 
and 5.1). ProActive Scheduler runs any kind of tasks (native, Java, Matlab, etc.) on 
a set of nodes acquired by the resource manager.

10.3.1 � Benchmarking the Cloud

In order to assess the worthiness of using Amazon EC2 cloud as an HPC platform, 
we have deployed a series of benchmarks well known in the world of HPC, the MPI 
NAS Parallel Benchmarks. We have launched them on four different architectures, 
described in Table 10.1: a private cluster and three types of Amazon EC2 instances. 
To provide consistent and predictable CPU capacity, Amazon describes the CPU 
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capacity of its instances in terms of an EC2 Compute Unit, and claims that it is the 
equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron.

The chart presented in Fig. 10.1 shows that the Small and the Medium instances 
share the same throughput and latency, describing Moderate EC2 I/O performance, 
while the XLarge instance reflects High EC2 I/O performance. When compared 
with the Gigabit Ethernet connectivity provided by our own private cluster, there is 
a large gap, especially for latency.

Figure  10.2 shows the performance (Mflops) of three of the NAS Parallel 
Benchmarks on each architecture by varying the number of processes. Results 
average ten runs, and variation does not exceed 6%. Up to 32 processes, we run 
one process per machine; and then we increase the number of processes per 
machine.

EP is an embarrassingly parallel problem that involves almost no communication •	
between the processes. It is a strong test for pure computational speed. This test 
clearly shows the speed difference between all the instances. The XL instance is 

Table 10.1  Deployment architectures

Private cluster

Processors 2 QuadCore Opteron 2356 (2.3 GHz)/64 bits
Memory 32 GB
Hard drive 2 × 73 GB SAS 15,000 rpm
I/O Performance Gigabit Ethernet

Small High-CPU medium High-CPU XLarge
EC2 compute units 1/32 bits 5 (2 × 2.5)/32-bits 20 (8 × 2.5)/64 bits
Memory 1.7 GB 1.7 GB 7 GB
Hard drive 160 GB 350 GB 1690 GB
I/O Performance Moderate Moderate High

Fig. 10.1  I/O performance comparison between a private cluster and EC2 instances
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roughly equivalent to our private architecture (eight cores at 2.3 GHz), whereas 
the medium instance runs at the same rate, but with only two cores. Similarly, we 
see that the small instance is about 2.5–3 times slower than the others.
CG computes a conjugate gradient involving a large number of small messages, •	
and is a strong test for communication performance. It confirms the results 
shown in Fig. 10.1. Amazon EC2 performance is well below what we get with 
our private cluster.
FT is a Fourier transformation benchmark. It is a test for both computation and •	
communication speed involving large data transfers. With such a problem, the 
gap between our private architecture with medium and XL instances narrows.

As shown by the previous experiments, EC2 does not offer good performance for 
communication-intensive applications when compared with a local cluster. However, 
CPU-intensive application do not present a significant performance hit. When dealing 
with a complex application mixing communications and computations, it might be 
interesting to have a part on a Cloud and another on a cluster, depending on the 
application characteristics and the possibility to decompose the application in such 
a way. This, however, makes deploying such application more complex.

We now present different mechanisms that simplify the execution of applications 
over heterogeneous environments.

10.3.2 � The ProActive GCM Deployment

The ProActive middleware provides an abstract descriptor-based deployment 
model and framework [4], giving users the capability to deploy an application on 
different platforms without changing the source code. The idea behind the 
ProActive GCM Deployment is to perform the discovery of resources, creation of 
remote processes, and data-handling externally to the application, completely 

Fig. 10.2  NAS parallel benchmarks
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separating the business code and deployment. In addition to these activities, the 
definition of the deployment can also encompass security, tunneling of communica-
tions, fault tolerance, and support of portable file transfer operations.

The whole deployment process (Fig.  10.3) and environment configuration is 
defined by means of XML descriptors that depict the application requirements and 
deployment process. The deployment of ProActive/GCM applications depends on 
two types of descriptors:

GCM Application Descriptors (GCMA): the GCMA descriptors define •	
application-related properties, such as localization of libraries, file transfer, 
application parameters, and nonfunctional services (logging, security, check-
point, and fault tolerance). GCMA descriptors expose the resulting physical 
environment as a logical network of virtual nodes (VNs) that are used by appli-
cations as an abstract representation of computing nodes. The GCMA also 
defines with or multiple resource providers.
GCM Deployment Descriptors (GCMD): the GCMD descriptors define access •	
protocols to reach the resources (e.g. SSH, RSH, GSISSH, etc.), acquisition 
protocols and tools which are required to access the resources (e.g. Amazon 
EC2, PBS, LSF, Sun Grid Engine, OAR, etc.), creation protocols that have a 
relation with how to launch processes (e.g. SSH, OAR, gLite, Globus), and 
communication protocols (e.g. RMI, RMISSH, HTTP, SOAP, etc.).

The advantages of this model are clear: on one side, if the users want to add a new 
resource provider (e.g. a private cluster, production grid, or Cloud), the application 
code does not change and a single line is enough to add the resource provider to the 
application descriptor (GCMA). On the other side, the definition of the deployment 
process happens just once for each resource and can be reused for different 
applications.

Application Descriptor (GCMA)

Application/ADL

Application Definition

Application Properties
Resources

Requirements
Resources Providers

Access Protocols
Resource Acquisition

Protocols
Creation Protocols

Infrastructure Definition

Deployment Descriptor (GCMD)

VN

Fig. 10.3  GCM descriptor based deployment model
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10.3.3 � Technical Solutions for Deployment over Heterogeneous 
Infrastructures

In the best possible scenario, all the machines involved in one computation are 
externally accessible through a public IP without any network restriction. In practice, 
this rarely occurs and machines are usually isolated by firewall and NAT. 
Hence, we must explore more sophisticated strategies to make the communication 
possible among processes located in different domains.

10.3.3.1 � Virtual Private Network (VPN)

A Virtual Private Network (VPN) is an overlay network built on top of an existing 
larger one. It is often installed to provide a secure extension of a private network 
into an insecure environment such as the Internet. Thus, communication between 
nodes is tunneled through the underlying network, bypassing firewalls.

In order to expose a private network to the Internet to allow some external 
machines to connect, a VPN Gateway, which will be the entry point of the network, 
must be configured. This gateway will be a part of the private network, but also has 
access to the Internet. Then, each client machine wishing to join the VPN will 
connect to the gateway. Regarding firewalls, client and gateway must be defiltered 
for both input and output VPN traffic.

A VPN can thus offer a way to add external resources to an IaaS, or add IaaS 
resources to a private infrastructure.

10.3.3.2 � Amazon Virtual Private Cloud (VPC)

Amazon Virtual Private Cloud (VPC) service provides a private subnetwork within 
the Amazon Cloud. All EC2 nodes, composing this Amazon VPC, are isolated and 
can only be reached through a VPN connection from a private network. This allows  
seamless extension of an existing infrastructure and EC2 resources can be managed 
as private ones.

This service allows extending existing security and management policies of a 
private IT infrastructure to the VPC. By doing so, it allows applications to be 
seamlessly executed in multi-domain environments.

10.3.3.3 � Message Forwarding and Tunneling

The ProActive middleware also offers a solution to address network restrictions such 
as firewalls and NAT, which is built-in and lightweight, based on SSH. This solu-
tion also provides a seamless integration of forwarding and tunneling, but at the 
application level (i.e. no need to configure routing at the OS and network levels).  
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It only requires a configuration of entry points of each involved domain and uses 
communication protocols such as SSH.

Figure 10.4 depicts a scenario where a single application runs over a set of nodes 
distributed in Amazon EC2 and Grid50001. In this scenario, all the nodes located in 
Amazon EC2 offer inbound and outbound communication, but nodes located on 
Grid5000 are isolated from the external network. ProActive, however, enables the 
usage of these resources as if every node is accessible by every other node by for-
warding incoming and outgoing messages through the Grid5000 gateway.

In a more protected environment, nodes might be isolated on both sides. The 
ProActive built-in tunneling/forwarding can be configured through a double-for-
warding mechanism to handle such a situation. In any case, applications remain 
unchanged and the execution in different scenarios only requires the modification 
of configuration files associated with the ProActive Runtime. The communication 
process may involve a multi-protocol approach.

10.3.4 � Conclusion and Motivation for Mixing

We have seen that the deployment of an application in a heterogeneous environment 
can be simplified with tools such as the ProActive GCM Deployment. Technical 
solutions such as VPN and SSH tunneling are used to manage the characteristics of 
a network while securing connections. We have also seen that an IaaS, such as 
Amazon EC2, offers a range of instances with features and performance that can 
match user needs.

Thus, we can consider setting up different usage strategies to mix resources with 
different goals. Strategies could be geared to a full transition phase towards full 
cloud outsourcing of computing, an optimization of costs by fitting the choice of 
computing resources to the needs of the application, or by temporarily extending an 
infrastructure to meet a special need.

EC2 computing
 instances

Grid5000
gateway

Computing
nodes

INTERNET

Firewall Grid5000Amazon EC2

RMISSH / HTTP / SOAP
Communications

RMI Communications

Fig. 10.4  Tunneling and forwarding communications on a heterogeneous Cloud-grid environment

1 Grid5000 is a French national Grid distributed over nine sites for a total of about 5,000 cores
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10.4 � Moving HPC Applications from Grids to Clouds

It is not yet clear how much impact Clouds will have on HPC in the future. In fact, 
it is very unlikely that highly optimized clusters will be replaced by Cloud resources 
in a near future. Considering that most enterprises and public institutes that require 
them already have in-house HPC resources, which could provide processing power at 
lower costs, the notion of private Clouds or a mix between Clouds and cluster/grids 
resources seems more cost-effective to solve the problem of providing resources.

Scientific applications require sophisticated middleware because they usually 
present complex multi-point interactions and strong processing and network require-
ments, which necessitate performance. Porting such applications to heterogeneous 
environments increases the importance of middleware support.

In this section, we present a versatile GCM/ProActive-based lightweight frame-
work that supports distributed and parallel scientific applications, so that porting of 
legacy applications is possible and easy for any kind of distributed computing envi-
ronment or even a mixture of them. To illustrate this, we also present performance 
results obtained with a scientific PDE-based application in different contexts, includ-
ing an experimental Grid, a public Cloud, and the mixture of these infrastructures.

10.4.1 � HPC on Heterogeneous Multi-Domain Platforms

From the development point of view, the usage of resources spread across multi-
domain platforms as if it were a single infrastructure requires an integrated middle-
ware. Such middleware should provide users with clear abstractions to develop 
applications that could be easily adapted to be deployed with different resource 
providers, despite different underlying characteristics of resources.

In the next section, we present in more detail a component-based integrating 
middleware, which emphasizes a clear separation between application development 
and the execution platform. This middleware eases the transition from clusters to 
grids and Clouds by providing seamless deployment and multi-protocol point-to-
point and multi-point communication in multi-domain environments.

10.4.2 � The Hierarchical SPMD Concept and Multi-level 
Partitioning of Numerical Meshes

The traditional way of designing domain decomposition-based simulations is to adopt 
an SPMD technique combining mesh-partitioning and the message-passing program-
ming model. The hierarchical SPMD is an evolution of the traditional flat SPMD 
parallel programming paradigm toward a heterogeneous hierarchical approach. 
The hierarchical SPMD concept consists in assigning hierarchical identifiers to 
processes and treating collective communications in a topology-aware manner.
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Heterogeneity in network and resources is a challenging issue for domain 
decomposition based scientific applications. The main reason comes from the fact that 
these applications rely upon a bulk synchronous iterative approach and applications 
loop at the pace of the slowest process. The hierarchical network topology and 
computing power heterogeneity must therefore be considered in the mesh-partitioning 
and communication process.

We propose a multi-level partitioning approach to balance load among processors 
and optimize the communication process. The multi-level partitioner is capable of 
taking into account the characteristics of the resources (CPU power and amount of 
memory) and their topology to partition a global mesh in a way such that each 
process presents an equivalent processing time, yet minimizing communication 
through slower links [9]. The different levels defining the physical hierarchy are 
mapped into the communication process, which is configured depending on the 
effective location of communicating processes and the available communication 
protocols. The runtime also takes topology into account to stage the communication 
operations so that communication over slower networks (e.g. Internet) is avoided.

10.4.3 � The GCM/ProActive-Based Lightweight Framework

The GCM/ProActive-based lightweight framework takes the form of a component-
based infrastructure that offers support to multi-protocol communication. This 
infrastructure is composed according to the hierarchy of resources and gives the 
applications a view of a unique global computing infrastructure, despite the 
localization and access restrictions of resources.

Figure 10.5 shows an example of such composition, which reflects a single global 
application deployed upon a resources set onto two separate but interconnected admin-
istrative domains. On the left, we run a standalone MPI application on a Cloud (e.g. a 
set of Amazon EC2 instances) and on the right, another standalone MPI application 
runs over a multi-cluster based grid (e.g. the Grid5000). Each of the MPI processes 
is wrapped by a GCM primitive component that is connected to the external 

Router 1Router 0

p1:0 p1:2

p1:1
p0:0

p0:1

MxN Interface

Proxy  Component Router Component

Fig. 10.5  Typical GCM/ProActive based multidomain runtime support for HPC
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router component representing the next level up in the infrastructure. Owing to the 
hierarchical composition and the routing interfaces associated with higher levels, all 
the nodes are logically connected, even if indirectly, to every other in the multi-domain. 
Hence, the independent MPI executions are coupled to form a single parallel application 
along the Hierarchical SPMD concept.

Collective communications profit from the topology, enabling them to be staged 
and parallelized. Besides, and whenever possible, for optimization purposes we can 
create on-demand direct bindings to perform point-to-point communications, thus 
bypassing the hierarchy.

10.4.4 � Performance Evaluation

We evaluate the component-based framework and the hierarchical SPMD 
model through a nontrivial simulation of electromagnetic-wave propagation in 
three-space dimensions. This simulation is based on a finite element method 
working on arbitrarily unstructured tetrahedral meshes for solving a system of 
Maxwell equations.

From the computational point of view, the execution is characterized by two types 
of operations: purely local operations on the tetrahedra for computing integral values 
and a calculation involving neighbor subdomains, which involves a gather-compute-
scatter sequence. Formulations are described in more detail in [5].

In [9], we highlighted performance improvements for applications developed 
along the Hierarchical SPMD concept when compared with pure “flat” MPI implemen-
tations including grid-aware ones (as Grid-MPI). The experimental results we present 
here focus on the comparison among three scenarios: a multi-cluster grid, Amazon 
EC2, and a multi-domain environment that couple both setups.

The experiments we present here were conducted in one cluster (grelon, located 
in Nancy, France) of the Grid5000 testbed and the Amazon EC2 platform with two 
instance sizes: Small instances and High-CPU Extra Large instances. Grid5000 
resources present Dual Core Intel Xeon 5110 (1.6 GHz) with 2 GB of memory and 
Gigabit Ethernet interconnection. Small Amazon EC2 instances represent one com-
pute unit with 1 GB of memory, and High-CPU Extra Large represent 20 compute 
units (eight virtual cores with 2.5 EC2 Compute Units each) with 7 GB of memory. 
The software involved in these experiments are Java Sun SDK v1.6.0_07, ProActive 
v3.91, and GridMPI v2.1.1.

Figure 10.6 presents the overall execution times and MFlops/s obtained in the 
different scenarios. With the application being network- and CPU-intensive, both 
CPU and network affect the overall performance. On average, Small Amazon EC2 
instances present a performance four times smaller than one using the standard 
cluster of Grid5000. High-CPU Extra Large instances present a better CPU perfor-
mance than Grid5000 machines, but provide a slower network interconnection 
which results in a comparable global performance. A mix of Grid5000 resources 
and Small Amazon EC2 does not perform well when compared with single-site 
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execution over Grid5000; even with the balance of load by the partitioner, processes 
running on EC2 presented lower performance. Using both Grid5000 resources and 
Extra Large EC2 instances has proved to be more advantageous, presenting, on 
average, only 15% of overhead for such inter-domain execution when compared 
with the average of the best single domain ones. This is mainly due to high-latency 
communication and message tunneling, but this overhead could be further softened 
because of the possibility of adding extra resources to/from the grid/Cloud.

From a cost-performance point of view, previous performance evaluations of 
Amazon EC2 [10] showed that MFlops obtained per dollar spent decreases expo-
nentially with increasing computing cores, and the cost for solving a linear system 
increases exponentially with the problem size. Our results indicate the same when 
using Cloud resources exclusively. Mixing resources, however, seems to be more 
feasible since a trade-off between performance and cost can be reached by the 
inclusion of in-house resources in computation.

10.5 � Dynamic Mixing of Clusters, Grids, and Clouds

As we have seen, mixing Cloud and private resources can provide performance 
close to that of a larger private cluster. However, doing so in a static way can lead 
to a waste of resources if an application does not need the computing power during 
its complete lifetime. We will now present a tool that enables the dynamic use of 
Cloud resources.

10.5.1 � The ProActive Resource Manager

The ProActive Resource Manager is a software for resource aggregation across the 
network, developed as a ProActive application. It delivers compute units represented 

Fig. 10.6  Performance over Grid5000, Amazon EC2, and resource mix
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by ProActive nodes (Java Virtual Machines running the ProActive Runtime) to a 
scheduler that is in charge of handling a task flow and distributing tasks or acces-
sible resources. Owing to the deployment framework, presented in the Section 3.2, 
it can retrieve computing nodes using different standards such as SSH, LSF, OAR, 
gLite, EC2, etc. Its main functions are:

Deployment, acquisition, and release of ProActive nodes to/from an underlying •	
infrastructure
Supplying ProActive Scheduler with nodes for task executions, based on •	
required properties
Maintaining and monitoring the list of resources and managing their states•	

Resource Manager is aimed at abstracting the nature of a dynamic infrastructure 
and simplifying effective utilization of multiple computing resources, enabling their 
exploitation from different providers within a single application. In order to achieve 
this goal, the Resource Manager is split into multiple components.

The core is responsible for handling all requests from clients and delegating 
them to other components. Once the request for getting new nodes for computation 
is received, the core “redirects it to a selection manager.” This component finds 
appropriate nodes in a pool of available nodes based on criteria provided by clients, 
such as a specific architecture or a specific library.

The pool of nodes is formed by one or several node aggregators. Each aggregator 
(node source) is in charge of node acquisition, deployment, and monitoring from a 
dedicated infrastructure. It also has a policy defining conditions and rules of acquir-
ing/releasing nodes. For example, a time slot policy will acquire nodes only for a 
specified period of time.

All platforms supported by GCMD are automatically supported by the ProActive 
Resource Manager. When exploiting an existing infrastructure, the Resource 
Manager takes into account the fact that it could be utilized by local users, and 
provides fair resource utilization. For instance, Microsoft Compute Cluster Server 
has its own scheduler and the ProActive deployment process has to go through it 
instead of contacting cluster nodes directly. This behavior makes possible the 
coexistence of ProActive Resource Manager with others without breaking their 
integrity.

As we mentioned earlier, the node source is a combination of infrastructure and 
a policy representing a set of rules driving the deployment/release process. Among 
several such predefined policies, two have to be mentioned. The first addresses a 
common scenario when resources are available for a limited time. The second is a 
balancing policy – the policy that holds the number of nodes depending on the 
user’s needs. One such balancing policy is implemented by the Proactive Resource 
Manager, which acquires new nodes dynamically when the scheduler is over-
loaded and releases them as soon as there is no more activity in the scheduler.

Using node sources as building blocks helps to describe all resources at your 
disposal and the way they are used. Pluggable and extensible policies and infra-
structures make it possible to define any kind of dynamic resource aggregation 
scenarios. One of such scenario is Cloud bursting.
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10.5.2 � Cloud Bursting: Managing Spike Demand

Companies or research institutes can have a private cluster or use Grids to perform 
their daily computations. However, the provisioning of these resources is often 
done based on average usage for cost management reasons. When a sudden increase 
in computation arises, it is possible to offload some of them to a Cloud. This is 
often referred to as Cloud bursting.

Figure 10.7 illustrates a Cloud bursting scenario. In our example, we have an 
existing local network that is composed of a ProActive Scheduler with a Resource 
Manager. This resource manager handles computing resources such as desktop 
machines or clusters. In our figure, these are referred to as local computing nodes.

A common kind of application for a scheduler is a bag of independent tasks 
(no communication between the tasks). The scheduler will retrieve a set of free 
computing nodes through the resource manager to run pending tasks. This local 
network is protected from Internet with a firewall that filters connections.

When the scheduler experiences an uncommon load, the resource manager can 
acquire new computing nodes from Amazon EC2. This decision is based on a 
scheduling loading policy, which takes into account the current load of the sched-
uler and the Service Level Agreement provided. These parameters are directly set 
in the resource manager administrator interface. However, when offloading tasks to 
the Cloud, we have to pay attention to the boot delay that implies a waiting time of 
few minutes between a node request and its availability for the scheduler.

The Resource Manager is capable of bypassing firewalls and private networks 
by any of the approaches presented in Section 3.3.3.

10.5.3 � Cloud Seeding: Dealing with Heterogeneous Hardware 
and Private Data

In some cases, a distributed application, composed of dependent tasks, can perform 
a vast majority of its tasks on a Cloud, while running some of them on a local 

Amazon EC2
Local network

EC2 computing
instances

ProActive
Scheduler &

Resource Manager

Local computing
nodes INTERNET

HTTP Connections

RMI Connections

Firewalls

Fig. 10.7  Example of a Cloud bursting scenario



17710  An Efficient Framework for Running Applications on Clusters, Grids, and Clouds

infrastructure in order to have access to computing resources with a specific configu-
ration such as GPU equipment. This type of requirement can also happen in cases 
where some tasks use software protected by a license, and use some private data or 
algorithms which should never get out to an untrusted environment such as a Cloud.

Cloud Seeding aims at providing a solution to such problems by extending the 
capabilities of a Cloud with specific external resources.

Figure 10.8 shows a simple Cloud seeding example. In this scenario, most parts 
of the application are hosted in the Cloud. The ProActive Scheduler and the 
Resource Manager are hosted on an Amazon EC2 instance, as well as the comput-
ing nodes that are used by the scheduler. However, some tasks need a particular 
resource configuration in order to be executed, such as a GPU processor. The 
resource manager can handle, in addition to the Amazon EC2 nodes, a set of spe-
cial nodes from the customer network gathered in a seed subnet.

As seen in Section 3.3, multiple technical solutions can be used to build such a con-
figuration. In our example, we used a VPN-based solution. To enable the scheduler and 
the resource manager to communicate with these special nodes, we gather them in a seed 
subnet that hosts a VPN gateway and connects the scheduler and the resource manager 
to this VPN gateway. However, this type of configuration does not allow Amazon EC2 
instances to communicate directly with these special nodes. If we want to permit such 
communication, one solution is for each Amazon EC2 instance to create a VPN connec-
tion with the VPN gateway. Another solution is to build an Amazon VPC, as described 
in Section 3.3.2, to connect the seed and the VPC subnets together, thus creating a virtual 
network authorizing communication between any nodes in this network.

10.6 � Conclusion

In this paper, we have evaluated the benefits of Cloud computing for scientific 
applications. Although the performance can be similar to a dedicated cluster for 
computationally-intensive code, it drops when running communication-intensive 
code. This observation motivates the need for mixing Cloud and traditional computing 
platforms. Hybrid platforms require mechanisms adapted to gather resources, 
deploy applications, and ensure efficient communications.
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Fig. 10.8  Example of a simple Cloud seeding scenario
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Although a low-level solution such as VPN may be useful, these solutions are limited 
because they hide the heterogeneity and prevent the adaptation of the deployment and 
applications to the environment. Using ProActive and the ProActive/GCM deployment 
allows specifying how resources are acquired and how the communication should be 
performed (through simple protocols or message tunneling and forwarding).

We have shown that these mechanisms are powerful enough to build a modular 
grid/Cloud middleware to support scientific domain-decomposition applications. 
We illustrated this through adaptating a complex communication- and network-
intensive HPC application to run efficiently over a mix of Cloud resources and 
dedicated ones, without much overhead. Finally, we have also shown how ProActive 
Resource Manager enables dynamic mixing of Cloud and grid platforms, allowing 
both Cloud bursting and Cloud seeding within a single framework. These mecha-
nisms also offer a solution to smoothly migrating applications from clusters and 
grids to Clouds.

Experiments presented in this paper were carried out using the Grid’5000 
experimental testbed, developed under the INRIA ALADDIN development 
action with support from CNRS, RENATER, and several French Universities, as 
well as other funding bodies (see https://www.grid5000.fr). The authors would 
also like to thank Amazon Web Services and the PacaGrid CPER for providing 
computing resources.
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Abstract  From its start of using supercomputers, scientific computing constantly 
evolved to the next levels such as cluster computing, meta-computing, or computational 
Grids. Today, Cloud Computing is emerging as the paradigm for the next genera-
tion of large-scale scientific computing, eliminating the need for hosting expensive 
computing hardware. Scientists still have their Grid environments in place and can 
benefit from extending them using leased Cloud resources whenever needed. This 
paradigm shift opens new problems that need to be analyzed, such as integration of 
this new resource class into existing environments, applications on the resources, 
and security. The virtualization overheads for deployment and starting of a virtual 
machine image are new factors, which will need to be considered when choosing 
scheduling mechanisms. In this chapter, we investigate the usability of compute 
Clouds to extend a Grid workflow middleware and show on a real implementation 
that this can speed up executions of scientific workflows.

11.1 � Introduction

In the last decade, Grid computing gained became popular in the field of scientific 
computing through the idea of distributed resource sharing among institutions and 
scientists. Scientific computing is traditionally a high-utilization workload, with 
production Grids often running at over 80% utilization [1] (generating high and 
often unpredictable latencies), and with smaller national Grids offering a rather 
limited amount of high-performance resources. Running large-scale simulations in 
such overloaded Grid environments often becomes latency-bound or suffers from 
well-known Grid reliability problems [2].
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Today, a new research direction, coined by the term Cloud computing, proposes 
an alternative that could prove attractive to scientific computing scientists because of 
four main advantages. First, Clouds promote the concept of leasing remote resources 
rather than buying hardware, which frees institutions from permanent maintenance 
costs and eliminates the burden of hardware deprecation following Moore’s law. 
Second, Clouds eliminate the physical overhead costs of adding new hardware, such 
as compute nodes to clusters or supercomputers and the financial burden of perma-
nent over-provisioning of occasionally needed resources. Through “scaling-by-credit-
card,” Clouds promise to immediately scale up or down an infrastructure according 
to the temporal needs in a cost-effective fashion. Third, the concept of hardware vir-
tualization can represent a significant breakthrough for the automatic and scalable 
deployment of complex scientific software, and can also significantly improve the 
shared resource utilization. Fourth, the provisioning of resources through business 
relationships pushes specialized data center companies to offer reliable services, 
which existing Grid infrastructures fail to deliver.

Despite the existence of several integrated environments for transparent pro-
gramming and high-performance use of Grid infrastructures for scientific appli-
cations [3], there are no results yet published in the community that report on 
extending them to enjoy the benefits offered by Cloud computing. While there 
are several early efforts that investigate the appropriateness of Clouds for sci-
entific computing, they are either limited to simulations [4], do not address the 
highly successful workflow paradigm [5], or do not attempt to extend Grids 
with Clouds as a hybrid-combined platform for scientific computing.

In this chapter we extend a Grid workflow application development and comput-
ing environment to harness resources leased by Cloud computing providers. Our 
goal is to provide an infrastructure that allows the execution of workflows on con-
ventional Grid resources which can be supplemented on-demand with additional 
Cloud resources, if necessary. We concentrate our presentation on the extensions 
we brought to the resource management service to consider Cloud resources, com-
prising new Cloud management, software (image) deployment, and security com-
ponents. We present experimental results using a real-world application in the 
Austrian Grid environment, extended with an academic Cloud constructed using 
Eucalyptus middleware [6] and Xen virtualization technology [7].

The chapter continues in Section 2 with a background on the ASKALON Grid 
environment and a short introduction to several Cloud computing terms. Section 3 
presents the architecture of the Grid resource management service enhanced for 
Cloud computing, which is evaluated in Section 4 for a real application executed in 
a real Grid environment enhanced with a Cloud testbed. Section 5 compares our 
approach with the most relevant related work, and Section 6 concludes the chapter.

11.2 � Background

While there are several workflow execution middlewares for Grid computing [3], 
none is known to support the new type of Cloud infrastructure.
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11.2.1 � ASKALON

ASKALON [8] is a Grid application development and computing environment 
developed at the University of Innsbruck with the goal of simplifying the devel-
opment and optimization of applications that can harness the power of Grid and 
Cloud (see Section 2.2) computing. Figure 11.1 shows the main components of 
ASKALON. The user composes workflow applications at a high level of abstrac-
tion using an UML graphical modeling tool. Workflows are specified as a 
directed graph of activity types representing an abstract semantic description of 
the computation, such as a Gaussian elimination algorithm, a Fast Fourier 
Transform, or an N-body simulation. The activity types are interconnected in a 
workflow through control-flow and data-flow dependencies. The abstract work-
flow representation is given in an XML form (AGWL [9]) to the ASKALON 
middleware services for transparent execution onto the Grid. This task is mainly 
accomplished by a fault-tolerant enactment engine, together with a scheduling 
service in charge of computing optimized mappings of workflow activities onto 
the available Grid resources.

To achieve this task, the scheduler employs a resource management service that 
consists of two main components: GridARM for discovery and brokerage of hard-
ware resources by interfacing with a Grid information service [10], and GLARE for 
registration and provisioning of software resources. An important component of 
GLARE is the automatic provisioning of activity deployments on remote Grid sites, 
which are properly configured installations of the legacy software and services 
implementing the activity types. Once an activity deployment has been installed, we 
say that the remote resource has been provisioned, and can be used by the scheduler 
and enactment engine for the workflow execution. This execution can be monitored 
using graphical tools [11] or via the engine’s event system.
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Fig. 11.1  Simplified ASKALON architecture extended for computational clouds
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11.2.2 � Cloud Computing

The term Cloud computing is being increasingly used for provisioning various ser-
vices through the Internet, which are billed like utilities.

From a scientific point of view, the most popular interpretation of Cloud com-
puting is Infrastructure as a Service (IaaS), which provides generic means for host-
ing and provisioning access to raw computing infrastructure and its operating 
software. IaaS are typically provided by data centers renting modern hardware 
facilities to customers that only pay for what they use, which frees them from the 
burden of hardware maintenance and deprecation. IaaS is characterized by the con-
cept of resource virtualization, which allows customers to deploy and run their own 
guest operating system on top of the virtualization software (e.g. [7]) offered by the 
provider. Virtualization in IaaS is also a key step toward distributed, automatic, and 
scalable deployment, installation, and maintenance of software.

To deploy a guest operating system showing to the user another abstract and 
higher-level emulated platform, the user creates a virtual machine image, in short 
image. In order to use a Cloud resource, the user needs to copy and boot an image 
on top, called virtual machine instance, in short instance. After an instance has been 
started on a Cloud resource [12], we say that the resource has been provisioned and 
can be used. If a resource is no longer necessary, it must be released such that the 
user no longer pays for its use.

Commercial Cloud providers typically offer customers a selection of resource 
classes or instance types with different characteristics including CPU type, number 
of cores, memory, hard disk, and I/O performance.

11.3 � Resource Management Architecture

To enable the ASKALON Grid environment use Cloud resources from different 
providers, we extended the resource management service to three new components: 
Cloud management (see Section 3.1), image catalog (see Section 3.2), and security 
mechanisms (see Section 3.3).

Whenever the high-performance Grid resources are exhausted, the ASKALON 
scheduler has the option of supplementing them with additional ones leased from 
Cloud providers to complete the workflow faster. A limit for the maximum num-
ber of leased resources that are requested is set for each cloud in their credential 
properties. This limit helps to save money and stay within the resource limits given 
by the cloud provider. EC2 allows the users to request up to 20 instances on a 
normal account, while bigger resource requests require contacting Amazon. Our 
Eucalyptus-based private cloud (dps.cloud) offers 12 cores and any further requests 
can not be served, so the limit for resource requests was set to 12. When a deploy-
ment request for a new Cloud resource arrives from the scheduler, the resource 
manager arranges its provisioning by performing the following steps (see 
Fig.11.2):
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1.	Retrieves a signed request for a certain number of activity deployments needed 
to complete the workflow.

2.	The security component checks the credential of the request, and which Clouds 
are available for the requesting user (see Section 3.3).

3.	The image catalog component retrieves the predefined registered images for the 
accessible Clouds (see Section 3.2).

4.	The images are checked to see whether they include the requested activity deploy-
ment or if they have the capability to auto-deploy.

5.	The instances are started using the Cloud management component, and the image 
boot process is monitored until a (SSH) control connection is possible to the new 
instance. If the instance does not contain the requested activity deployment, an 
optional auto-deployment process using GLARE takes place.

6.	A new entry is created in GridARM with all information required by the new 
instance, such as identifier, IP address, and number of CPUs.

7.	All the activity deployments contained in the booted image are registered in 
GLARE.

8.	  The resource manager replies to the scheduler with the new deployments for the 
requested activity types.
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11.3.1 � Cloud Management

In terms of functionality, the Cloud-enabled resource manager extends the Grid 
resource manager with two new runtime functions: the request for new deploy-
ments for a specific activity type and the release of a resource after its use ended. 
The Cloud management component is responsible for provisioning, releasing, and 
checking the status of an instance.

Figure 11.3 shows a generic instance state transition diagram, which we con-
structed by analyzing the instance states in different Cloud implementations 
[12,13]. Upon a request for additional resources, the Cloud management compo-
nent selects the resources (instance types) with the best price/performance1 ratio, 
matching the request to which it transfers an image containing the required activity 
deployments, or enabled with auto-deployment functionality (state starting). In the 
running state, the image is booted, while in the accessible state, the instance is 
ready to be used. In the resizing phase, the underlying hardware is reconfigured, for 
example by adding more cores or memory, while in the restarting phase, the image 
is rebooted, for example, upon a kernel change. The release of an image upon shut 
down is signaled by the terminated state. The failed state indicates any error that 
automatically releases the resource.

Upon a resource release, the instance and all the deployments registered are 
removed from GridARM and GLARE. However, if there are pending requests for 
an existing instance containing the required deployments, the resource manager can 
optimize the provisioning by reusing the same instance for the next user if they 
share the same Cloud credential (or if other trust mechanisms allow it).

Starting
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Shutting
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Accessible

TerminatedFailed

Restarting

Requested

Resizing

Fig. 11.3  Cloud instance state transition diagram

1 Using the Linpack benchmark results for the different Cloud instance types, as shown in 
Table 11.6.
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The Cloud manager also maintains a registry of the available resource classes (or 
instance types) offered by different Cloud providers containing the number of 
cores, the amount of memory and hard disk, I/O performance, and cost per unit of 
computation. For example, Table 11.1 contains the resource class information 
offered by four Cloud providers, which need to be entered by the resource manager 
admin in the Cloud management registry due to the lack of a corresponding API.

Today, different commercial and academic Clouds provide different interfaces to 
their services, as no official standard has yet been defined. We are using, in the 
Cloud management component, the Amazon API [16] defined by EC2, which is 
also implemented by Eucalyptus [6] and Nimbus (previously known as Globus 
Workspaces [17]) and used for building “academic Clouds.” To support more 
Clouds, plug-ins to other interfaces or use of metacloud software [18] is required. 
Table 11.2 shows an overview of Cloud providers that are currently offering API 
access to provision and release their resources, and which could therefore be inte-
grated into an automatic resource management system. This overview also shows 
the difference in the available hardware configurations of the selected providers. 
There is also a wide range of Cloud providers that do not offer an API to control 
the instances and therefore are not listed.

11.3.2 � Image Catalog

Each Cloud infrastructure provides a different set of images offered by the provider 
or defined by the users, which need to be organized in order to be of use. For 
example, the Amazon EC2 API provides built-in functionality to retrieve the list of 

Table 11.1  Characteristics of the resource classes offered by four selected clouds as of December 
2009

Cloud Name
Cores 
(ECUs)

RAM 
[GB]

Arch. 
[bit] I/O Perf.

Disk 
[GB]

Cost 
[$/h]

Amazon EC2 m1.small 1 (1) 1.7 32 Medium 160 0.085
m1.large 2 (4) 7.5 64 High 850 0.34
m1.xlarge 4 (8) 15.0 64 High 1,690 0.68
c1.medium 2 (5) 1.7 32 Medium 350 0.17
c1.xlarge 8 (20) 7.0 64 High 1,690 0.68
m2.2xlarge 4 (13) 34.2 64 High 850 1.2
m2.4xlarge 8 (26) 68.4 64 High 1,690 2.4

GoGrid GG.small 1 1.0 32 – 60 0.19
GG.large 1 1.0 64 – 60 0.19
GG.xlarge 3 4.0 64 – 240 0.76

ElasticHosts[14] EH.small 1 1.0 32 – 30 £0.042
EH.large 1 4.0 64 – 30 £0.09

Mosso[15] Mosso.small 4 1.0 64 – 40 0.06
Mosso.large 4 4.0 64 – 160 0.24
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available images, while other providers only offer plain text HTML pages listing 
their offers. A few providers even have the lists of possible images hidden in their 
instance start API documentation. The information about the images provided by 
different Cloud providers is in all cases limited to simple string names, and lacks 
additional semantic descriptions of image characteristics, such as the supported 
architecture, operating system type, embedded software deployments, or support 
for auto-deployment functionality. The task of the image catalog is to systemati-
cally organize this missing information, which is registered manually by the 
resource manager administrator.

Figure11.4 shows the hierarchical image catalog structure where each provider has an 
assigned set of images, and for each image, there is a list of embedded activity deploy-
ments, or which can be automatically deployed. Custom images with embedded deploy-
ments have reduced the provisioning overhead, as the deployment part is skipped.

Images are currently not interoperable between Cloud providers that generate a 
large image catalog that needs to be managed. As Table  11.2 demonstrates, the 
variety of offers between different providers is high. For example, Amazon EC2 has 
by far the most images available, also due to the fact that users can upload their 
custom or modified images and make them available to the community. At the other 
extreme, Agathon [19] only provides one standard instance for its users. The bus 
size of the different images may create additional problems with the activity 
deployments on the started instances. For example, Amazon EC2 only offers 32-bit 
architectures on their two cheapest instance types, while the others are 64 bit.

11.3.3 � Security

Security is a critical topic in Cloud computing with applications running and producing 
confidential data on remote unknown resources that need to be protected. Several 

Table 11.2  Feature summary of selected cloud providers supporting automatic resource management 
as of December 2009

Property/
provider

Agathon 
[19]

Amazon 
EC2 [12]

FlexiScale 
[20] GoGrid [13] dps.cloud

Bus size 
operating 
system

64 32, 64 32, 64 32, 64 64
Linux Linux Linux Linux Linux

Windows Windows Windows
Number of images 1 4105 5 14 3

1 (Windows) 3 (Windows) 11 (Windows)
Hardware configs 32 5 40 5 3
Auth. service Login 

password
X.509 

certificate
Login 

password
Key, MD5 

signature
X.509 

certificate
Auth. instance Login 

password
RSA keypair Login 

password
Login password RSA keypair

Middleware AppLogic 
[21]

Proprietary Proprietary Proprietary Eucalyptus 
[6]
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issues need to be addressed, such as authentication to the Cloud services and the 
started instances, as well as securing user credit card information. Authentication is  
supported by existing providers either through a key pair and certificate mechanism 
or by using login and password combinations (see Table 11.2).2

One can distinguish between two types of credentials in Cloud environments:

•	 User credential is a persistent credential associated with a credit card number 
used for provisioning and releasing Cloud resources.

•	 Instance credential is a temporary credential used for manipulating an instance 
through the SSH protocol.

As these credentials are issued separately by the providers, users will have dif-
ferent credentials for each Cloud infrastructure, in addition to their Grid Security 
Infrastructure (GSI) certificate. The resource manager needs to manage these cre-
dentials in a safe manner, while granting secure access to the deployed Cloud 
resources to the other services and application.

The security mechanism of the resource manager is based on GSI proxy delega-
tion credentials, which we extended with two secured repositories for Cloud access:

A •	 MyCloud repository that similar to a MyProxy repository [22], stores copies of 
the user credentials which can only be accessed by authenticating with a GSI 
credential associated with it.
A •	 MyInstance repository for storing temporary instance credentials generated 
for each started instance.

The detailed security procedure upon an image deployment request is as follows 
(see Fig.11.5):

Deploy
ments

ImagesCloud
providers

EC2

Eucalyptus

Open Nebular

...

FC5.2 image

MPI enabled 

...

FC5.2

TinyLinux

...

WIEN2K

Povray

EchoDate

Blender

...

Fig. 11.4  The image catalogue hierarchical architecture

2 Some Cloud providers [19] require the configuration of virtual private networks (VLAN) to 
authenticate with the Cloud that requires the automatic creation of SSH tunnels using port 
forwarding; we plan to explore this in future work.
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1.	 A GSI-authenticated request for a new image deployment is received.
2.	 The security component checks in the MyCloud repository for the Clouds for 

which the user has valid credentials.
3.	 A new credential is generated for the new instance that needs to be started. In 

case multiple images need to be started, the same instance credential can be used 
to reduce the credential generation overhead (about 6–10 s in our experiments, 
including the communication overhead).

4.	 The new instance credentials are stored in the MyImage repository, which will 
only be accessible to the enactment engine service for job execution after  proper 
GSI authentication.

5.	 A start instance request is sent to the Cloud using the newly generated instance 
credential.

6.	 When an instance is released, the resource manager deletes the corresponding 
credential from the MyInstance repository.

11.4 � Evaluation

We extended the ASKALON enactment engine to consider our Cloud extensions 
by transferring files and submitting jobs to Cloud resources using the SCP/SSH 
provider of the Java CoG kit [23]. Some technical problems with these providers of 
the CoG kit required us to change the source code and create a custom build of the 
library to allow seamless and functional integration into the existing system.

For our experiments, we selected a scientific workflow application called 
Wien2k [24], which is a program package for performing electronic structure 
calculations of solids using density functional theory based on the full-potential 
(linearized) augmented plane-wave ((L)APW) and local orbital (lo) method. The 
Wien2k Grid workflow splits the computation into several course-grain activities, 

Security

MyCloud

MyInstance

GSIdeploymentrequest

1 request and
release

functions

2

generate Keypair,
start instance

3, 5

Clouds
Management

4 store private Key

Fig. 11.5  Combined 
grid-cloud security  
architecture
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the work distribution being achieved by two parallel loops (second and fourth) 
consisting of a large number of independent activities calculated in parallel.

The number of sequential loops is statically unknown. We have chosen a prob-
lem case (called atype) that we solved using 193 and 376 parallel activities, and a 
problem size of 7.0, 8.0, and 9.0, which represents the number of planewaves that 
is equal to the size of the eigenvalue problem (i.e. the size of the matrix to be diago-
nalized) referenced as problem complexity in this work.

Figure 11.6 shows on the left the UML representation of the workflow that can be 
executed with ASKALON, and on the right, a concrete execution directed acyclic 
graph (DAG) showing one iteration of the while loop and four parallel activities in 
the parallel sections. The workflow size is determined at runtime as the parallelism is 
calculated by the first activity, and the last activity generates the result, which helps 
decide if the main loop is executed again or the result reaches the specified criteria.

We executed the workflow on a distributed testbed summarized in Table 11.3, 
consisting of four heterogeneous Austrian Grid sites [25] and 12 virtual CPUs from 
an “academic Cloud” called dps.cloud built using the Eucalyptus middleware [6] 
and the XEN virtualization mechanism [7]. We configured the dps.cloud resource 
classes to use one core, while multi-core configurations were prohibited by a bug in 
the Eucalyptus software (planned to be fixed in the next released). We fixed the 

<<ParallelFor>> pforLAPW1 lapw1Index=1:first/kpoints:1

<<Activity>>

second

<<ParallelFor>> pforLAPW2 lapw2TOTIndex=1:first/kpoints:1

<<Activity>>

fourth

<<Activity>>

first

<<Activity>>

third

<<Activity>>
last

true

false first

secondsecond second second

third

last

fourthfourth fourth fourth

Fig. 11.6  The Wien2k workflow in UML (left) and DAG (right) representation
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machine size of each Grid site to 12 cores to eliminate the variability in the resource 
availability and make the results across different experiments comparable.

We used a just-in-time scheduling mechanism that tries to map each activity onto 
the fastest available Grid resource. Once the Grid becomes full (because the size of 
the workflow parallel loops is larger than the total number of cores in the testbed), the 
scheduler starts requesting additional Cloud resources for executing, in parallel, the 
remaining workflow activities. Once these additional resources are available, they 
will be used to link Grid resources with different job submission methods.

Our goal was to compare the workflow execution for different problem sizes on 
the four Grid sites, with the execution using the same Grid environment supple-
mented by additional Cloud resources from dps.cloud. We executed each workflow 
instance five times and reported the average values obtained. The runtime variabil-
ity in the Austrian Grid was less than 5%, because the testbed was idle during our 
experiments and each CPU was dedicated to running its activity with no external 
load or other queuing overheads.

Table11.4 shows the workflow execution times for 376 and 193 parallel activities 
in six different configurations. The small, medium, and big configuration values 
represent a problem size parameter that influences the execution time of the parallel 
activities. The improvement in using Cloud resources when compared with using 
only the four Grid sites increases from a small 1.08 speedup for short workflows 
with 14-min execution time, to a good 1.67 speedup for large workflows with 
93-min execution time. The results show that a small and rather short workflow does 
not benefit much from the Cloud resources due to the high ratio between the smaller 

Table 11.3  Overview of resources used from the grid and the private cloud for workflow 
execution

Grid site Location Cores used CPU type GHz Mem/core

karwendel Innsbruck 12 Opteron 2.4 1,024 mb
altix1.uibk Innsbruck 12 Itanium 1.4 1,024 mb
altix1.jku Linz 12 Itanium 1.4 1,024 mb
hydra.gup Linz 12 Itanium 1.6 1,024 mb
dps.cloud Innsbruck 12 Opteron 2.2 1,024 mb

Table 11.4  Wien2K execution time and cost analysis on the Austrian grid with and without cloud 
resources for different number of parallel activities and problem sizes

Parallel 
activities

Problem 
complexity

Grid 
execution

Grid + 
cloud 
execution

Speedup 
using 
Cloud

Used 
instances

Paid 
instances $/T $/

minHours $ Hours $

193 Small (7.0) 874.66 803.66 1.09 2.7 0.54 12 2.04 1.72
193 Medium (8.0) 1,915.41 1218.09 1.57 4.1 0.82 12 2.04 0.18
193 Big (9.0) 3,670.18 2193.79 1.67 7.3 1.46 12 2.04 0.08
376 Small (7.0) 1,458.92 1275.31 1.14 4.3 0.86 12 2.04 0.67
376 Medium (8.0) 2,687.85 2020.17 1.33 6.7 1.34 12 2.04 0.18
376 Big (9.0) 5,599.67 4228.90 1.32 14.1 2.81 24 4.08 0.17



19111  Resource Management for Hybrid Grid and Cloud Computing

computation and the high provisioning and data transfer overheads. The main 
bottleneck when using Cloud resources is that the provisioned single core instances 
use separate file systems that require separate file transfers to start the computation. 
In contrast, Grid sites are usually parallel machines that share one file system across 
a larger number of cores, which significantly decreases the data transfer overheads. 
Nevertheless, for large problem sizes, the Cloud resources can help to significantly 
shorten the workflow completion time in case Grids become overloaded.

Table 11.5 gives further details on the file transfer overheads and the distribution of 
activity instances between the pure Grid and the combined Grid-Cloud execution. The 
file transfer overhead can be reduced by increasing the size of a resource class (i.e. 
number of cores underneath one instance, which share a file system and the input files 
for execution), which may result in a lower resource allocation efficiency as the resource 
allocation granularity increases. We plan to investigate this tradeoff in future work.

 To understand and quantify the benefit and the potential costs of using com-
mercial Clouds for similar experiments (without running the Wien2k workflows 
once again because of cost reasons), we executed the LINPACK benchmark [26] 
that measures the GFlop sustained performance of the resource classes offered by 
three Cloud providers: Amazon EC2, GoGrid (GG), and our academic dps.cloud 
(see Table 11.1). We configured LINPACK to use the GotoBLAS linear algebra 
library (one of the fastest implementations on Opteron processors in our experi-
ence) and MPI Chameleon [27] for instances with multiple cores. Table  11.6 
summarizes the results that show the m1.large EC2 instance as being the closest to 
the dps.cloud, assuming that the two cores are used separately, which indicates an 
approximate realistic cost of $0.20 per core hour. The best sustained performance 
is offered by GG; however, it has extremely large resource provisioning latencies 

Table 11.5  Grid versus cloud file transfer and activity instance distribution 
to grid and cloud resources [t]

Parallel 
activities

File transfers Activities run

Total To grid To cloud Total On cloud

376 2,013 1,544 469 (23%) 759 209 (28%)
193 1,127 778 349 (31%) 389 107 (28%)

Table 11.6  Average LINPACK sustained performance and resource provisioning latency results 
of various resource classes (see Table 11.1)

Instance
dps.
cloud m1.smallm1.large m1.xl c1.medium c1.xl GG.1gig GG.4gig

Linpack 
(GFlops)

4.40 1.96 7.15 11.38 3.91 51.58 8.81 28.14

Number of cores 1 1 2 4 2 8 1 3
GFlops per core 4.40 1.96 3.58 2.845 1.955 6.44 8.81 9.38
Speedup to dps 1 0.45 1.63 2.58 0.88 11.72 2.00 6.40
Cost [$ per hour] 0 (0.17) 0.085 0.34 0.68 0.17 0.68 0.18 0.72
Provisioning time 

[s]
312 83 92 65 66 66 558 1,878
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(see next paragraph). The c1.xlarge (c1.xl) resource class provides the best per-core 
sustained performance from the Amazon EC2 instances; however, it aggregates 
eight cores and therefore has an increased cost per hour.

We also measured the resource provisioning time in the three Clouds, that is, the 
time elapsed from when resources are requested until they are accessible (see 
Fig. 11.3). The dps.cloud has an average provisioning time of about 5 min because of 
the slower hard-drive available. Amazon EC2 is the fastest and needs about 74 s, while 
GG is surprisingly slow and needs 20 min on an average. The dps.cloud provisioning 
time could be improved through faster storage hardware, while future versions of 
Eucalyptus also promise an improvement in image management and caching.

A characteristic of all Clouds that we surveyed is that they charge the resource 
consumption based on hourly billing increments, and not based on 1s billing incre-
ments, as assumed by the simulations performed in two recent related works [4,5]. 
Table 11.4 shows that for our relatively short workflows below 2 h, there can be a 
significant difference between the hourly and the 1s billing increment policies. This 
ratio is decreasing with the growing problem size from 4.4 for the smallest work-
flow to 1.64 for the largest workflow.

Finally, we define a new metric called $ per unit of saved time ($/T) as the ratio 
between the time gained by using Cloud resources and total cost of these resources. 
The results show that the medium and big workflows are the most convenient to be 
scaled on additional Cloud resources and cost between $0.08 and $0.18 per saved 
minute, while the small workflows exhibit high costs of up to $1.72 per minute 
because of the hourly billing increments.

11.5 � Related Work

Deelman et al. [4] analyzed the cost of Cloud storage for an image mosaic work-
flow and a possible on-demand calculation of the results. The work is based on an 
Amazon EC2 and S3 simulation rather than the real execution. The computation 
cost model is based on 1s billing increment and the storage cost model on a byte-
per-second billing increment, in contrast to the real Cloud providers that are 
charged based on hourly, gigabyte-per-month billing increments.

Assuncao et al. [5] described an approach of extending a local cluster with Cloud 
resources using two schedulers, one for the cluster and one for the Cloud, applying 
different strategies. The possible benefit of not violating deadlines and achieving 
higher cluster throughput is analyzed. The system concentrates on clusters and does 
not extend its scope to Grids or multiple Cloud providers. Their results are generated 
using simulation and do not take the real speed of Cloud resources into account.

Gropp et al. [28] check the usability of Cloud computing for scientific applica-
tions using several benchmarks, and shows that Cloud computing can be useful to 
scientific computing in general.

Yigitbasi et al. [29], present a framework to analyze the performance of Clouds 
and the results encourage the usability of Clouds for loosely-coupled jobs such as 
in workflows.
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11.6 � Conclusions and Future Work

In this chapter, we extended a Grid workflow development and computing environ-
ment to use on-demand Cloud resources in Grid environments offering a limited 
amount of high-performance resources. We presented extensions to the resource-
management architecture to consider Cloud resources comprising three new com-
ponents: Cloud management for automatic image management, image catalog for 
management of software deployments, and security for authenticating with multiple 
Cloud providers. We presented experimental results of using a real-world applica-
tion in the Austrian Grid environment, extended with an academic Cloud. Our 
results demonstrate that workflows with large problem sizes can significantly ben-
efit from being executed in a combined Grid and Cloud environment. Similarly, the 
cost of using Cloud resources is more convenient for large workflows due to the 
hourly billing increment policies applied.

Our environment currently supports providers offering Amazon EC2-compliant 
interfaces, which we plan to extend for other Cloud providers. We also plan to 
investigate more sophisticated multi-criteria scheduling strategies, such as the 
effect of the resource class granularity (i.e. number of underlying cores) on the 
execution time, resource allocation efficiency, and the overall cost. In addition, we 
also intend to use the Cloud simulation framework presented in [30] for validating 
various scheduling and optimization strategies at a larger scale.
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Abstract  Clouds have evolved as the next-generation platform that facilitates 
creation of wide-area on-demand renting of computing or storage services for 
hosting application services that experience highly variable workloads and requires 
high availability and performance. Interconnecting Cloud computing system 
components (servers, virtual machines (VMs), application services) through peer-
to-peer routing and information dissemination structure are essential to avoid the 
problems of provisioning efficiency bottleneck and single point of failure that are 
predominantly associated with traditional centralized or hierarchical approaches. 
These limitations can be overcome by connecting Cloud system components using 
a structured peer-to-peer network model (such as distributed hash tables (DHTs)). 
DHTs offer deterministic information/query routing and discovery with close to 
logarithmic bounds as regards network message complexity. By maintaining a 
small routing state of O (log n) per VM, a DHT structure can guarantee determin-
istic look-ups in a completely decentralized and distributed manner.

This chapter presents: (i) a layered peer-to-peer Cloud provisioning architecture; 
(ii) a summary of the current state-of-the-art in Cloud provisioning with particular 
emphasis on service discovery and load-balancing; (iii) a classification of the exist-
ing peer-to-peer network management model with focus on extending the DHTs for 
indexing and managing complex provisioning information; and (iv) the design and 
implementation of novel, extensible software fabric (Cloud peer) that combines 
public/private clouds, overlay networking, and structured peer-to-peer indexing 
techniques for supporting scalable and self-managing service discovery and load-
balancing in Cloud computing environments. Finally, an experimental evaluation is 
presented that demonstrates the feasibility of building next-generation Cloud 
provisioning systems based on peer-to-peer network management and information 
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dissemination models. The experimental test-bed has been deployed on a public 
cloud computing platform, Amazon EC2, which demonstrates the effectiveness of 
the proposed peer-to-peer Cloud provisioning software fabric.

12.1 � Introduction

Cloud computing [1–3] has emerged as the next-generation platform for hosting 
business and scientific applications. It offers infrastructure, platform, and software 
as services that are made available as on-demand and subscription-based services 
in a pay-as-you-go model to users. These services are, respectively, referred to as 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a 
Service (SaaS). Adoption of Cloud computing platforms [4–9] as an application 
provisioning environment has the following critical benefits: (i) software enter-
prises and startups with innovative ideas for new Internet services are no longer 
required to make large capital outlays in the hardware and software infrastructures 
to deploy their services or human expense to operate it; (ii) government agencies 
and financial organizations can use Cloud services as an effective means for cost 
cutting by leasing their IT service hosting and maintenance from external cloud 
providers; (iii) organizations can more cost-effectively manage peak-load by using 
the cloud, rather than planning and building for peak load, and having under-utilized 
servers sitting there idle during off peak time; and (iv) failures due to natural disasters 
or regular system maintenance/outage may be managed more gracefully as services 
may be more transparently managed and migrated to other available cloud resources, 
hence enabling improved service-level agreement (SLA).

The process of deploying application services on publically accessible clouds 
(such as Amazon EC2 [8]) that expose their capabilities as a network of virtualized 
services (hardware, storage, database) is known as Cloud provisioning. The Cloud 
provisioning process consists of two key steps [10]: (i) VM provisioning, involving 
instantiation of one or more VMs on physical servers hosted within public or pri-
vate Cloud computing environments – the selection of a physical server for hosting 
VMs in a cloud is based on a number of mapping requirements including available 
memory, storage space, and proximity of the parent cloud; and (ii) application ser-
vice provisioning, with mapping and scheduling of requests to the services that are 
hosted within a VM or on a set of VMs. In this chapter, we mainly focus on the 
second step, which involves dynamically distributing the incoming requests among 
the services in a load-balanced and decentralized manner, given a set of VMs that 
are hosting different types of application services.

Cloud provisioning from a business services point of view involves deriving 
cloud-based application component deployments driven by expected performance 
(Quality of Service (QoS)). Clouds offer an unprecedented pool of software and 
hardware resources, which gives businesses a unique ability to handle the temporal 
variation in their service demands through dynamic provisioning or deprovisioning 
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of capabilities. Whenever there is a variation in temporal and spatial locality of 
workload such as number of concurrent users, total users, and load conditions, each 
application component must dynamically scale (application service elasticity) to 
offer good quality of experience to users, and maintain an optimal usage of cloud 
resources. Cloud-enabling any class of application service would require develop-
ing models for service placement, computation, communication, and storage, with 
emphasis on important scalability requirements.

Currently, one of the prominent Cloud service providers Amazon EC2 offers 
two services, namely CloudWatch [11] and Elastic Load Balancer [12]. 
Fundamentally, CloudWatch and Elastic Load Balancer are centralized web ser-
vices that can be associated with numerous EC2 instances. However, centralized 
approaches have several critical design limitations including: (i) single point of 
failure; (ii) lack of scalability; (iii) high network communication cost at links 
leading to the service; (iv) requirement of high computational power to serve a 
large number of resource look-up and updated queries on the server running the 
central service.

As Clouds become ready for mainstream acceptance, scalability [13] of services 
will come under more severe scrutiny due to the increasing number of online ser-
vices in the Cloud, and massive numbers of global users. To overcome the afore-
mentioned limitations, fundamental Cloud services for discovery, monitoring, and 
load-balancing should be decentralized by nature and different service components 
(VM instances and application elements) must interact to adaptively maintain and 
achieve the desired system wide connectivity and behaviour.

The rest of this chapter is organized as follows: First, a layered approach to 
architecting peer-to-peer Cloud provisioning system is presented. This is followed 
by some survey results on Cloud provisioning capabilities in leading commercial 
public clouds. The finer details related to architecting peer-to-peer Cloud service 
discovery and load-balancing techniques over DHT overlay is then presented, fol-
lowed by a discussion of the design and implementation of peer-to-peer Cloud 
provisioning (Cloud peer) software fabric. Lastly, we present the analysis and 
experimental results of the peer-to-peer Cloud provisioning implementation across 
a public Cloud (Amazon EC2) environment (Table 12.1).

Table 12.1  Summary of provisioning capabilities exposed by public Cloud platforms

Cloud platforms Load balancing Provisioning Autoscaling

Amazon Elastic 
Compute Cloud

√ √ √

Eucalyptus √ √ ×
Microsoft Windows  

Azure
√ √ √

(Fixed templates so far) (Manually at the moment)
Google App Engine √ √ √
GoGrid Cloud 

Hosting
√ √ √

(Programmatic way only)
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12.2 � Layered Peer-to-Peer Cloud Provisioning Architecture

This section presents information on various architectural elements that form the 
basis for peer-to-peer Cloud provisioning architecture. It also presents an overview 
of the applications that would benefit from the architecture, which envisages a host-
ing infrastructure consisting of multiple geographically distributed private and 
public clouds owned by one or more service providers. Figure 12.1 shows the lay-
ered design of the peer-to-peer Cloud provisioning architecture. Physical Cloud 
servers, along with core middleware capabilities, form the basis for delivering IaaS. 
The user-level middleware aims at providing PaaS capabilities. The top layer 
focuses on application services (SaaS) by making use of services provided by the 
lower layers. PaaS/SaaS services are often developed and provided by third-party 
service providers, who are different from IaaS providers.

Cloud Applications (SaaS): Popular Cloud applications include Business to 
Business (B2B) applications, traditional eCommerce type of applications, enter-
prise business applications such as CRM and ERP, social computing such as 
Facebook and MySpace, and compute, data intensive applications and content 
delivery networks (CDNs). These applications have radically different application 
characteristics and workload profiles, and hence, to cope with the variation in tem-
poral and spatial locality of service request, the application services must be sup-
ported by a Cloud provisioning infrastructure that dynamically scales the deployed 
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Infrastructure
Layer (IaaS)

Programming
Layer (SaaS)

Virtual Machine (VM), Local Resource Manager (SGE, PBS)
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Fig. 12.1  A layered peer-to-peer Cloud provisioning architecture
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services in order to achieve good performance, optimal resource usage, and hence 
offer quality experience to its end-users.

Development Framework Layer: This layer includes the software frameworks 
such as Web 2.0 Interfaces (Ajax, IBM Workplace, and Visual Studio.net Azure 
plug-in) that help developers in creating rich, cost-effective, user-interfaces for 
browser-based applications. The layer also provides the data-intensive, parallel pro-
gramming environments (such as MapReduce, Hadoop, Dryad) and composition 
tools that ease the creation, deployment, and execution of applications in Clouds.

Core Services Layer (PaaS): This layer implements the platform-level ser-
vices that provide run-time environment-enabling Cloud computing capabilities 
to application services built using User-Level Middleware. Core services at this 
layer include scheduling, fault-management, monitoring, dynamic SLA manage-
ment, accounting, billing, and pricing. Further, the services at this layer must 
be able to provide support for decentralized co-ordinated interaction, scalable 
selection, and messaging between distributed Cloud components. Some of the 
existing services operating at this layer are Amazon EC2’s CloudWatch and 
Load-balancer service, Google App Engine, Microsoft Azure’s fabric controller, 
and Aneka [14].

To be able to provide support for decentralized service discovery [15] and load-
balancing between cloud components (VM instances, application services), novel 
distributed hash table (DHT)-based PaaS layer services, techniques, and algorithms 
need to be developed at this layer for supporting complex interactions with guaran-
tees on dynamic management. In Fig. 12.1, this component of PaaS layer is shown 
as Cloud peer service. Architecting Cloud services based on decentralized network 
models or overlays (such as DHTs) is significant since DHTs are highly scalable, 
can gracefully adapt to the dynamic system expansion (new host/VM/service 
instantiation) or contraction (host/VM/service instance destruction) and outage, 
and are not susceptible to single point of failure in massive scale, internetworked 
private and public cloud environments.

Infrastructure Layer (IaaS): The computing power in Cloud computing environ-
ments is supplied by a collection of data centers that are typically installed with 
many thousands of servers. At the IaaS layer, there exist massive physical servers 
(storage servers and application servers) that power the data centers. These servers 
are transparently managed by the higher-level virtualization services and toolkits 
that allow sharing of their capacity among virtual instances of servers. These virtual 
machines (VMs) are isolated from each other, which aids in achieving fault-tolerant 
behaviour and the isolation of security contexts.

Another trend in Cloud usage is combination of private clouds with public 
clouds, in order to attend unexpected or periodic peaks in local demand without 
investing in acquiring new equipment for the local infrastructure. Resources from 
the data center may be either available for public in general (public clouds) or may 
be restricted to users belonging to the organization that owns the data center (pri-
vate clouds). It is also possible to have hybrid models, in which resources are leased 
from the public cloud whenever the private cloud cannot cope with the incoming 
demand.
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12.3 � Current State-of-the-Art and Practice in Cloud 
Provisioning

Key players in public Cloud computing, including Amazon, Microsoft, Google App 
Engine, Eucalyptus [16], and GoGrid, offer a variety of prepackaged services for 
monitoring, managing, and provisioning resources. However, the techniques imple-
mented in each of these Clouds vary.

The three Amazon Web Services (AWS), Elastic Load Balancer [12], Auto 
Scaling [17], and CloudWatch [11], together expose functionalities that are required 
for undertaking provisioning of application services on Amazon EC2. Elastic Load 
Balancer service automatically provisions incoming application workload across 
available Amazon EC2 instances. Auto-scaling service can be used to dynamically 
scale-in or scale-out the number of Amazon EC2 instances for handling changes in 
service demand patterns. And finally, the CloudWatch service can be integrated 
with the above services for strategic decision-making based on collected real-time 
information.

Eucalyptus is an open source Cloud computing platform. It is composed of three 
controllers. Among the controllers, the cluster controller is a key component to 
application service provisioning and load balancing. Each cluster controller is 
hosted on the head node of a cluster to interconnect outer public networks and inner 
private networks together. By monitoring the state information of instances in the 
pool of server controllers, the cluster controller can select the available service/
server for provisioning incoming requests. However, when compared with AWS, 
Eucalyptus still lacks some of the critical functionalities, such as autoscaling for 
built-in provisioner.

Fundamentally, Windows Azure Fabric has a weave-like structure, which is 
composed of nodes (servers and load balancers), and edges (power, Ethernet, and 
serial communications). The fabric controller manages a service node through a 
built-in service, the Azure fabric controller agent, which runs in the background 
tracking the state of the server and reporting these metrics to the controller. If a fault 
state is reported, the controller can manage a reboot of the server or a migration of 
services from the current server to other healthy servers. Moreover, the controller 
also supports service provisioning by matching the services/VMs that meet the 
required demands.

GoGrid Cloud Hosting offers developers F5 Load Balancers [18] for distributing 
application service traffic across servers, as long as IPs and specific ports of these 
servers are attached. The load balancer provides the Round Robin algorithm and 
Least Connect algorithm for routing application service requests. Also, the load 
balancer is able to sense a crash of the server, redirecting further requests to other 
available servers. But currently, GoGrid Cloud Hosting only gives developers pro-
grammatic APIs to implement their custom autoscaling service.

Unlike other Cloud platforms, Google App Engine offers developers a scalable 
platform in which applications can run, rather than providing access directly to a 
customized virtual machine. Therefore, access to the underlying operating system 
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is restricted in App Engine. Load-balancing strategies, service provisioning, and 
autoscaling are all automatically managed by the system behind the scenes.

In addition, no single Cloud infrastructure provider has its data centers at all pos-
sible locations throughout the world. As a result, Cloud application service (SaaS) 
providers will have difficulty in meeting QoS expectations for all their users. Hence, 
they would like to logically construct hybrid Cloud infrastructures (mixing multiple 
public and private clouds) to provide better support for their specific user needs. This 
kind of requirement often arises in enterprises with global operations and applications 
such as Internet service, media hosting, and Web 2.0 applications. This necessitates 
building technologies and algorithms for seamless integration of Cloud infrastructure 
service providers for provisioning of services across different Cloud providers.

12.4 � Cloud Service Discovery and Load-Balancing Using  
DHT Overlay

12.4.1 � Distributed Hash Tables

Structured systems such as DHTs offer deterministic query search results within 
logarithmic bounds on network message complexity. Peers in DHTs such as Chord, 
CAN, Pastry, and Tapestry maintain an index for O (log n) peers where n is the total 
number of peers in the system. Inherent to the design of a DHT are the following 
issues [19]: (i) generation of node-ids and object-ids, called keys, using crypto-
graphic/randomizing hash functions such as SHA-1 [19–22] – the objects and nodes 
are mapped on the overlay network depending on their key value and each node is 
assigned responsibility for managing a small number of objects; (ii) building up 
routing information (routing tables) at various nodes in the network – each node 
maintains the network location information of a few other nodes in the network; 
and (iii) an efficient look-up query resolution scheme.

Whenever a node in the overlay receives a look-up request, it must be able to 
resolve it within acceptable bounds such as in O (log n) routing hops. This is 
achieved by routing the look-up request to the nodes in the network that are most 
likely to store the information about the desired object. Such probable nodes are 
identified by using the routing table entries. Though at the core various DHTs 
(Chord, CAN, Pastry, and Tapestry, etc.) are similar, still there exist substantial dif-
ferences in the actual implementation of algorithms including the overlay network 
construction (network graph structure), routing table maintenance, and node join/
leave handling. The performance metrics for evaluating a DHT include fault-toler-
ance, load-balancing, efficiency of look-ups and inserts, and proximity awareness 
[23]. In Table 12.2, we present the comparative analysis of Chord, Pastry, CAN, 
and Tapestry based on basic performance and organization parameters. 
Comprehensive details about the performance of some common DHTs under churn 
can be found in [24].
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Other classes of structured peer-to-peer systems such as Mercury [25] do not 
apply randomizing hash functions for organizing data items and nodes. The 
Mercury system organizes nodes into a circular overlay and places data contigu-
ously on this ring. As Mercury does not apply hash functions, data partitioning 
among nodes is not uniform. Hence, it requires an explicit load-balancing scheme. 
In recent developments, new-generation P2P systems have evolved to combine both 
unstructured and structured P2P networks. We refer to this class of systems as 
hybrid. Structella [26] is one such P2P system that replaces the random graph 
model of an unstructured overlay (Gnutella) with a structured overlay, while still 
adopting the search and content placement mechanism of unstructured overlays to 
support complex queries. Other hybrid P2P design includes Kelips [27] and its vari-
ants. Nodes in Kelips overlay periodically gossip to discover new members of the 
network, and during this process nodes may also learn about other nodes as a result 
of look-up communication. Other variants of Kelips allow routing table entries to 
store information for every other node in the system. However, this approach is 
based on the assumption that the system experiences low churn rate [24]. Gossiping 
and one-hop routing approach has been used for maintaining the routing overlay in 
the work [28].

12.4.2 � Designing Complex Services over DHTs

Limitations of Basic DHT Implementations and Query Types: Traditionally, DHTs 
have been efficient for single-dimensional queries such as “finding all resources 
that match the given attribute value.” Since Cloud computing IaaS and PaaS level 
services such as servers, VMs, enterprise computers (private cloud resources), stor-
age devices, and databases are identified by more than one attribute, a search query 
for these services is always multidimensional. These search dimensions or attri-
butes can include service type, processor speed, architecture, installed operating 
system, available memory, and network bandwidth.

Based on recent information published by Amazon EC2 CloudWatch service, 
each Amazon Machine Image (AMI) instance has seven performance metrics (see 
Table 12.3) and four dimensions (see Table 12.4) associated with it. Additionally, 
these AMIs can host different application service types, including web hosting, 

Table 12.3  Performance metrics associated with an Amazon EC2 AMI instance

CPU 
Utilization

Network 
Incoming 
Traffic

Network 
Outgoing 
Traffic

Disk Write 
Operations

Disk Read 
Operations

Disk 
Write 
Bytes

Disk 
Read 
Bytes

Table 12.4  Performance dimensions associated with an Amazon EC2 AMI instance

Image ID Autoscaling group name Instance ID Instance type
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social networking, content-delivery, and high-performance computing, that have 
varying request invocation, access, and distribution patterns. The type of application 
services hosted by an AMI instance is dependent on the business needs and scien-
tific experiments. In these cases, a Cloud service discovery query (which can be 
issued by provisioning software) will combine the aforementioned attributes related 
to AMI instances and application service types and therefore can have the following 
semantics:

Cloud Service Type = “web hosting” && Host CPU Utilization < “50%” && Instance 
OSType = “WinSrv2003” && Host Processor Cores > “1” && Host Processors Speed > 
“1.5 GHz” && Host Cloud Location = “Europe”

On the other hand, VM instances deployed on the Cloud hosts needs to publish their 
information so that provisioning software can search and discover them. VM 
instances update their software and hardware configuration and the deployed 
services’ availability status by sending update query to the DHT overlay. An update 
query has the following semantics:

Cloud Service Type = “web hosting” && Host CPU Utilization = “30%” && Instance 
OSType = “WinSrv2003” && Host Processor Cores = “2” && Host Processors Speed 
= “1.5 GHz” && Host Cloud Location = “Europe”

Extending DHTs to support indexing and matching of multidimensional range (ser-
vice discovery query) or point (update query) queries, to index all resources whose 
attribute value overlaps a given search space, is a complex problem. Multidimensional 
range queries are based on ranges of values for attributes rather than on specific 
values. Compared to single-dimensional queries, resolving multidimensional que-
ries is far more complicated, as there is no obvious total ordering of the points in the 
attribute space. Further, the query interval has varying size, aspect ratio, and position 
such as a window query. The main challenges involved in enabling multidimensional 
queries in a DHT overlay include designing efficient service attribute data: (i) distri-
bution or indexing techniques; and (ii) query routing techniques.

Data Indexing Techniques for Mapping Multidimensional Range and Point 
Queries: A data indexing technique partitions the multidimensional attribute 
space over the set of VMs in a DHT network. Efficiency of the distribution 
mechanism directly governs how the query processing load is distributed among 
the Cloud peers. A good distribution mechanism should possess the following 
characteristics [29]: (i) locality: data points nearby in the attribute space should 
be mapped to the same Cloud peer, hence limiting the distributed lookup com-
plexity; (ii) load balance: the number of data points indexed by each Cloud peer 
should be approximately the same to ensure uniform distribution of query pro-
cessing; (iii) minimal metadata: prior information required for mapping the attri-
bute space to the overlay space should be minimal; and (iv) minimal management 
overhead: during VM instantiation and destruction operation, update policies 
such as the transfer of data points to a newly joined Cloud peer should cause 
minimal network traffic. Note that the assumption here is that every VM instance 
hosts a Cloud peer service, which is responsible for managing activities related 
to overlay network.
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There are different kinds of database indices [30] that can handle mapping of 
multidimensional objects such as the space filling curves (SFCs) (including the 
Hilbert curves, Z-curves), k-d tree, MX-CIF Quad tree, and R*-tree in a DHT over-
lay. In literature, these indices are referred to as spatial indices [31]. Spatial indices 
are well suited for handling the complexity of multidimensional queries. Although 
some spatial indices can have issues as regards to routing load-balance in case of a 
skewed attribute/data set, all the spatial indices are generally scalable in terms of 
the number of hops traversed and messages generated while searching and routing 
multidimensional/spatial service discovery and update queries. However, there are 
different tradeoffs involved with each of the spatial indices, but basically they can 
all support scalability and Cloud service discovery. Some spatial index would per-
form optimally in one scenario but the performance could degrade if the attribute/
data distribution changed significantly.

Routing Techniques for Handling Multidimensional Queries in DHT Overlay: 
DHTs guarantee deterministic query look-up with logarithmic bounds on network 
message cost for single-dimensional queries. However, Cloud’s service discovery 
and update query are multidimensional (as discussed in previous sections). Hence, 
the existing DHT routing techniques need to be augmented in order to efficiently 
resolve multidimensional queries. Various data structures that we discussed in the 
previous section effectively create a logical multidimensional index space over a 
DHT overlay. A look-up operation involves searching for an index or set of indexes 
in a multidimensional space. However, the exact query routing path in the multidi-
mensional logical space is directly governed by the data distribution mechanism 
(i.e. based on the data structure that maintains the indexes). In this context, various 
approaches have proposed different routing/indexing heuristics.

Efficient query routing algorithms should exhibit the following characteristics 
[29]: (i) routing load balance: every peer in the network should route forward/route 
approximately the same number of query messages; and (ii) low routing state per 
Cloud peer: each Cloud peer should maintain a small number of routing links hence 
limiting new Cloud peer (VM) join and Cloud peer (VM) state update cost. In the 
current peer-to-peer literature, multidimensional data distribution mechanisms 
based on the following structures have been proposed: (i) space filling curves; and 
(ii) tree-based structures. Resolving multidimensional queries over a DHT overlay 
that utilizes SFCs for data distribution consists of two basic steps [10]: (i) mapping 
the multidimensional query onto the set of relevant clusters of SFC-based index 
space; and (ii) routing the message to all VMs that fall under the computed SFC-
based index space. On the other hand, routing multidimensional query in a DHT 
overlay that employs tree-based structures for data distribution requires routing to 
start from the root. However, the root VM presents a single point of failure and load 
imbalance. To overcome this, the authors introduced the concept of fundamental 
minimum level. This means that all the query processing and the data storage 
should start at that minimal level of the tree rather than at the root. There are a 
number of techniques available for distributed routing in multidimensional space. 
The performance of techniques varies depending on the distribution of data in the 
multidimensional space, and VM in the underlying DHT overlay.
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12.5 � Cloud Peer Software Fabric: Design and Implementation

The Cloud peer implements services for enabling decentralized and distributed 
discovery supporting status look-ups and updates across the internetworked Cloud 
computing systems, enabling inter-application service co-ordinated provisioning for 
optimizing load-balancing and tackling the distributed service contention problem. 
The dotted box in Fig. 12.1 shows the layered design of Cloud peer service over 
DHT based self-organizing routing structure. The services built on the DHT routing 
structure extends (both algorithmically and programmatically) the fundamental 
properties related to DHTs including deterministic look-up, scalable routing, and 
decentralized network management. The Cloud peer service is divided into a number 
of sublayers (see Fig. 12.1): (i) higher level services for discovery, co-ordination, 
and messaging; (ii) low level distributed indexing and data organization techniques, 
replication algorithms, and query load-balancing techniques; (iii) DHT-based self-
organizing routing structure. A Cloud peer undertakes the following critical tasks 
that are important for proper functioning of DHT-based provisioning overlay.

12.5.1 � Overlay Construction

The overlay construction refers to how Cloud peers are logically connected over the 
physical network. The software implementation utilizes (the open source implemen-
tation of Pastry DHT known as the FreePastry) Pastry [32] as the basis for creation of 
Cloud peer overlay. A Pastry overlay interconnects the Cloud peer services based on 
a ring topology. Inherent to the construction of a Pastry overlay are the following 
issues: (i) Generation of Cloud peer is and query (discovery, update) ids, called keys, 
using cryptographic/randomizing hash functions such as SHA-1. These IDs are 
generated from 160-bit unique identifier space. The ID is used to indicate a Cloud 
peer’s position in a circular ID space, which ranges from 0 to 2160 − 1. The queries 
and Cloud peers are mapped on the overlay network depending on their key values. 
Each Cloud peer is assigned responsibility for managing a small number of queries; 
and (ii) building up routing information (leaf set, routing table, and neighborhood 
set) at various Cloud peers in the network. Given the Key K, the Pastry routing 
algorithm can find the Cloud peer responsible for this key in O (log

b
 n) messages, 

where b is the base and n is the number of Cloud Peers in the network.
Each Cloud peer in the Pastry overlay maintains a routing table, leaf set, and 

neighborhood set. These tables are constructed when a Cloud peer joins the overlay, 
and it is periodically updated to take into account any new joins, leaves, or failures. 
Each entry in the routing table contains the IP address of one of the potentially 
many Cloud peers whose id have the appropriate prefix; in practice, a Cloud peer 
is chosen, which is close to the current peer, according to the proximity metric. 
Figure 12.2 shows a hypothetical Pastry overlay with keys and Cloud peers distributed 
on the circular ring based on their cryptographically generated IDs.
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12.5.2 � Multidimensional Query Indexing

To support multidimensional query indexing (Cloud service type, Host utilization, 
Instance OS type, Host Cloud location, Host Processor speed) over Pastry overlay, 
a Cloud peer implements a distributed indexing technique [33], which is a variant 
of peer-to-peer MX-CIF Quad tree [34] data structure. The distributed index builds 
a multidimensional attribute space based on the Cloud service attributes, where 
each attribute represents a single dimension. An example of a two-dimensional 
attribute space that indexes service attributes including speed and CPU type is 
shown in Fig. 12.2. The first step in initializing the distributed index is the process 
called minimum division (f

min
). This process divides the Cartesian space into mul-

tiple index cells when the multidimensional distributed index is first created. As a 
result of this process, the attribute space resembles a grid-like structure consisting 
of multiple index cells. The cells resulting from this process remain constant 
throughout the life of the indexing domain and serve as entry points for subsequent 
service discovery and update query mapping. The number of cells produced at the 
minimum division level is always equal to (f

min
)dim, where dim is dimensionality of 

the attribute space. Every Cloud peer in the network has basic information about 
the attribute space co-ordinate values, dimensions, and minimum division level. 
Cloud peers can obtain this information (cells at minimum division level, control 
points) in a configuration file from the bootstrap peer. Each index cell at f

min
 is 

uniquely identified by its centroid, termed as the control point. In Fig. 12.2, 
f

min
 = 1, dim = 2. The Pastry overlay hashing method (DHash (co-ordinates)) is used 

to map these control points so that the responsibility for an index cell is associated 
with a Cloud peer in the overlay. For example in Fig. 12.2, DHash(x

1
, y

1
) = k10 is 

the location of the control point A (x
1
,y

1
) on the overlay, which is managed by 

Cloud peer 12.

12.5.3 � Multidimensional Query Routing

This action involves the identification of the index cells at minimum division level 
f

min
 in the attribute space to map a service discovery and update query. For a mapping 

service discovery query, the mapping strategy depends on whether it is a multidi-
mensional point query (equality constraints on all search attribute values) or multi-
dimensional range query. For a multidimensional point service discovery query, the 
mapping is straightforward since every point is mapped to only one cell in the 
attribute space. For a multidimensional range query, mapping is not always singular 
because a range look-up can cross more than one index cell. To avoid mapping a 
multidimensional service discovery query to all the cells that it crosses (which can 
create many unnecessary duplicates), a mapping strategy based on diagonal hyper-
plane of the attribute space is utilized. This mapping involves feeding the service 
discovery query’s spatial dimensions into a mapping function, IMap(query). 
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This function returns the IDs of index cells to which given query can be mapped 
(refer to step 7 in Fig. 12.2). Distributed hashing (DHash(cells)) is performed on 
these IDs (which returns keys for Pastry overlay) to identify the current Cloud peers 
responsible for managing the given keys. A Cloud peer service uses the index 
cell(s) currently assigned to it and a set of known base index cells obtained at the 
initialization as the candidate index cells. Similarly, mapping of the update query 
also involves the identification of the cell in the attribute space using the same 
algorithm. An update query is always associated with an event region [35] and all 
cells that fall fully or partially within the event region would be selected to receive 
the corresponding objects. The calculation of an event region is also based on the 
diagonal hyperplane of the attribute space. Giving in-depth information here is out 
of the scope for this chapter; however, the readers who would like to have more 
information can refer the paper [15, 30, 33] that describes the index in detail.

Fig. 12.2  A pictorial representation of Pastry (DHT) overlay construction, multidimensional data 
indexing, and routing: (1) a service hosted within a VM publishes an update query; (2) Cloud peer 
8 computes the index cell, C(x

3
,y

3
), to which the update query maps by using mapping function 

IMap(query); (3) next, distributed hashing function, DHash(x
3
, y

3
), is applied on the cell’s co-ordinate 

values, which yields an overlay key, K14; (4) Cloud peer 8 based on its routing table entry for-
wards the request to peer 12; (5) similarly, peer 12 on the overlay forwards the request to Cloud 
peer 14; (6) a provisioning service submits a service discovery query; (7) Cloud peer 2 computes 
the index cell, C(x

1
, y

1
), to which the service discovery query maps; (8) DHash(x

1
, y

1
) is applied 

that yields an overlay key, K10; (9) Cloud peer 2 based on its routing table entry forwards the 
mapping request to peer 12
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12.5.4 � Designing Decentralized and Co-ordinated  
Load-Balancing Mechanism

A co-ordinated provisioning of requests between virtual machine instances deployed 
in Clouds is critical, as it prevents the service provisioners from congesting the 
particular set of VMs and network links, which arises due to lack of complete 
global knowledge. In addition, it significantly improves the Cloud user Quality of 
Service (QoS) satisfaction in terms of response time. The Cloud peer service in 
conjunction with the Pastry overlay and multidimensional indexing technique is 
able to perform a decentralized and co-ordinated balancing of service provisioning 
requests among the set of available VMs. The description of the actual load-balancing 
mechanism follows next.

As mentioned in previous section, both service discovery query (issued by 
service provisioner) and update query (published by VMs or Services hosted 
within VMs) are spatially hashed to an index cell i in the multidimensional attri-
bute space. In Fig. 12.3, a service discovery query for provisioning request P1 is 
mapped to an index cell with control point value A, while for P2, P3, and P4, the 
responsible cell has control point value C. Note that these service discovery que-
ries are posted by service provisioners. In Fig. 12.3, a provisioning service inserts 
a service discovery query with Cloud peer p, which is mapped to index cell i. The 
index cell i is spatially hashed through IMap(query) function to an Cloud peer s. 
In this case, Cloud peer s is responsible for co-ordinating the provisioning of 
services among all the service discovery queries that are currently mapped to the 
cell i. Subsequently, VM u issues a resource ticket (see Fig. 12.3) that falls under 
a region of the attribute space currently required by the provisioning requests P3 
and P4. Next, the Cloud peer s has to decide which of the requests (either P3 or 
P4 or both) is allowed to claim the update query published by VM u. The load-
balancing decision is based on the principle that it should not lead to over-provi-
sioning of service(s) hosted within VM u. This mechanism leads to co-ordinated 
load-balancing across VMs in Clouds and aids in achieving system-wide objec-
tive function.

The examples in Table 12.5 are service discovery queries that are stored with 
a Cloud peer service at time T = 700 s. Essentially, the queries in the list arrived 
at a time £700 and waited for a suitable update query that could meet their pro-
visioning requirements (software, hardware, service type, location). Table 12.6 
depicts an update query that arrived at T = 700. Following the update query 
arrival, the Cloud peer service undertakes a procedure that allocates the available 
service capacity with VM (that published the update query) among the list of 
matching service discovery queries. Based on the updating VM’s attribute speci-
fication, only service discovery query 3 matches. Following this, the Cloud 
peer notifies the provisioning services that posted the query 3. Note that queries 
1 and 2 have to wait for the arrival of update queries that can match their 
requirements.
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Table 12.5  Service discovery query stored with a Cloud Peer service at time T

Time
Discovery 
query ID Service type Speed (GHz) Cores Location

300 Query 1 Web hosting >2 1 USA
400 Query 2 Scientific simulation >2 1 Singapore
500 Query 3 Credit card authenticator >2.4 1 Europe

Fig. 12.3  Co-ordinated provisioning across VM instances: multidimensional service provisioning 
requests {P1, P2, P3, P4}, index cell control points {A, B, C, D}, multidimensional update queries 
{l, s}, and some of the spatial hashing to the Pastry overlay, i.e. the multidimensional (spatial) coor-
dinate values of a cell’s control point is used as the Pastry key. For this figure, f

min
 =2, dim = 2
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12.6 � Experiments and Evaluation

In this section, we evaluate the performance of the proposed peer-to-peer Cloud 
provisioning concept by creating a service and VM pool that consists of multiple 
virtual machines that are hosted within the Amazon EC2 infrastructure. We assume 
unsaturated server availability for these experiments, so that enough capacity can 
always be allocated to a VM for any service request. Next, we describe the various 
details related to Cloud peer (peer-to-peer network, multidimensional index struc-
ture, and network configuration parameters), PaaS layer provisioning software, and 
application characteristics related to this experimental evaluation.

12.6.1 � Cloud Peer Details

A Cloud peer service operates at PaaS layer and handles activities related to decentral-
ized query (discovery and update) routing, management, and matching. Additionally, 
it also implements the higher-level services such as publish/subscribe-based 
co-ordinated interactions and service selections. Every VM instance, which is deployed 
on a Cloud platform, hosts a Cloud peer service (see Figs. 12.2 and 12.3) that loosely 
glues it to the overlay. Next follows the details related to Cloud peer configuration.

FreePastry1 Network Configuration: Both Cloud Peers’ nodeIDs and discovery/
update queries’ IDs are randomly generated from and uniformly distributed in the 
160-bit Pastry identifier space. Every Cloud peer service is configured to buffer a 
maximum of 1,000 messages at a given instance of time. The buffer size is chosen 
to be sufficiently large such that the FreePastry does not drop any messages. 
Other network parameters are configured to the default values as given in the file 
freepastry.params. This file is provided with the FreePastry distribution.

Multidimensional Index Configuration: The minimum division f
min

 of logical mul-
tidimensional index is set to 3, while the maximum height f

max
 of the distributed index 

tree is constrained to 3. In other words, the division of the multidimensional attribute 
space is not allowed beyond f

min
 for simplicity. The index space has provision for 

defining service discovery and update queries that specify the VM characteristics in 
four dimensions including number of application service type being hosted, number 
of processing cores available on the server hosting the VM, hardware architecture of 
the processor(s), and their processing speed. The aforementioned multidimensional 
index configuration results into 81(34) index cells at f

min
 level.

Table 12.6  Update query published with a Cloud Peer service at time T

Time VM ID Service type Speed (GHz) Processors Type

700 VM 2 Credit card authenticator 2.7 One 
(available)

Europe

1 An open source pastry DHT implementation. http://freepastry.rice.edu/FreePastry
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Service Discovery and Update Query’s Multidimensional Extent: Update queries, 
which are posted by VM instances, express equality constraints on service, installed 
software environments, and hardware configuration attribute values (e.g. =).

12.6.2 � Aneka: PaaS Layer Application Provisioning  
and Management Service

At PaaS layer, we utilize the Aneka [14] software framework that handles activities 
related to application element scheduling, execution, and management. Aneka is a 
.NET-based service-oriented platform for constructing Cloud computing environ-
ments. To create a Cloud application provisioning system using Aneka, a developer 
or application scientist needs to start an instance of the configurable Aneka con-
tainer hosting required services on each selected VM.

Services of Aneka can be clearly characterized into two distinct spaces: 
(i) Application Provisioner, a service that implements the functionality that 
accepts application workload from Cloud users, performs dynamic discovery of 
application management services via the Cloud peer service, dispatches workload 
to application management service, monitors the progress of their execution, and 
collects the output data, which returned back to the Cloud users. An Application 
Provisioner need not be hosted within a VM, it only needs to know the end-point 
address (such as web service address) of a random Cloud peer service in the overlay 
to which it can connect and submit its service discovery query; and (ii) Application 
Management Service, a service, hosted within a VM, which is responsible for han-
dling execution and management of submitted application workloads. An applica-
tion management service sits within a VM and updates its usage status, software, 
and hardware configurations by sending update queries to the overlay. One or more 
instance of application management service can be connected in a single-level 
hierarchy to be controlled by a root-level Aneka Management Co-ordinator. This 
kind of service integration is aimed at making application programming flexible, 
efficient, and scalable.

12.6.3 � Test Application

The PaaS layer software service, Aneka, supports composition and execution of 
application programs that are composed using different service models to be 
executed within the same software environment. The experimental evaluation in 
this chapter considers execution of applications programmed using a multithreaded 
programming model. The Thread programming model [14] defines an application 
as a collection of one or more independent work units. This model can be suc-
cessfully utilized to compose and program embarrassingly-parallel programs 
(parameter sweep applications). The Thread model fits better for implementing and 
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architecting new applications and algorithms on Cloud infrastructures since it gives 
finer degree of control and flexibility as regards to runtime control.

To demonstrate the feasibility of architecting Cloud provisioning services based on 
peer-to-peer network models, we consider composition and execution of Mandelbrot 
Set computation. Mathematically, the Mandelbrot set is an ordered collection of points 
in the complex plane, the boundary of which forms a fractal. The Application 
Provisioner service implements and cloud enables the Mandelbrot fractal calculation 
using a multithreaded programming model. The application submission interface 
allows the user to configure a number of horizontal and vertical partitions into which 
the fractal computation can be divided. The number of independent thread units cre-
ated is equal to the horizontal x vertical partitions. For evaluations, we vary the values 
for horizontal and vertical parameters over the interval 5 × 5, 10 × 10, and 15 × 15. 
This configuration results in observation points.

12.6.4 � Deployment of Test Services on Amazon EC2 Platform

To test the feasibility of the aforementioned services with regard to the provisioning 
of application services on Amazon EC2 cloud platform, we created Amazon 
Machine Images (AMIs) packaged with a Cloud peer, Application Management, and 
Aneka Management Co-ordinator services. The image that hosts the Aneka 
Management Co-ordinator is equipped with Microsoft Windows Server 2003 R2 
Datacenter edition, Microsoft SQL Server 2005 Express, and Internet Information 
Services 6, while the AMI hosts only the Management Service and has Microsoft 
Windows Server 2003 R2 Datacenter system installed. For every AMI, we installed 
only the essential software including mandatory Cloud peer service, which is hosted 
within a Tomcat 6.0.10, Axis2 1.2 container. Cloud peer is exposed to the provision-
ing and management services through WS* interfaces. Later, we built our custom-
ized Amazon Machine Images from the two instances, creating and starting up more 
management co-ordinator and application management services by using customized 
images. We configured three management co-ordinators and nine management ser-
vices. The management service is divided into groups of three that connect with a 
single co-ordinator resulting in a hierarchical structure. The management co-ordinator 
services communicate and internetwork through the Cloud peer fabric service. 
Figure 12.4 shows the pictorial representation of the experiment setup.

12.7 � Results and Discussions

To measure the performance of peer-to-peer Cloud provisioning technique in 
regard to response time, co-ordination delay, and Pastry overlay network message 
complexity, we consider simultaneous provisioning of test applications at Application 
Provisioner A and B (see Table  12.7). The response time for an application is 
calculated by subtracting the output arrival time of the last thread in the submission 
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list from the time at which the application is submitted. The metric co-ordination 
delay sums up the latencies for: (i) a service discovery query to be mapped to a 
Cloud peer, (ii) waiting time till an update query matches the discovery query; and 
(ii) notification delay from the Cloud peer to the Application Provisioner that origi-
nally posted the service discovery query. Pastry overlay message complexity mea-
sures the details related to the number of messages that flow through the network 
in order to: (i) initialize the multidimensional attribute space, (ii) map the discovery 
and update queries, (iii) maintain overlay, and (iv) send notifications.

Table 12.7 (response time vs. complexity) shows the results for response time in 
seconds with increasing complexity/problem size for the test application. Cloud 
consumers submit their applications with provisioner A and B. The initial experi-
mental results reveal that with increase in problem complexity (number of horizon-
tal and vertical partitions), the Cloud consumers experience increase in response 
times. The basic reason behind this behaviour of the provisioning system is related 

Table 12.7  Response time, co-ordination delay, message count versus complexity

Problem complexity 5 × 5 10 × 10 15 × 15

Provisioner A B A B A B

Response time (s) 27 27 107 104 245 229
Coordination delay (s) 5.58 7.13 26.08 24.97 60.06 48.09
Update message 3,203 3,668 3,622
Discovery message 75 400 450
Total message count 5,760 7,924 8,006

Fig. 12.4  Experiment Setup in Amazon EC2
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to the fixed number Application Management services, i.e. 9, available to the 
Application Provisioners. With increase in the problem complexity, the number of 
job threads (a job thread represents a single work unit, e.g. for a 5 × 5 Mandelbrot 
configuration, 25 job threads are created and submitted with the Application 
Provisioner) that are to be executed with management services increase, hence 
leading to worsening queuing and waiting delays. However, this behaviour of the 
provisioning system can be fixed through implementation of reactive provisioning 
of new VM instances to reflect the sudden surge in application workload processing 
demands (problem complexity). In our future work, we want to explore how to 
dynamically provision or de-provision VMs and associated Application Management 
services driven by workload processing demands.

Table 12.7 (coordination delay vs. complexity) presents the measurements for 
average co-ordination delay for each discovery query with respect to increase in the 
problem complexity. The results show that at higher problem complexity, the dis-
covery queries experience increased co-ordination delay. This happens because the 
discovery queries of the corresponding job threads have to wait for a longer period 
of time before they are matched against an update query object. However, the job 
thread processing time (CPU time) is not affected by the co-ordination delay; hence, 
the response time in Table 12.7 shows a similar trend to delay.

In Table  12.7 (message count vs. complexity), we show the message overhead 
involved with management of multidimensional index, routing of discovery and 
update query messages, and maintenance of Pastry overlay. We can clearly see that 
as application size (problem complexity) increase, the number of messages required 
for mapping the query objects and maintenance of the overlay network increase. The 
number of discovery and update messages produced in the overlay is a function of the 
multidimensional index structure that indexes and routes these queries in a distributed 
fashion. Hence, the choice of the multidimensional data indexing structure and rout-
ing technique governs the manageability and efficiency of the overlay network 
(latency, messaging overhead). Hence, there is much work required in this domain as 
regards to evaluating the performance of different types of multidimensional indexing 
structures for mapping the query messages in peer-to-peer settings.

12.8 � Conclusions and Path Forward

Developing provisioning techniques that integrate application services in a peer-to-
peer fashion is critical to exploiting the potential of Cloud computing platforms. 
Architecting provisioning techniques based on peer-to-peer network models (such 
as DHTs) is significant; since peer-to-peer networks are highly scalable, they can 
gracefully adapt to the dynamic system expansion (join) or contraction (leave, 
failure), and are not susceptible to a single point of failure. To this end, we pre-
sented a software fabric called Cloud peer that creates an overlay network of VMs 
and application services for supporting scalable and self-managing service discov-
ery and load-balancing. The functionality exposed by the Cloud peer service is very 
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powerful and our experimental results conducted on Amazon EC2 platform confirm 
that it is possible to engineer and design peer-to-peer Cloud provisioning systems 
and techniques.

As part of our future work, we would explore other multidimensional data 
indexing and routing techniques that can achieve close to logarithmic bounds on 
messages and routing state, balance query (discovery, load-balancing, coordination) 
and processing load, preserve data locality, and minimize the metadata. Another 
important algorithmic and programming challenge in building robust Cloud peer 
services is to guarantee consistent routing, look-up, and information consistency 
under concurrent leave, failure, and join operations by application services. To 
address these issues, we will investigate robust fault-tolerance strategies based on 
distributed replication of attribute/query subspaces to achieve a high level of robustness 
and performance guarantees.
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Abstract  The Nimrod tool family facilitates high-throughput science by allowing 
researchers to explore complex design spaces using computational models. Users are  
able to describe large experiments in which models are executed across changing  
input parameters. Different members of the tool family support complete and 
partial parameter sweeps, numerical search by non-linear optimisation and even 
workflows. In order to provide timely results and to enable large-scale experiments, 
distributed computational resources are aggregated to form a logically single high-
throughput engine. To date, we have leveraged grid middleware standards to spawn 
computations on remote machines. Recently, we added an interface to Amazon’s 
Elastic Compute Cloud (EC2), allowing users to mix conventional grid resources and 
clouds. A range of schedulers, from round-robin queues to those based on economic 
budgets, allow Nimrod to mix and match resources. This provides a powerful platform 
for computational researchers, because they can use a mix of university-level 
infrastructure and commercial clouds. In particular, the system allows a user to pay 
money to increase the quality of the research outcomes and to decide exactly how 
much they want to pay to achieve a given return. In this chapter, we will describe 
Nimrod and its architecture, and show how this naturally scales to incorporate clouds. 
We will illustrate the power of the system using a case study and will demonstrate 
that cloud computing has the potential to enable high-throughput science.

13.1 � Introduction

Traditionally, university research groups have used varying sources of infrastructure 
to perform computational science, from clusters owned by individual departments to 
high-end facilities funded by federal governments. While these are priced differently, 
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they have rarely been provided on a strict commercial basis. Local clusters, for 
example, are usually funded by recurrent university funding or by one-off grants. 
Further, access to these machines is controlled by the users themselves. With regard 
to high-end facilities, such as the Australian National Compute Infrastructure 
(http://www.nci.org.au) or the US TeraGrid (http://www.teragrid.org), it is often 
necessary to apply for a peer reviewed grant, and the quality of the application is 
assessed by a resource-allocation committee. However, these grants are usually 
made in terms of CPU hours rather than dollars.

Cloud computing represents a major shift in the provisioning and delivery of 
computing infrastructure and services. It enables a shift from distributed, unman-
aged resources to a variety of scalable, centralised services managed in professional 
data-centres with rapid elasticity of resource and service provisioning to users. 
Most importantly, commercial cloud services have appeared in which users can pay 
for access on an hourly basis. These resources open the opportunity for university 
researchers to buy compute time on an ad-hoc basis – shifting university funding 
models from capital expenditure to recurrent costs.

This transition poses many policy issues as well as a range of technical challenges. 
Existing resources that are free will not disappear; there is clearly a role for continued 
investment in university infrastructure. On the other hand, commercial clouds could 
provide an overflow, or elastic, capability for individual researchers. One could 
easily imagine a research group performing much of their base-load computations 
on ‘free’ resources, but resorting to pay-as-you-go services to meet peak demand. 
To date, very few tools can support both styles of resource provisioning.

Many years ago, we introduced the idea of a computational economy as a mecha-
nism to enable resource sharing on an open basis [1]. In this model, resource providers 
charged for time and users paid. At that time, we only envisaged a pseudo unit of 
currency to allow different users to compete for scarce resources. A user willing to 
pay more has more chance of achieving a deadline, and will complete more work than 
one who is only prepared to pay less. We implemented this scheme in the Nimrod 
tool family [2], though the lack of global infrastructure based on this model made 
it more of an academic proposal.

However, the Nimrod computational economy provides an ideal mechanism for 
mixing free and pay-as-you-go commercial cloud services. Interestingly, the same 
algorithms that we proposed for the computational economy can be used to trade-off 
resources in such a mixed grid.

In this chapter, we discuss the Nimrod tool family and describe the kind of high-
throughput problems that it solves. We discuss the scheduling system that Nimrod 
uses to balance time and cost-based deadlines, and show that these can be used on 
a mixed test-bed consisting of grid and cloud resources. We then illustrate the 
power of the system to achieve scientific outcomes. Our case study shows that a 
user has the ability to decide how much money they are prepared to pay for 
improved science outcomes. Specifically, the case study explores the basic science 
that can be delivered from a typical university department cluster, and shows how 
the Amazon Elastic Cloud (EC2) (http://aws.amazon.com/ec2/) can augment 
this to improve the science outcomes. The chapter also discusses some of the 

http://www.nci.org.au
http://aws.amazon.com/ec2/
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issues that arise in the implementation of our Amazon specific adapters and some 
of the open challenges for Nimrod and similar tools.

13.2 � High-Throughput Science with the Nimrod Tools

While computation is now widely used in scientific research, we frequently see 
studies that report on just a few simulations or the analysis of a small quantity of 
data. Such studies may be suggestive, but they are typically not robust in the sense 
of quantifying sensitivity to factors such as initial conditions, parameter choices 
and data used for parameter estimation.

The commodity parallel computing revolution promises to make such limitations 
unnecessary. Continued Moore’s Law growth in transistor counts in microprocessors, 
combined with physical limits on circuit size, is spurring the development of multi-core 
processors, which may be used alone or within larger multiprocessor systems to run 
large numbers of computational studies in parallel. Further, the emergence of commer-
cial computing clouds means that researchers can access large amounts of computing 
power cheaply and quickly. Similarly, many fields that were once data poor now have 
access to multi-terabyte datasets, with commodity parallel disk arrays providing for 
low-cost storage and commodity parallel computers enabling rapid analysis.

While the availability of suitable commodity hardware is pushing high-throughput 
computing (HTC) into the realms of everyday science, such science would not be 
possible without the considerable tool support necessary to effectively leverage and 
orchestrate the data and processing resources. To gain the throughput necessary to 
obtain results in a timely fashion, it is often necessary to use multiple distributed 
resources, which comprise varied hardware, and typically run different software 
stacks. In some cases, the computational effort required dwarfs the resources 
provided by a researcher’s home institution and/or state and national initiatives, 
indicating that the researcher must either source the capacity elsewhere, compromise 
on accuracy or scope, or possibly abort their plans.

Resources for high-throughput science are typically commodity clusters managed 
by batch queuing systems or idle-cycle harvesting pools (e.g. Condor [3] pools), 
made available remotely through grid middleware interfaces, such as Globus [4], 
UNICORE [5] and GLITE [6]. These middleware stacks and the development 
efforts around them have focused on exposing and standardising the task/job and 
data-oriented services typical of the requirements of HTC and HPC workloads. 
There are a number of successful production grid initiatives operating worldwide, 
such as OSG, EGEE, TeraGrid and PRAGMAGrid. However, grid computing has 
not had a widespread adoption outside of scientific HTC, most likely because it has 
been specifically tailored for that application domain. There also remain significant 
technological barriers that slow adoption, such as interoperability [7,8] and applica-
tion deployment [9].

The low cost, abundance and increasing performance of virtualisation technology, 
which is being exploited to consolidate computing infrastructure, promises to ease 
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and promote novel solutions to the deployment problem. This will also have a 
positive influence on interoperability between systems and HTC applications by 
allowing the same software stack from operating system to scientific application, 
to be built, hosted and run on one infrastructure, and relatively easily transferred to 
and run on another – whether it is a grid or cloud system.

13.2.1 � The Nimrod Tool Family

Over the past 15 years, we have built, maintained and improved the Nimrod tool 
family. These tools automate parameter sweeps and searches using distributed 
computing resources. A user typically provides Nimrod with a plan file that contains 
information about the parameters and their values, and a description on how to 
execute the applications. Plan files are declarative and deliberately similar to the 
job scripts used by batch queue systems; however, they also expose file transfer and 
parameter substitution functionality.

Users specify the input files to copy to the computational node, the tasks necessary 
to execute the application for a single parameter combination, and the output files 
to copy back. Thus, the task syntax used in the plan file is intuitive, because it is 
declarative and mimics how a user might run the application on their machine or a 
local cluster.

Using Nimrod significantly decreases the effort required to scale-up the level of 
parallelism in a computational experiment. Users are able to add computational 
resources and associated credentials to Nimrod and choose any combination in 
order to create a logical high-throughput engine for each experiment. In this way, 
Nimrod provides meta-scheduling functionality by distributing jobs across multiple 
underlying resource schedulers.

The Nimrod tools have been successfully used in various research involving 
high-throughput science – with recent work in fields such as molecular biology 
[10], cardiology [11], chemistry [12] and climatology [13]. We actively pursue col-
laborations with specialists who have challenging and novel applications for para-
metric distributed computing.

Table 13.1 lists the major, actively developed, components of Nimrod. When we 
refer to Nimrod services or just ‘Nimrod’ without qualifying a particular variant or 
group, we are referring to Nimrod/G components.

13.2.2 � Nimrod and the Grid

Nimrod targets different types of computational resources, ranging from local batch 
schedulers to distributed Condor [3] pools and Globus-enabled [4] grid resources. 
The latter leverages Globus functions that support remote job execution, file transport, 
security and resource discovery.
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Nimrod’s Globus support began prior to the release of the widely adopted 
pre-web services Globus Toolkit 2, and has continued with more recent releases 
of the web services-based Globus Toolkit 4. As a result, it supports resources 
using both variants of the toolkit through the globus or gt4 actuator.

Recently, we used Nimrod/G to run a large experiment in protein crystallography, 
made particularly significant by its use of over 20 high-end clusters from several 
grids worldwide to provide the half-a-million CPU hours required for the experiment 
within 2 months [7]. Cloud computing has the potential to significantly increase 
throughput for such science, while decreasing the human effort involved in coordi-
nating interoperability and deployment between resources.

13.2.3 � Scheduling in Nimrod

Nimrod supports a pluggable scheduling architecture that allows it to use a range 
of different scheduling techniques. The simplest, a first-come-first-served approach, 
places jobs on resources in order to maximise throughput. This default approach 

Table 13.1  Components of the Nimrod tool family (non-exhaustive)

Tool Purpose Utilises

Nimrod/G [1] Provides distributed parameter sweep and single task 
execution via grid and cloud mechanisms, plus economic 
and deadline scheduling of jobs across multiple compute 
resources. Importantly, Nimrod/G operates either as a tool 
(usually via a web portal) or a middleware layer in its 
own right, serving as a job management system for other 
software, including the other members of the Nimrod 
family.

Nimrod/O [14] Supports design optimisation rather than complete 
enumeration. Computational models are treated as 
functions that accept input parameters and return an 
objective cost value. Nimrod/O incorporates a number 
of different search heuristics ranging from gradient 
descent to genetic algorithms. Used in conjunction 
with Nimrod/G, it can exploit parallelism in the search 
algorithm.

Nimrod/Ga

Nimrod/E [15] Provides experimental design techniques (e.g. fractional 
factorial analysis) for analysing parameter effects on an 
applications output. The outcome is a Nimrod/G style 
sweep that explores only those parameter combinations 
likely to influence the experiment’s results, reducing 
the number of runs required to achieve useful scientific 
outcomes.

Nimrod/Ga

Nimrod/K [16] Integrates the above Nimrod tools into the Kepler workflow 
engine; along with a novel dataflow mechanism, this 
provides dynamic parallelism for Kepler workflows.

Nimrod/Ga, 
Kepler

a The other tools utilise Nimrod/G as a distributed computing middleware, but can also operate 
independently by using the local machine as a compute resource
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allows a user to leverage as many resources as possible. A range of schedulers also 
support a computational economy in which resource providers charge, and users 
pay, for service. This allows a user to express the importance of their experiment in 
terms of a deadline, combined with a computational budget. Nimrod/G pioneered 
this approach in 2000 [1] when no such infrastructure existed.

Originally, the idea of a computational economy was to provide a common 
language in which different users could compare their resource requests. Within a 
finite economy, users who were prepared to expend more of their grid dollar (G$) 
budget were more likely to complete computations within their deadlines. This 
approach was expanded into an architecture in which users paid for services, and 
service providers charged [17].

Commercial clouds now form the first publicly accessible computational economy, 
making economic computational and data scheduling especially significant and 
topical. In commercial clouds, service providers charge ‘real’ money based on the 
cost of provision. Importantly, in this work, we have merged these two different 
uses of currency, and have leveraged the earlier work in a computational economy 
to embrace commercial clouds.

The existing job scheduler has been designed for space-shared batch-queued 
systems, as is typical on a computational grid. It was envisaged that these resources 
would charge for some absolute atomistic measure of computing used (e.g. MIPS), 
rather than in time-slice as is the case with EC2. This means that the scheduler will 
underestimate the budget used and will not recognise the time already purchased. 
However, as we have shown in Section  4, the current implementation is still 
applicable; implementing a time-slice scheduler will be a subject of future work.

As a consequence of the Nimrod tools specialising in parameter study applica-
tions, the job scheduler is able to make reasonable assumptions about job execution 
times, resource performance and job throughput. Many modelling applications have 
low variance in their processing requirements between the parameter sets (e.g. the 
case study in Section 4), though there are certainly exceptions, for example, the case 
study in [7]. Nimrod’s economic and deadline-scheduling algorithms exploit this 
property of the workload to provide soft deadline and budget guarantees. Much 
theoretical and practical work has been devoted to the area of scheduling, with wildly 
varying approaches. Some strive to meet hard deadlines on an inherently unreliable 
distributed infrastructure by using task-replication algorithms [18], others mandate an 
omniscient super-scheduler; some assume historical data to predict non-deterministic 
events, and still others employ statistical inference and machine learning to predict 
and adjust reliability [19].

Nimrod takes a practical, adaptive, approach by requiring no extra information or 
service. This is important because, from our experience, we observed that users 
often have little idea of the computational requirements of their models across vary-
ing hardware or inputs. Also, for the typical workload (with low job run-time varia-
tion and an order of magnitude greater number of jobs than parallel processing 
units), this produces results very close to optimal, and for the typical user, near 
enough is good enough.
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Nimrod implements four different adaptive scheduling strategies (listed in 
Table 13.2) [20] that attempt to meet deadline and/or budget constraints, possibly 
while minimising execution time or cost. Over the duration of the experiment, the 
scheduler refines a profile for each computational resource and alters the job 
allocation accordingly.

As commercial clouds enable researchers to easily expand their computational 
test-beds beyond the confines of university-level infrastructure, it is likely that they 
will wish to do so while continuing to utilise their local resources and minimising 
expenditure on cloud time. For this reason, the experiment we present in Section 4 
uses the cost-minimisation strategy.

13.3 � Extensions to Support Amazon’s Elastic Compute Cloud

Recently, we developed a new actuator and associated components capable of 
interfacing Nimrod with compute clouds offering EC2-compatible APIs. In addition 
to allowing Nimrod jobs to be run on EC2, it also supports Eucalytpus [21] and 
OpenNebula [22] clouds. In this section, we discuss the extension and provide a 
discussion of issues involved in writing applications for such clouds.

The EC2 service provides one of the most generic and low-level interfaces to 
Infrastructure as a Service (IaaS) utility computing. At its most basic, it simply 
allows clients to start an instance of a particular virtual machine image on one of a 
handful of virtual hardware configurations. Further use of that instance is afforded via 
Secure Shell (SSH) access, which EC2 supports by providing a service for generating 
and managing SSH cryptographic key-pairs. Instances are then pre-configured with 
a key of the client’s choice when a virtual machine is booted.

In contrast to IaaS, grid middleware typically provides a Platform as a Service 
(PaaS) to some representation of a computational job – usually an invocation of 
some program, optionally staged into the remote machine as part of the job and 
potentially specifying a number of options relevant to the local resource manager 
(LRM) or batch queuing system.

Developing or adapting an application to use EC2 can be challenging, and often 
requires writing code for tasks peripheral to the main purpose of the application 
such as machine provisioning and management. Grid clients, such as Nimrod, 
typically deal with middleware interfaces at the level of job management and 
file-transfer services without concern for the lifecycle of the machine on which the 

Table 13.2  Adaptive scheduling algorithms in Nimrod/G

Scheduling strategy
Execution time  
(not beyond deadline)

Execution cost  
(not beyond budget)

Time Minimise Limited by budget
Time optimal Minimise Unlimited budget
Cost Limited by deadline Minimise
None Limited by deadline Limited by budget
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jobs might run. Typically, Nimrod only needs to know (or discover) the resource 
type and contact details, along with the architecture of the platform, in order to 
use it as a computational resource. No explicit management of the underlying 
computational resource is normally required. Hence, management of the virtual 
infrastructure is the largest part of the extension.

Rather than using a higher-level IaaS or PaaS built on top of EC2, we opted to 
use the basic core interface – the EC2 web service for provisioning and SSH for 
interaction. This means that the EC2 extension can accommodate a broad range of 
uses, and importantly for deployment it can utilise almost any virtual machine 
image suitable for running within the cloud. It is important to note that the exten-
sion provides an EC2 cloud execution mechanism for Nimrod, and that many of the 
higher level AWS services (such as Elastic Load Balancer) are not applicable 
to Nimrod because it is not a cloud-hosted service. We are simply interested in 
utilising the compute capacity.

To define a Nimrod EC2 resource requires a label, the service URL, the access 
and secret key file locations, a machine (and optionally, kernel and initial ramdisk) 
image identifiers, an instance type, and limits on the number of instances to run in 
parallel. There are further options, such as whether the use of a proxy or tunnelling 
is required, and most options have default settings for use with EC2.

13.3.1 � The Nimrod Architecture

This section describes the architectural details of Nimrod relevant to the EC2 
extension. Nimrod utilises a modular architecture that clearly separates the respon-
sibility for various processes to a number of extensible modules. The modules are 
coordinated via a data model using a relational database management system 
(RDBMS), which also provides the basis for persistence and failure recovery. 
A particularly important feature of Nimrod is its use of a remote agent that runs on the 
computational node. The agent retrieves work from the root server (the server where 
the other Nimrod modules are running) and will, in a single execution, process as many 
jobs as available during its allotted time. This contrasts with the usual approach of 
submitting each job to the middleware separately, and helps mitigate the effects of 
unpredictable queue wait time on overall execution time. Nimrod, along with Condor 
[3] (which uses the glide-in mechanism), was one of the pioneering systems to use 
such a technique. Recent specialised high-throughput systems, such as Falkon [23], 
follow a similar approach. This approach is also well-matched to existing cloud 
services, as will be discussed in Section 3.2.

The agent is highly portable and can be built for several different architectures 
and operating systems. Importantly, there is no requirement to install any Nimrod 
components on the remote computational system prior to running an experiment, as 
the agent is staged in and launched using a variety of supported interfaces. This 
greatly simplifies system deployment and makes it possible to easily create an ad-hoc 
high-throughput engine by consolidating multiple computational resources.
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Nimrod jobs correspond to executions of a Nimrod task for a particular parameter 
combination. As discussed in Section  2.1, the Nimrod tools use customised 
computational-task description syntax, similar to a batch script. Depending on the 
tool being used, all jobs for a particular experiment may be added to the database prior 
to execution or added dynamically, for example, by some iterative process (e.g. an 
optimisation/search). While Nimrod is typically used for parametric studies of a 
statically defined task, it also accommodates assigning a different task to every job 
and thus provides a high-level general-purpose computational middleware service.

Most of the low-level machinery is concerned with interacting with computational 
resources and services in order to launch agents and ensure that those agents can 
contact the root – in some cases, this involves launching a proxy to bridge between 
private cluster networks and the root machine which is often on the public internet. 
Actuators interact directly with external systems, such as middleware services 
like the Globus Resource Allocation Manager (GRAM), batch systems, or other 
meta-schedulers. Actuators (1) perform resource information discovery functions 
(e.g. determining machine architecture), (2) transfer agents and their prerequisite 
files (contact details for modules on the root and symmetric cryptography keys for 
authentication) to resources and (3) subsequently launch or (in)directly queue batch 
jobs to launch agents. Actuators can be considered as resource-specific drivers for 
Nimrod, providing a uniform interface to various types of computational resource.

The agent schedulers decide what operations ought to be performed by the 
actuator for a given resource and experiment. They (1) trigger actions by the 
actuators in response to job-to-resource assignments made by job schedulers, 
(2) enforce resource or user-specified limits on agent submissions and (3) for some 
resource types, schedule peripheral tasks such as credential refreshes.

Job schedulers assign work to the available resources using a choice of in-built 
heuristics, including cost and time minimisation on a per-experiment basis. It is 
also possible to do one’s own job scheduling through a specialised API. The job 
scheduler takes into account dynamic job metadata, collected by the agents, and 
continually refines the schedule throughout execution.

The database- and file-server provide agents with job and control data, and 
access to the experiment file system on the root, respectively. Computational 
resources can have a number of typical and differing network topologies with 
regard to connectivity to the internet. A thorough discussion is beyond the scope of 
this chapter; however, in these cases, Nimrod can launch the agent in proxy mode 
on one or more intermediate machines in order to provide network access for the 
agents to connect to the servers.

13.3.2 � The EC2 Actuator

Figure 13.1 shows the architecture of the EC2 extension. The actuator provides the 
main control flow, an interface to events and data regarding resource configuration, 
and agent commands. Typically, Nimrod actuators interface with a library or call 
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out to command-line client tools in order to start agents on remote resources. A 
large part of an actuator’s implementation is devoted to adapting the interface 
offered by the external middleware or service, to the interface required by the 
actuator model. In Nimrod, this functionality is encapsulated in a resource module. 
The new EC2 resource module leverages the Boto (http://code.google.com/p/boto/) 
library for communication with the EC2 web service. We chose to use Boto because 
it is implemented in Python, like Nimrod/G, so we did not need to create a com-
mand-line wrapper for the AWS Java client tools.

Boto provides client implementation for many of the current AWS query APIs, 
including EC2, S3, SQS, etc. The EC2 query API has been adopted by a number 
of other IaaS cloud projects offering software for creating private and hybrid 
clouds. Notable examples with support in current releases include Eucalyptus 
and OpenNebula. The EC2 actuator can provision Amazon EC2, Eucalyptus and 
OpenNebula cloud resources for use in Nimrod experiments.

As shown in Fig. 13.1, the EC2 resource divides instances into slots based 
on the number of processor cores per instance and the number of cores required 
per job. Agents are allocated to the slots and then launched via SSH once the 
instance has been initialised. Owing to limitations of the IPv4 address space, 
and like compute clusters, a common network configuration for private clouds  
uses a reserved private IP address range. We postulate that this will become 
more common as cloud computing is adopted for HTC. External access 
will be possible via a port-forwarding method from an intermediate device. 

Fig. 13.1  EC2 extension architecture

http://code.google.com/p/boto/
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In preparation for this, the EC2 extension is capable of launching a proxy (with an 
SSH tunnel back to the root) within a cloud, and agents will then collect work, 
etc., via the Nimrod proxy.

13.3.3 � Additions to the Schedulers

The Nimrod actuator acts on commands scheduled to it by the agent scheduler, 
which is responsible for examining pending jobs and scheduling agents to consume 
them. The agent scheduler determines initialisation necessary for a computational 
resource to run Nimrod agents, when new agents are needed, and when agents 
should be stopped.

Previously, the default agent scheduler in Nimrod scheduled agents one at a 
time, in a similar fashion to how they could be launched using external middleware. 
However, there are now computational middleware standards (e.g. DRMAA [24]) 
and non-standard interfaces (e.g. to commercial cloud systems such as EC2) in 
common use that make it possible to request multiple slots or leases at once, and in 
some cases this can improve provisioning performance. This necessitated changes to 
the agent scheduler to enable it to queue multiple agents in a single transaction.

Previously, the job scheduler had no notion of accommodating the kind of 
dedicated resource capacity presented by machine instances in the cloud. In order 
to ensure that we fully utilise each machine (e.g. avoiding running one uni-processor 
job on a multi-core machine), it was necessary to alter the job scheduler to ensure 
that it allocated jobs, where possible, in multiples of slots-per-instance.

13.4 � A Case Study in High-Throughput Science  
and Economic Scheduling

In this section, we present a typical Nimrod experiment, along with domain 
background, as a case study to demonstrate the utility of the Nimrod EC2 extension. 
We discuss how the Nimrod EC2 extension might be used to improve scientific 
results and/or meet a deadline. Further, we give economic scheduling and execution 
data from a scaled version of the original experiment, and provide a cost analysis 
of the full version.

The research discussed in this case study uses Bayesian statistics for training a pre-
dictive model within a recommender system for the museum domain (Section  4.1). 
Importantly, the computational technique being used – a Markov chain Monte Carlo 
(MCMC) approach – is common to other fields where multi-dimensional integration 
arises (e.g. computational physics, computational biology and computational linguis-
tics). Hence, the discussed example applies to a broad range of computational problems, 
and demonstrates what can be achieved in other domains with a similar structure.
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13.4.1 � Introduction and Background

This case study concerns techniques for automatically recommending exhibits to 
museum visitors, based on non-intrusive observations of their movements in the 
physical space. In general, recommender systems help users find personally 
interesting items in situations where the amount of available information is 
excessive [25]. Employing recommender systems in our scenario is challenging, as 
predictions differ from recommendations (we do not want to recommend exhibits 
that visitors are going to see anyway). We address this challenge by (1) using a 
Gaussian Spatial Process Model (SPM) to predict a visitor’s interests in exhibits 
[26], (2) calculating a prediction of a visitor’s pathway through the museum [27] 
and (3) combining these models to recommend personally interesting exhibits that 
may be overlooked if the predicted pathway is followed.

13.4.2 � Computational Requirements

SPM has 2n + 3 model parameters (n is the number of exhibits), which need to 
be estimated from the observed visit trajectories. To achieve this, we opted for 
a Bayesian solution. Unfortunately, the integrations required to calculate the 
parameters’ posterior distribution are generally not tractable in closed form. 
However, the posterior can be approximated numerically using computationally 
demanding MCMC integration methods, such as the Metropolis-Hastings algo-
rithm and the Gibbs sampler. Following Banerjee et al. [28], we use a slice Gibbs 
sampler [29] to sample from the posterior distribution. This approach is favourable, 
because it does not require tuning that is tailored to the application (hence, providing 
an automatic MCMC algorithm for fitting Gaussian spatial process models). In our 
case, we used every twentieth generated MCMC sample (to reduce positive 
autocorrelation between samples) after a burn-in phase of 1,000 iterations, and 
stopped the sampling procedure after 8,000 iterations. Thus, in total, this procedure 
provided 350 samples from the posterior.

The statistical quality of the parameter estimates derived from the MCMC 
samples increases with the number of MCMC iterations. Figure 13.2 depicts the 
standard error of the posterior mean estimate of one of SPM’s parameters as a 
function of the number of iterations. Decreasing the standard error by a factor of 10 
requires 100 times as many samples. Thus, decreasing the standard error becomes 
increasingly expensive (the relationship is quadratic). Interestingly, because MCMC 
sampling is linear in time, we see a direct relationship between computation time 
(measured in MCMC iterations) and the statistical quality of the parameter estimates. 
This relationship between estimation accuracy and computational time is a 
commonly recurring theme in computational modelling.

Employing an MCMC approach for model training is computationally expensive 
in its own right (in our case, 8,000 MCMC iterations were required for acceptable 
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accuracy). The computational cost is further increased by using a technique called 
‘leave-one-out cross validation’ to evaluate SPM’s predictive performance. That is, 
for each visitor, we trained SPM with a reduced dataset containing the data of 157 
of our 158 visit trajectories (following the above-mentioned sampling procedure), 
and used the withheld visitor pathway for testing. Owing to these factors, evaluat-
ing one SPM variant with our dataset requires approximately 6 days of compute 
time on a modern commodity-cluster server such as the East Enterprise Grid (http://
www.enterprisegrid.edu.au). This equates to over 22,000 CPU hours. Compounding 
this is the need to explore a collection of different SPM variants, nine over the 
course of this research, adding up to approximately 200,000 CPU hours for a 
modest-size research project.

13.4.3 � The Experiment

The full-quality (8,000 MCMC iterations) experiments were run over a few months 
using Nimrod/G to distribute thousands of model trainings across university-level 
computational grid resources that were available on an opportunistic basis. 
However, relying on opportunistic resources makes it difficult to provide a quality 
of service (QoS) guarantee on the run-time of the experiment. Hence, if only limited 
resources are available in the presence of a deadline, one might be forced to reduce 
the run-time of the jobs, jeopardising the estimation quality. Alternatively, the 
Nimrod EC2 extension allows the scientist to expand their resource pool for a 
fee rather than compromising the quality of their research in such a situation.

Fig. 13.2  Standard error of one posterior mean estimate over the number of MCMC iterations

http://www.enterprisegrid.edu.au
http://www.enterprisegrid.edu.au
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To demonstrate the EC2 extension and applicability of Nimrod’s existing 
economic scheduling capabilities, we ran a smaller version of the full sweep 
experiment – 9 SPMs by (158 reduced datasets + 1 complete dataset), totalling 
1,431 distinct tasks) – by decreasing the number of MCMC iterations from 8,000 to 
80 (a reduction in the computational requirements by a factor of 100).

A back-of-envelope analysis using the approximate 6-day run-time (for jobs on 
our East cluster) from the full-quality experiments (scaled down 100 times) reveals 
that with East alone, this experiment would take at least 17.2 h, though this is below 
minimum because it also scales input and output file copy time and start-up 
overhead, which are uniform for the full and scaled experiments.

We enacted a scenario requiring results overnight (a 12-h deadline) with a limited 
free resource set (listed in Table 13.3). The free resources alone are incapable of 
meeting the projected throughput requirements. Hence, we added EC2 with a 
US$100 budget and selected a cost-minimisation strategy from the scheduler 
(as discussed in Section 2.3). Our free resources included the Eucalyptus Public 
Cloud (EPC) (http://open.eucalyptus.com/wiki/EucalyptusPublicCloud), so that 
we could demonstrate Eucalyptus compatibility and the private cloud tunnelling 
mechanism (the EPC does not allow outgoing connections from machine instances). 
The EPC is simply a public demo system for testing Eucalyptus, and provides no 
service guarantees and is not intended for computation. Users can run up to four 
instances concurrently and a 6-h maximum instance up-time is enforced.

13.4.4 � Computational and Economic Results

The number of jobs in execution on each resource over time is shown in Fig. 13.3. 
All 1,431 jobs were completed successfully within the deadline and budget in 11 h and 
6 min, having spent US$68.35 according to the economic scheduler. The scheduler 
quickly filled the available cores on East and gradually scheduled to EC2, soon 
adding more jobs to EC2 once East was fully allocated. The delay between the jobs 
starting on EC2 and East represents the EC2 instance provisioning wait-time. No 
queue wait-time was experienced on East. Before the halfway point, the scheduler 
began to estimate that East was capable of finishing the remaining jobs, and 
because of the cost-minimisation bias, EC2 usage was quickly reduced to nothing 
despite it having the highest throughput. The EPC, being a low-performance 
demonstration system, never managed to complete a job before the 6-h instance 

Table 13.3  Computational resources used for the experiment

Resource No. of cores Compute/core Memory/core Cost/core

East 120 1.6 GHz Intel Xeon E5310 1 GB N/A
EC2a 152 2.5 EC2 Compute units 0.875 GB US$0.10
EPC 4 Unknown 0.5 GB N/A
a We used c1.xlarge type instances with AMI-0dda3964, hosted in the US-East EC2 region

http://open.eucalyptus.com/wiki/EucalyptusPublicCloud
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limit was reached. The EC2 actuator recovered from this and restarted the proxy on 
a newly launched instance. However, the jobs were rescheduled to East.

Owing to the economic scheduler not being aware of the time-slice charging of 
EC2 instances, it underestimated the real cost by approximately US$20. It also does 
not currently consider data-transfer charges (although transfer statistics are recorded), 
but here they were negligible. This underestimation may seem considerable. 
However, it is exacerbated in this case by the high level of instance parallelism and 
relatively short instance run-time. The schedulers estimate would be much better if, 
for example, fewer instances were used for longer (the user can enforce this).

Table 13.4 shows run-time statistics of the completed jobs, which provide insight 
into the performance of EC2. EC2 completed jobs in 74% of the time that East took 
(25-min better on an average). This is slightly worse than the EC2 compute unit rat-
ing suggests (a direct comparison between East and EC2 is possible because East 
has the same vintage Xeon CPUs as those used in the EC2 rating). Each EC2 core 
on a c1.xlarge instance should provide roughly 2.5 GHz when compared with 
East’s 1.6 GHz – therefore, we expect EC2 to take approximately 64% of the time 
of East. Of particular note is the higher run-time standard deviation on EC2. A 
possible explanation for this is that the physical hardware may have been shared 

Table 13.4  Completed job statistics

Resource
No. of jobs 
completed Tot. job time (h:m:s) m / s Job run time (min)

East 818 1245:37:23 91.36/5.70
EC2 613 683:34:05 66.91/14.23

Note: the EPC is omitted because it did not complete any jobs

Fig. 13.3  Jobs executing over time
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among multiple instances. It is important to note that no fully virtualised infrastructure 
services, such as EC2, provide QoS guarantees on the performance of hard-
ware sharing.

With this information, we can project the lower bound cost of running the 
full-quality experiment in a similar situation, again using EC2 as the overflow 
resource. We scale MCMC iterations and hence job run-time by a factor of 100, and 
similarly, we scale the deadline to 50 days. We assume that the local resource pool 
has not changed. In 50 days, East can deliver us 50 × 24 × 120 = 144,000 CPU 
hours, the equivalent of 945 jobs. We need EC2 to complete the remaining 486 jobs, 
which requires at least 54,197 EC2-core-hours at US$0.10 an hour, resulting in a 
potential charge of US$5,420. Clearly, investing that amount of money into capital 
expenditure (e.g. to extend the capacity of East) would have made little difference 
to the overall completion time.

13.4.5 � Scientific Results

Using Nimrod/G and associated computer clusters and clouds enabled us to explore 
a greater variety of SPM in a shorter, feasible, time frame without compromising 
the quality of the results. For instance, we tested the variants of the original model 
[26], which use different ways of measuring distances between museum exhibits [30]. 
This led to insights regarding the suitability of the different model variants for 
certain application scenarios.

In the future, we intend to investigate other ways of incorporating exhibit features 
into SPM. We also plan to extend our model to fit non-Gaussian data.

13.5 � Conclusions

This chapter demonstrates the potential for cloud computing in high-throughput 
science. We showed that Nimrod/G scales to both freely available resources as well 
as commercial services. This is significant because it allows users to balance 
deadlines and budgets in ways that were not previously possible.

We discussed the additions to Nimrod/G required for it to use Amazon’s EC2 as 
an execution mechanism, and showed that the Nimrod/G architecture is well suited 
to computational clouds. As a result, Nimrod/G’s cloud actuator allows higher level 
tools to exploit clouds as a computational resource. Hence, Nimrod/G can be 
classified as providing a ‘Platform as a Service’ to job producers/schedulers, and 
becomes both a cloud client and cloud service in its own right.

The case study showed that computational clouds provide ideal platforms for 
high-throughput science. Using a mix of grid and cloud resources provided timely 
results within the budget for the research under discussion.
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The economies of scale employed by commercial cloud computing providers 
make them an attractive platform for HTC. However, questions of national interest 
and policy issues in spending public research funding with commercial providers 
remain, especially when they are based overseas. Commercial offerings are 
motivated by profit, and hence it should be possible to provide a non-profit 
equivalent more cheaply to better utilise government and university funding, while 
ensuring the prioritisation of researcher requirements. There is clearly scope for 
the adoption of similar operational techniques in order to provide HTC resources 
to the research community.

Commercial computing infrastructure requirements also deviate somewhat from 
typical HTC requirements1. The commercial cloud provider must have sufficient 
data-centre capacity to meet fluctuating demand, while providing high QoS with 
regard to reliability and lead time to service. This necessitates reserving capacity 
at extra expense, passed on to the consumer. On the other hand, HTC workloads 
are typically not so sensitive. Waiting some time for a processor is of little signifi-
cance when tens of thousands to millions of processor hours are required. Such 
considerations may enable higher utilisation and lower capital overhead for 
dedicated HTC clouds.

Future work will focus on providing accurate cost accounting by implementing 
a time-slice scheduler and considering data-transfer charges. We also plan to 
investigate the use of EC2 Spot Instance pricing. This could prove ideal for cost 
minimisation biased scheduling, given the spot price for a particular machine type 
is typically less than half of the standard cost.
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Abstract  Cloud computing is quickly becoming a significant IT resource, which a 
typical organization will likely consider at some point. Be it Software-as-a-Service 
or Infrastructure-as-a-Service, the implications can be significant with respect to 
compliance with a variety of laws or regulations. The intention of this chapter is to 
give some insight into the potential compliance pitfalls an organization may exp
erience if ill-prepared, and provide the tools to plan for and navigate around these 
obstacles before they become insurmountable.

14.1 � Using the Cloud

Cloud computing has both advocates and naysayers, each with a variety of reasons 
for their respective positions. This chapter does not intend to side specifically with 
either. Rather, the purpose is to demonstrate an organization’s minimum require-
ments with respect to handling the data. It will also be demonstrated that the tasks 
required are far from trivial and potentially expensive to implement and manage. 
Thus, whether cloud computing should be considered by an organization is contin-
gent on understanding the costs and obligations.

14.1.1 � Overview

First off, using Cloud Providers or Cloud Services (herein referred to as “the 
cloud”), is neither inherently insecure nor secure. It is highly doubted that a turn-
key cloud solution could prove to be the security panacea an organization hopes it 
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to be, but neither will it necessarily publicize every piece of Personally Identifiable 
Information (PII) an organization provides, which is what many fear would happen. 
The largest challenges with respect to engaging the cloud occur in the preparation 
of a company for the cloud. This typically includes ensuring strong information 
security governance and a clear understanding of the organization’s legal and regu-
latory landscape. In fact, outsourcing to the cloud could not be considered successful 
without previously achieving an organizational security maturity level of four.

Another potential challenge with using the cloud surrounds how significant an 
influence – if any – an organization can have with respect to modifying the way 
the cloud operates, imposing and/or strengthening the liability terms of the con-
tracts, requesting and receiving the assurances required from the vendor, and 
having a firm grasp on the enforcement of the solid legal agreement once it is put 
in place.

14.1.2 � Background

As organizations mature and core competencies are developed, it may seem that 
onsidering the cloud for specific types of applications, systems, infrastructure, and 
platforms would be the next logical step. Cloud computing, although potentially more 
granular and more distributed in nature, is not in fact radically different from tradi-
tional outsourcing or off-shoring arrangements: the same amount of diligence and 
preparation is needed to start such an exercise. Much work on the topic of cloud 
computing security has already been done by organizations such as the Cloud 
Security Alliance (http://www.cloudsecurityalliance.org). For more detailed informa-
tion on the topics discussed here, it is recommended you read the most recent version 
of their “Security Guidance for Critical Areas of Focus in Cloud Computing”. The 
“audit & compliance” section of version 1 of that document was the foundation for 
much of this chapter’s content, albeit at a higher level. The subsequent releases of the 
Cloud Security Alliance’s Guidance documents will likely go into more detail.

14.1.3 � Requirements and Obligations

First, an organization needs to understand the legislative and regulatory landscape 
in which it resides and operates. If a company processes credit cards, it will likely 
be subject to the Payment Card Industry’s Data Security Standard (PCI DSS).1 
Similarly, if the company handles Personally Identifiable Information (PII), it is 

1 https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
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quite likely that it is subject to various privacy legislations, such as the European 
Union’s Data Protection Directive (EU DPD),2 or Canada’s Personal Information 
Protection Electronic Documents Act (PIPEDA),3 thus requiring an organization to 
follow specific guidelines without deviation or compromise regardless of how well 
they align with internal policies. These are just two examples of how legislation or 
regulation can shape a company’s information security structure and alter or add to 
the needs with which an organization will approach the cloud provider.

14.1.3.1 � Regional Laws

It is nearly impossible to list all of the relevant regional laws, which may shape or 
otherwise affect the requirements necessary to consider when outsourcing to the 
cloud. As mentioned previously, privacy is an excellent example of a topic with 
specific regional laws. When looking at Canada and the United States of America, 
there are dozens of individual laws that are geographically binding and as a result 
may take priority over others, even though on the whole they may not be substan-
tially different. To further complicate matters, if an organization operates in more 
than one jurisdiction, it is likely subject to each respective law. This is an area 
where the lawyers excel and can help an organization understand which regulations 
will take precedence over others.

To further add to the confusion, agreements such as the International Safe 
Harbor Privacy Principles4 can make an organization subject to laws in areas where 
it does not even operate. A good example would be the US-EU Safe Harbor agree-
ment5 meant to provide a streamlined process for companies outside the EU’s 
jurisdiction that will have a chance – by demonstrating compliance with EU 
Directive 95/42/EC on protection of personal data – to gain the benefits of trade 
with EU companies requiring reciprocal compliance. This means that not only does 
an organization need to know its immediate legal responsibilities in respect to the 
region(s) within which it operates, but it also must stay ahead and aware of the 
additional types of arrangements to which it is privy and understand the related 
requirements.

Several Canadian provinces experienced an incredible effect of the Uniting and 
Strengthening America by Providing Appropriate Tools Required to Intercept and 
Obstruct Terrorism (USA PATRIOT) Act6 of the USA, even though the same prov-
inces were not typically subject to foreign laws, not withstanding those of its closest 
neighboring country. Many government agencies were not permitted to use providers 
whose systems were physically in the USA, for the fear that their hosted data would 

2 http://ec.europa.eu/justice_home/fsj/privacy/docs/lawreport/paper/ispa_en.pdf
3 http://www.priv.gc.ca/legislation/02_06_01_e.cfm
4 http://www.trade.gov/td/ecom/shprin.html
5 http://www.export.gov/safeharbor/eg_main_018236.asp
6 http://epic.org/privacy/terrorism/hr3162.html
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be secretly examined, copied, or seized under the auspices of the Act. Again, not 
only do organizations need to be aware of the laws that directly affect them, they 
also need to be aware of the ones to which they do not wish to be privy and make 
their business decisions accordingly.

14.1.3.2 � Industry Regulations

Like the regional laws, industry regulations are wide reaching, complicated, and at 
times potentially overlapping. Retail and credit card processing are a hot topic of 
late within the Information Security community, allowing most to become familiar 
with PCI DSS, American Express’ Data Security Operating Policies (DSOP),7 or 
Visa’s Cardholder Information Security Program (CISP).8 Similarly, energy pro-
ducers within North America may need to concern themselves more with North 
American Energy Reliability Council (NERC)9 or Federal Energy Regulatory 
Commission (FERC).10 Investment Dealers may be subject to the Investment 
Dealers Association Uniform Securities Legislation (IDA USL).11 Healthcare has 
more laws and regulations than most would care to read. The list goes on.

Despite a limited scope of certain laws being mapped to specific types of indus-
tries, the awareness in itself is not sufficient to help determine benefits or negative 
implications on the organization prior to considering using the cloud.

14.2 � Cloud Compliance

14.2.1 � Information Security Organization

A company’s Information Security Organization (ISO) – assuming one is estab-
lished – has likely already determined which of these laws and regulations are 
relevant and have documented the requirements thoroughly. The ISO will work 
towards achieving the information security maturity for the organization, helping 
on an ongoing basis to establish the best course of action a company needs to take 
to become or stay compliant. Failing the existence of an ISO, it will likely be 
incumbent on the company to establish one prior to using the cloud. At a minimum, 
the ISO can help with the identification of relevant laws and regulations, ensuring 

7 https://www209.americanexpress.com/merchant/singlevoice/pdfs/en_GB/American%20
Express%20DSOP%20for%20Merchants%20-%20UK.pdf
8 http://visa.com/cisp
9 http://www.nerc.com/
10 http://www.ferc.gov/
11 http://www.iiroc.ca/English/Pages/home.aspx
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security requirements are met and providing a single point of contact for the various 
security-related communications likely to occur between the organization and the 
cloud, while developing new, and integrating existing, strategic company goals.

14.2.2 � Data Classification

Assuming that an organization is subject to at least one of their industry-specific 
regulations or laws, they will be required, at a minimum, to demonstrate some 
semblance of control over its IT resources, quite likely predicating the existence of 
an information security program. To meet regulatory obligations, an organization 
needs to understand the information assets and their related security requirements, 
which can only be achieved by doing something that most companies try to avoid: 
proper classification and labeling of their data.

14.2.2.1 � Classifying Data and Systems

The exercise of classifying data is incredibly important when looking at allowing 
others access. An organization needs to be able to provide the security requirements 
surrounding the data in question at any given point, especially if considering granting 
another entity the custodianship over said data. This exercise also provides an orga-
nization with the ability to pick and choose which data they will provide to out-
sourcers – and more importantly, which to exclude. By limiting the inclusion of 
government classified PII or PCI data, for instance, the requirements related to the 
security of the hosting systems become remarkably more relaxed. Presumably, each 
of these classifications would have unique and distinct security requirements 
needed to be passed onto the cloud provider. Reducing those requirements would 
likely substantially reduce the cost of using the cloud in general, although it may 
also limit the systems and data the organization possesses from being outsourced. 
Classification of data and systems will likely lead to a cost-benefit analysis with 
respect to the use of the cloud as a better understanding of the metadata may reveal 
shortcomings in the existing security architecture. Knowing what an organization 
sends to the cloud can help set the expectations on how a provider is required to 
protect it.

14.2.2.2 � Specific Type of Data of Concern

Understanding the requirements of the data is paramount to appropriately securing 
it. Aside from Personally Identifiable Information, Payment Card Industry data, 
and the myriad regulations with which an organization would need to be concerned, 
there are many other types of relevant data to be taken into account.
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Government classifies data, in Canada for instance, as Confidential, Secret, Top 
Secret, or Cosmic Top Secret, and has a variety of requirements, which should be 
considered relevant to each classification level. Specifically, regardless of the clas-
sification level, in order to have access to and store data, an organization would 
have to have obtained a Facility Security Screening (FSC) clearance with Document 
Storage from the Canadian and International Industrial Security Directorate 
(CIISD) of Public Works and Government Services Canada (PWGSC).12 Depending 
on the level of access and document sensitivity, the requirements increase – as does 
the time to validate those requirements. An organization could absolutely not con-
sider hosting data of similar classifications on clouds which do not have these levels 
of screening from their respective domestic security screening providers.

Data considered “Trade Secrets” within an organization will likely have a bare 
minimum level of security associated with it. Similarly to data about mergers and 
acquisitions or financial data, an organization will actively want to protect the trade 
secret data in a meaningful and defined manner. Although there may not be specific 
government legislation around it (in the case of publicly traded companies, there 
most likely are laws governing the integrity of this data at a minimum, such as 
Sarbanes Oxley in the United States13), an organization have no desire to purposely 
or inadvertently divulge its data, and will likely be willing to take significant steps 
to protect it.

14.2.2.3 � Labeling

Classifying data is only as effective as the exercise of labeling the same data and 
related systems to reflect their classification. If an organization has undertaken the 
exercise of classification, it is likely that it has gone through the effort of appropriately 
labeling it. Of course, by extending an organization to the cloud it becomes incum-
bent to ensure the appropriate labeling of the relevant systems and data used in the 
cloud. The challenges of physically labeling virtualized systems persist, and are fur-
ther compounded by cloud’s virtualization of datacenters.

14.2.3 � Access Control and Connectivity

Control mechanisms necessary for appropriate user access are another segment of 
compliance concern with respect to using the cloud. Specifically, it may be neces-
sary to ensure the availability of authentication mechanisms that need to both 
provide appropriate levels of authorization and accountability as well as integrate 

12 http://ssi-iss.tpsgc-pwgsc.gc.ca/index-eng.html
13 http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf
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seamlessly with client’s environment. This is where out-of-the-box solutions 
from the cloud provider may not be sufficient for an organization’s authentication 
requirements. Depending on the cloud type – SaaS, PaaS, IaaS – the requirements 
would vary radically. If using cloud Infrastructure-as-a Service, the capability for 
remote administration of the related equipment would likely be required; how 
someone physically and logically connects and authenticates to this environment 
can have a substantial influence on the cloud provider and client organization’s 
compliance initiatives. For instance, if a computer directly connects to a PCI envi-
ronment, it runs the potential of being within the scope of the PCI compliance ini-
tiative. One way to circumvent this issue would be traversing a demarcation firewall 
and connecting to a jump point administrative system (such as a terminal server) 
that uses strong authentication. Mechanisms like this may need to be explored to 
fully understand the implications of using the cloud and weighing the cost-to-benefit 
ratio prior to making the decision.

14.2.3.1 � Authentication and Authorization

With respect to authentication, how an organization provides access is a subject of 
great importance. Failing the existence of some sort of universal federated identity 
or the ubiquity of “Identity 2.0” type technology, offering access to the cloud is not 
without its substantial obstacles. Many questions immediately arise: Who manages 
the authentication database? Is the client’s organization responsible for providing it 
and the related links to the cloud or is the cloud managing it entirely? If the latter, 
how does the client’s organization obtain the assurances around appropriate access? 
Alternatively, if the client is providing the authentication mechanism, how does it 
leverage the distributed environment of the cloud and the benefits of redundancy 
without having similar capabilities around its LDAP or other authentication direc-
tory? These are all very difficult questions to answer and require sufficient planning 
and understanding of the risks and technologies.

Authorization suffers similar problems, specifically around ensuring only those 
with appropriate managerial approval are provided the requisite access. In an out-
sourced environment, it is difficult – if not impossible – to ensure that all of the 
access is known and approved. Presumably, the cloud provider may have some 
access of which the client’s organization would not necessarily be aware nor have 
any significant influence over after the fact.

14.2.3.2 � Accounting and Auditing

The issue of authentication is further compounded by the issue of accountability 
and nonrepudiation. In the case of a cloud provider managing the authentication 
mechanisms, appropriate logging and monitoring facilities may need to be present 
depending on the nature of the data in question. In the case of PCI DSS, this is a 
clear requirement. More so, adequate separation of duties between those who 
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administer the systems and those who monitor the logs should probably exist. 
Regardless of the specifics, the logging and monitoring will likely be required, 
presumably in some sort of Security Information and Event Monitoring (SIEM) 
solution format. This of course begs new questions immediately: is the SIEM part 
of the cloud provider’s standard offering? Should it be? How costly would it be, and 
how reliable? Would it make more sense to manage the SIEM internally rather than 
trust it to the cloud? Again, these are questions an organization should be concerned 
with prior to even looking at engaging the cloud.

14.2.3.3 � Encrypting Data in Motion

Given the nature of services cloud offers, as well as the type of requirements most 
companies have to operate successfully and optimally, a large volume of data will 
travel between the client and the cloud. How does an organization protect the data 
in motion? Encryption quickly comes to mind as an immediate solution, especially 
when it comes to web applications and other Software-as-a-Service offerings, 
where protocols such as Secure Sockets Layer (SSL) may adequately address the 
issue. When looking at Platform and Infrastructure-as-a-Service, however, the tran-
sit becomes a little more complicated. Should there be a dedicated site-to-site 
Virtual Private Network (VPN) between the organization and the cloud provider? It 
is likely that the organization would at a minimum desire some sort of encryption 
for the authentication traffic and presumably for any administrative activities, but 
the nature of the data and relevant legislation influencing its usage and storage 
would otherwise dictate what needs to be protected and how.

14.2.3.4 � Encrypting Data at Rest

With respect to specific compliance requirements and the mechanisms needed to be 
in place to protect various types of information, encrypting data stored in the cloud 
will also most likely be a requirement. Once the cloud provider has been made 
aware of it, certain assurances would need to be given with respect to the use of 
encryption or similar controls that would allow clients to maintain their compli-
ance. One should not, however, underestimate the potential costs of such a solution, 
nor forget that there would be a need for substantial administrative activities such 
as key management and key changes.

14.2.4 � Risk Assessments

Sufficient research and various assessments should be conducted prior to considering 
use of clouds. In this context, various frameworks needed to establish the overall 
impact of the risk of outsourcing to the cloud, as well as the related costs of 
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compliance, would need to be taken into account. During the process of conducting 
these analyses and assessments, an organization should be able to determine whether 
utilizing cloud resources is a viable and cost-justified option, while at the same time 
ensuring that all of the essential regulatory and legislative requirements have been 
considered. A sample of a few key assessments follows.

14.2.4.1 � Threat and Risk Assessments

Without going into detail describing a Threat and Risk Assessment (TRA), an orga-
nization must ensure that a TRA with respect to an organization’s existing infra-
structure is conducted prior to considering switching to the cloud. Through 
employing a TRA, an organization will at a minimum be able to identify shortcom-
ings of the existing deployment and develop or build a remediation strategy appro-
priate to the shortcomings, taking into account the likelihood of using the cloud and 
changes that would be entailed.

There are different options that would allow an organization to exercise due dili-
gence when looking at cloud computing as their new direction. Requesting the 
cloud provider to supply the results of their own TRA would be one alternative. The 
client could also conduct its own independent TRA of the cloud. If the data and 
systems in question are of particular importance and sensitivity, doing a scheduled 
TRA, or at least one on a regular basis, may be an extremely beneficial tool that 
would enable the company to ensure compliance to existing laws, and more actively 
and aggressively monitor the quality of service a provider is giving them. An 
example of something that is already in place externally would be PCI DSS 1.2, 
which mandates that a Risk Assessment be conducted at least annually for payment 
card processing environments.

Frameworks for TRAs tend to be based on Risk Management best practices 
and are fairly easy to come by. Some of the most common best practices are: AS/
NZS 4360:2004 Risk Management14; BS 7799–3:2006 Guidelines for Information 
Security Risk Management,15 and; ISO/IEC 27005:2008 – Security Techniques 
– Information Security Risk Management.16 Adopting any one of these frame-
works would ensure easy understanding of the organization’s obligations; sug-
gesting the cloud provider use one of these approaches further aligns the cloud 
with the overall desired course, as well providing a way to confirm TRAs are 
being conducted and are dependent on the shared and pre-approved best practices 
methodology.

14 http://www.standards.org.au/
15 http://www.bsigroup.com/
16 http://www.iso.ch/
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14.2.4.2 � Business Impact Assessments

Again, without going into too much detail about defining a Business Impact 
Assessment (BIA), an organization must identify the business requirements of 
any one of their systems prior to considering outsourcing it to the cloud. This 
includes understanding a few key details of the systems in question. For instance, 
a company should know the Recovery Time Objective (RTO) or the acceptable 
amount of time to restore the function of the system without gravely affecting the 
financial stability of the organization of the systems. Another important thing to 
identify would be the Restore Point Objective (RPO) or the acceptable latency of 
data to be recovered. Each of these issues can severely impact the cost of outsourcing, 
so great care and diligence needs to be exercised in the execution. Once com-
pleted, the Business Impact Assessment values would need to be communicated 
to the cloud provider.

14.2.4.3 � Privacy Impact Assessments

Where PII is involved, an organization should conduct a Privacy Impact Assessment 
(PIA) prior to engaging the cloud in order to understand the implications and risk 
of the engagement. The Canadian Federal Government17 and Provincial Government 
of British Columbia (BC)18 Canada have done an excellent job in providing freely 
available frameworks and reference materials, all easily found using your favorite 
search engine.

14.2.5 � Due Diligence and Provider Contract Requirements

Once the preliminary requirements have been addressed, and the systems and 
data with which the cloud is to be seeded have been chosen, it is time to engage 
the provider and start the rest of the due diligence work. Some of this would be 
done through capturing those various requirements in contracts and ensuring the 
organization is aware of the service it is obtaining and all of the impacts that 
entails. The exercise of diligence can uncover or validate many things. With 
respect to compliance and security, an organization can verify if the practices in 
place on the cloud provider’s side are satisfactory and align with the client’s 
requirements.

17 http://www.tbs-sct.gc.ca/pubs_pol/ciopubs/pia-pefr/paipg-pefrld-eng.asp
18 http://www.cio.gov.bc.ca/services/privacy/Public_Sector/pia/default.asp
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14.2.5.1 � ISO Certification

Practices such as obtaining ISO/IEC 27001:200519 certification as a way to demonstrate 
an understanding and adherence to best security practices may be a valid response; 
however, the certification is only as useful as the company’s defined requirements. 
Prior to taking the certification as evidence of a solid security foundation, an inves-
tigation into the scope and how it pertains to the outsourcing arrangement needs to 
be conducted. The worst-case scenario would be for a company to pursue a certifi-
cation that would not be able to address any of the systems and processes to be used 
as they may be out of scope of that specific certification. On the other hand, even 
though having a qualification like this may not necessarily address the specific 
security requirements of the organization, it does demonstrate a certain commit-
ment to ensuring that quality programs are in place in general.

14.2.5.2 � SAS 70 Type II

A common type of an externally conducted assessment by North American out-
sourcing providers is a Statement on Auditing Standards No. 70 (SAS 70)20 Service 
Organizations. The “Type II” provides an opinion as to the operating efficiency of 
the tested controls. Most outsourcers tend to have these assessments conducted 
periodically (mostly annually) in order to provide or maintain certain assurances to 
the customers. The associated cost is built into the cost of the outsourcing arrange-
ment. Not entirely unlike the ISO certification, the scope of the assessment is of 
particular concern for clients; so if a provider is offering such assurances, it is nec-
essary to remember that ensuring the scope is comprehensive and relevant is more 
important than how often the assessments get done.

14.2.5.3 � PCI PA DSS or Service Provider

Relevant for the retail space or any organization processing payment cards, PCI 
approved Services Providers or Payment Application DSS certified applications 
may be in scope for the organization. These are fairly easy to research, at least 
initially, as Visa tends to publish lists of approved vendors for each application on 
a fairly regular basis.21 Since an organization cannot outsource to a service provider 
that has not been pre-approved, nor can it use an application not on the PA-DSS 

19 http://www.iso.ch/
20 http://www.aicpa.org/Professional+Resources/Accounting+and+Auditing/Audit+and+ 
Attest+Standards/Authoritative+Standards+and+Related+Guidance+for+Non-Issuers/auditing_
standards.htm
21 https://www.pcisecuritystandards.org/security_standards/vpa/
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confirmed list (at least not without jumping through a whole new collection of 
hoops), it follows that parts of their compliance, or lack thereof, remains out of their 
hands. Alternatively, in order to make it, or remain on the pre-approved vendor 
list, the cloud provider is encouraged to use specific applications to handle client’s 
customer’s card numbers data in order to achieve PA DSS certification on an 
annual basis.

The challenges with respect to requirements like this surround the strategic 
direction of the cloud provider. If, for instance, the provider is not solely tied to the 
concept of maintaining a PCI status, problems will ensue for the client. Specific 
language must be inserted into contracts with respect to ensuring compliance. 
Further, as a colleague once suggested: plan for the divorce before the wedding. 
This leads to the concepts of Portability and Interoperability.

14.2.5.4 � Portability and Interoperability

Planning for contingency is paramount for outsourcing arrangements and cloud 
arrangements are no different. It is important to identify who owns the data and 
ensure that both parties agree. Further, in the event that the arrangement no longer 
meet the requirements of either party, preparations should take place to allow for 
smooth transitioning away. This can include simple steps such as ensuring proper 
termination clauses are inserted into legal agreements, but will likely include more 
complicated technical considerations. The data being surrendered at contract termi-
nation may not be in a universal format, and if returned in a vendor-specific propri-
etary format might be rendered unreadable. Surely this would not be a desired 
outcome, and an organization must plan to ensure that a different result is produced 
by doing their fair share of due diligence while negotiating the terms of their ser-
vices, rather than after when it may be too late.

14.2.5.5 � Right to Audit

If the agreement begins to proverbially “go sideways” or the client organization 
begins to question the results of an assessment, it may be in the client’s best interest 
to conduct their own assessment of the cloud provider’s environment and operating 
procedures. This action, of course, must be predicated on the existence of a 
“Right to audit” clause within the contract. Not to be taken lightly, the right to 
audit clause also indirectly implies that the client will have to be willing to accept 
relatively large costs from an impartial third party acting as an auditor of the 
environment. This clause provides the ability to execute the arrangement and 
hopefully would never need to be used, acting more as a deterrent for the cloud 
provider to not dismiss their responsibilities to the client throughout the full term 
of their services.
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14.2.5.6 � Service Level Agreements

It is also expected that the client organization will be entitled to a bare minimum 
level of service. It is incumbent on the client to demand relevant, measurable, and 
specific Service Level Agreements (SLAs) and Service Level Objectives (SLOs) 
for security-related events, although the client must be aware that there is an inverse 
relationship with the timeliness of response for most issues and the cost of the ser-
vice given. This initiative should be linked to the Business Impact Assessment 
results as well.

14.2.6 � Other Considerations

Some of the other considerations to give thought to involve ensuring that the cloud 
providers have an appropriate governance structure with clearly defined problem-
management procedures and escalation paths. Some other key procedures and plans 
should also be included, such as incident response plans with appropriate roles and 
responsibilities outlined for both the client and the provider.

14.2.6.1 � Disaster Recovery/Business Continuity

An organization needs to be adequately satisfied with the ability of the cloud pro-
vider to ensure appropriate availability of the client’s corporate assets with which 
they were entrusted. It may be suggested that the client be privy to reviews of the 
business continuity plans or disaster recovery plans, or related testing activities. 
Again, verbiage around this concept should be captured within the contract to 
ensure suitability and appropriate compensation are considered.

14.2.6.2 � Governance Structure

As stated previously, the cloud provider’s governance structure should be investi-
gated and arrangements with respect to communication should be formalized. This 
is required specifically around escalations and problem management, where an offi-
cial channel needs to be established such that there is always an individual account-
able and responsible on both the client and cloud provider sides to ensure adequate 
completion of the required tasks in a timely and acceptable fashion. There should 
always be an appropriate escalation point as well, in the event that the responsible 
individual is unable to complete the necessary tasks as outlined. The governance 
structure which would outline all of these, amongst many other processes, needs to 
be formalized and agreed upon prior to contract signing.
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14.2.6.3 � Incident Response Plan

Many compliance initiatives specifically outline the requirement of incident 
response teams and their related plans. When dealing both with the cloud and 
outsourcers in general, this approach needs to be explained, negotiated, docu-
mented, and formalized such that there is no room for interpretation when it comes 
to plan execution. Specifically, the roles and responsibilities for all involved par-
ties ought to be explicitly outlined to ensure that appropriate actions are taken and 
necessary notifications are made. Breach notification is a particularly troublesome 
issue with clouds because the laws mandating them tend to be jurisdictional and 
related to the physical geography of the place of the breach. When developing the 
responsibilities of the incident response plan, it may be best to consider verbiage 
that would allow for tying the obligation to determine the actual location of the breach 
and the related notification requirements for that region to the cloud provider 
rather than the client.

14.3 � Conclusion

As it can be imagined, compliance with the vast array of legislation and regulations 
when using cloud computing services can be quite complicated and burdensome. 
However, hopefully the crux of this chapter was not lost and it did not appear as 
though one should reconsider engaging cloud providers. The intent was rather to 
ensure client organizations that are already considering outsourcing to the cloud 
understand which data and systems might be prime (easy) candidates for outsourcing, 
and which may be prohibitively expensive. The key, as can likely be imagined, is 
to have firm control over an organization’s information assets and a strong under-
standing of the related legislative and regulatory requirements over that data. Once 
that concept is understood, and the requirements are gathered, it is achievable to 
consider the cloud options and obtain and benefit from them at realistic costs.
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Abstract  Interoperability, which brings major benefits for enterprise and science, 
is key for the pervasive adoption of grids and clouds. The lack of interoperability 
has impeded broader adoption and the reason, enterprise argues, why the grids have 
not performed at expected levels. Interoperability between existing grids and clouds 
is of primary importance for the EU.

This chapter focuses on the guiding principles of interoperability and openness 
for the development of cloud computing, as they have been for the Internet so far. 
Therefore, global standardization efforts are emphasized in this chapter and seen as 
a key priority.

We look at the importance of interoperability and what standardization efforts 
are taking place surrounding cloud computing, considering how enterprises do not 
wish to tie their applications to specific providers’ remote infrastructure – particu-
larly if there is proprietary technology deployed. Nevertheless, it is still considered 
early in the market’s development for formal standardization of many aspects of 
cloud computing – except maybe in the area of virtualization technology – but 
industry leaders recognize the importance of interoperability.

The chapter delivers a snapshot of the impact that cloud computing is 
making on the European market and the influence of EU regulation in listing the 
Opportunities for Europe. The concluding remarks and considerations provide a 
look at the future market drivers and the key challenges of interoperability and data 
confidentiality.
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15.1 � Confidentiality of Data and Principal Issues  
Globally: An Overview

Today, companies considering using a cloud-based service need to obtain a clear 
understanding of the privacy, security, and legal consequences before signing the 
SLA with a service provider. Forrester urges in a recent report [1] to develop a 
checklist of data security and compliance priorities and compare organizational 
needs to the cloud service provider’s policies and procedures.

Other important questions surround confidentiality of data and a variety of related 
issues including security, privacy, and trust. Who is responsible for the data residing 
or moving in the cloud, and under which jurisdiction they fall, are common unre-
solved questions. A key example is the UK National Health Service (NHS) that has 
a jurisdiction which states that all UK Data must never leave the United Kingdom.

Specific items have to be included in the agreements for companies before 
signing the contracts, which cover items as to how data are being handled once the 
service contract is terminated, the kind of data that are returned to the organization, 
and ensuring the elimination of the data at the host cloud service providers’ network. 
Early adopters have run into a number of hurdles, including not knowing where 
their data resides, what happens to the data when a decision is made to change the 
services, and how the service provider guards the customer’s privacy. Concern over 
proprietary data and personal information is a major issue. A cloud provider may not 
necessarily commit to offering internal auditing on this feature, but understanding 
through logs and who accesses the data should be available to the company.

Robert Gellman prepared a report for the World Privacy forum indicating that 
the stored information [2] in the cloud eventually ends up on a physical machine 
owned by a particular company or person located in a specific country. That stored 
information may be subject to the laws of the country where the physical machine 
is located. For example, personal information that ends up maintained by a cloud 
provider in a EU Member State could be subject permanently to EU privacy laws.

15.1.1 � Location of Cloud Data and Applicable Laws

More specifically, Gellman’s report goes into greater detail on the explanation of 
the EU directives, such as the EU’s Data Protection Directive [2, 3] that offers an 
example of the importance of location on legal rights and obligations. Under Article 
4 of the Directive, a national data protection law applies when a controller located 
in the territory of the Member State processes personal information. A cloud provider 
in an EU Member State could bring personal data obtained from a non-EU-based 
user under a European data protection law. Once an EU law applies to the personal 
data, the data remain subject to the law, and the export of that data will thereafter 
be subject to EU rules limiting transfers to a third country. Thus, if a US company 
gave its data to a cloud provider based in France, French data protection law would 
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apply and the export of the data back to the United States could be restricted or 
prohibited. In addition, the subjects of the data would acquire rights of notice, 
access, correction, etc. under French law. Once an EU Member State’s data protection 
law applies to personal information, there is no clear way to remove the applicability 
of the law to the data.

The location of a cloud provider’s operations may have a significant bearing on 
the law that applies to a user’s data. The actual location may or may not appear in 
the provider’s terms of service. Even if the provider discloses the location of 
records, the provider may change it, possibly without any notice. The same data 
may be stored in multiple locations at the same time. A provider who promises to 
maintain user data in a specific jurisdiction (e.g. the United States) may reduce 
some of the location risks that a user may face.

15.1.2 � Data Concerns Within a European Context

Generally, the question that arises is how national privacy and security standards 
can be ensured in a global cloud environment. In terms of data privacy and jurisdic-
tion, national standards and regulations have resulted in few providers storing 
regional hardware, and most choosing, instead, to use European and American 
infrastructures. Reservations about cloud computing derive from concerns about 
dependability, vulnerability, and lock-in to providers, as well as security-related 
issues, when there are no longer true internal systems.

Many users today are choosing to combine internal IT and cloud computing 
simply due to the fact that by doing this, they are not risking losing control of their 
sensitive data, especially in the cases where no uniform service level agreements 
(SLAs) exist. Indeed, loss of data, hardware breakdowns, and a reduction in perfor-
mance are noted in relation to today’s cloud computing offers.

The drawbacks on the current implementations lie primarily on external audits 
not being currently permitted, limited logs available, the users’ trust in the brand 
such that they have no alternative with regard to data security, and lack of informa-
tion regarding the actual location or the jurisdiction of data.

Organizations must plan carefully when constructing cloud computing environ-
ments to ensure that the flexibility and scalability do not overshadow the necessity 
for risk-tolerant implementation. As the developments in the EU show, the initial 
cloud computing implementation must not only be secure, but the whole system 
must be flexible to accommodate emerging laws and regulations.

The Council of the European Union, in the Adoption of the Council Conclusions 
on the future of Information Communication Technology (ICT) research, innovation 
and infrastructures [4], stresses that the digital revolution is still in its early stages and 
that a research and innovation capacity is essential to be able to shape, master, and 
assimilate technologies and exploit them to economic, societal, and cultural advan-
tage; in addition, it underlines in this regard the necessity to ensure the availability, 
appropriate treatment, and conservation of an unprecedented amount of data.
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15.1.3 � Government Data

Government data are being put online to increase accountability, contribute valuable 
information about the world, and to enable government, the country, and the world 
to function more efficiently [5]. All of these purposes are served by putting the 
information on the Web as Linked Data. Linked data principles provide a basis 
for realizing the Web of Data by ensuring that data are organized, structured, and 
independent of any application programs so that it can serve a broad community of 
people and many applications. The main drivers behind linked data include the 
value-add of structured content, a mission or mandate to make data linkable, and 
most importantly, low development barriers. Key enabling technologies span Web 
2.0, Mash-ups, Open Source, Cloud Computing, and Software-as-a-Service. Effort 
toward interoperability can be made where most needed, making the evolution with 
time smoother and more productive.

15.1.4 � Trust

The technology of cloud computing itself is not insecure. However, companies 
must carefully plan, from the outset, the implications of massively scalable design, 
storage, and computing. This is especially true if those services are outsourced to 
cloud providers and not directly under company control. Recently, the Cloud 
Security Alliance was set up [6] “to promote the use of best practices for providing 
security assurance within Cloud Computing, and provide education on the uses of 
Cloud Computing to help secure all other forms of computing.” An educational and 
networking event entitled, SecureCloud 2010, hosted by the European Network and 
Information Security Agency, the Cloud Security Alliance, and ISACA, which are 
organizations that help to shape the future of Cloud Computing Security deal with 
interoperability between cloud providers among other topics, demonstrated the 
need to immediately address Cloud interoperability in earnest.

In a recent survey carried out by the European Network and Information Security 
Agency (ENISA) [7], the principal reasons for Small and Medium-sized Enterprises 
(SMEs) to adopt cloud computing were to avoid capital expenditure in hardware, 
software, IT support, and information security by outsourcing (70% of SMEs 
responded in favor of this, and 67% found flexibility, scalability, and IT resources 
to be key to utilizing cloud). SMEs’ main concerns were that 44% were concerned 
about privacy and the availability of services and 48% were worried over loss of 
control of their own services. ENISA published a Cloud Computing Report in 
November 2009 [8] on the benefits, risks, and recommendations for information 
security, detailing that the cloud’s economies of scale and flexibility are both a 
friend and a foe from a security point of view. The massive concentrations of 
resources and data present a more attractive target to attackers, but cloud-based 
defenses can be more robust, scalable, and cost-effective. The paper provided secu-
rity guidance for potential and existing users of cloud computing.
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15.1.5 � Interoperability and Standardization in Cloud Computing

The development of standards and interoperability between the varying levels of 
clouds is inevitable. It is also tied directly to the needed adoption by the enterprise. 
Without clearly defined standards, best practices, and open interoperability, further 
adoption of the cloud will evolve at a slower pace.

There have been a significant number of publications including those by the UK 
Government and European Commission itself, which have made the economic case 
for standards and their utilization in increasing innovation. The central premise of 
this is that they remove the need for innovative developers and product/service 
designers to waste time with the lower level functionality that has been developed 
by others. There can also be the sharing of common solutions between application 
areas through the utilization of building block technologies that are not subject or 
area-specific. This will allow increased European competiveness through ensuring 
that there is a minimization of the lag between early adopters and the main stream. 
This ensures that organizations of varying sizes are able to contribute to the 
economy, with their competitiveness not hindered by large scale “vendor lock-in” 
or proprietary services gaining market dominance.

Dynamic capability is one of the features of cloud that differentiates it from grid 
by offering resources as and when needed. Virtualization is another key difference. 
These are among the drivers to adoption. However, there are many challenges to be 
addressed with grid computing community contributing to cloud needs, above all, for 
the Open Grid Forum (Open Grid Forum). Interoperability is not the only issue. SLAs 
are a big challenge, as start-up companies or SMEs, which are currently the major 
cloud users, want freedom of choice, although Amazon EC2 is the current market 
leader and the de facto standard cloud service provider. If these companies want to 
move to another provider, then the problem revolves not only around VM migra-
tion, but also other services such as databases that lack compatibility. Other chal-
lenges concern how to move existing software packages from internal data centers 
to external clouds, bearing in mind that the architecture of the majority of this soft-
ware does not support scale-out, as well as network bandwidth utilization.

It suffices to say that cloud portability, possible via guaranteed standards and 
interoperability, has to occur in the future, and the major players in this arena have 
to be involved. The lack of involvement of the major players will lead to standard 
clouds and nonstandard clouds or companies providing some form of filtering 
mechanism or converters to allow for portability.

15.1.6 � Open Grid Forum’s (OGF) Production Grid 
Interoperability Working Group (PGI-WG) Charter

Open Grid Forum’s (OGF’s) Grid Interoperation Now Community Group (GIN-CG) 
and the Production Grid Infrastructure Working Group (PGI-WG) lead the interop-
erability of global grid infrastructures. The PGI-WG, a spin-off from GIN-CG, 
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brings together members of production grid infrastructures from all over the world 
to address related challenges, building on the experiences of GIN-CG to create 
profile documents to be fed into OGF standardization groups. This focus enables 
work on refined or new OGF specifications. The PGI-WG chiefly focuses on three 
OGF standards, working closely with the dedicated working groups:

Job Submission Description Language (JSDL)•	
Open Grid Services Architecture-Basic Execution Service (OGSA-BES)•	
Grid Laboratory Uniform Environment (GLUE) schema•	

The efforts of GIN-CG and PGI-WG represent important milestones by enabling 
other grid infrastructure communities and software providers that intend to imple-
ment these specifications to join the standardization activity and contribute their 
experiences. This work is also a significant step in the grid community’s transition 
to the model proposed by EGI, where e-Infrastructures built from different software 
will have to operate seamlessly together. Through this work, the ongoing efforts of 
the Usage Records and Resource Usage Service Working Group will continue and 
move to include their outputs into the Production Grid Profile being developed.

15.1.7 � Achievements in the OGF Open Cloud Computing 
Interface (OGF-OCCI)

The OGF Open Cloud Computing Interface Working Group (OCCI-WG) is 
developing a clean, open application programming interface (API) for 
“Infrastructure as a Service” (IaaS) based Clouds. IaaS is one of the three primary 
services, alongside Software, and Platform, of the emerging Cloud industry. 
OCCI-WG is a working group of OGF established in March 2009. The group has 
active membership of over 160 individuals, and is led by four chairs from indus-
try, academia, service providers, and end users. Several members are from com-
mercial service providers that are committed to implementing the OGF-OCCI 
specification.

15.1.7.1 � What will OCCI Provide?

OCCI is a very slim REST-based API, which can be easily extended as shown in 
Fig.  15.1. Without the overhead of many similar protocols, the REST approach 
allows users to easily access their services. Every resource is uniquely addressed 
using a Uniform Resource Identifier (URI).

Based on a set of operations – create, retrieve, update, and delete – resources can 
be managed. Currently, three types of resources are considered: storage, network, 
and compute resources. Those resources can be linked together to form a virtual 
machine with assigned attributes. For example, it is possible to provision a machine 
which has 2 GB of RAM, one hard disk, and one network interface.
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Currently, the OCCI group is finalizing and documenting the initial draft specification. 
The group is actively collaborating with other groups from the Storage Networking 
Industry Association (SNIA) for storage, and Distributed Management Task Force 
(DMTF) for management standards. The work is also featured on the http://www.
cloud-standards.org wiki, where Cloud-related standards are coordinated by the 
major Standards Development Organizations (SDOs).

15.1.7.2 � Cloud Data Management Interface (CDMI)

The Storage Networking Industry Association™ has created a technical work 
group to address the need for a cloud storage standard. The new Cloud Data 
Management Interface (CDMI) is meant to enable interoperable cloud storage and 
data management. In CDMI, the underlying storage space exposed by the above-
mentioned interfaces is abstracted using the notion of a container. A container is 
not only a useful abstraction for storage space, but also serves as a grouping of the 
data stored in it, and a point of control for applying data services in the 
aggregate.

15.1.7.3 � How it Works

The cloud computing infrastructure management, shown earlier supports both OCCI 
and CDMI interfaces. To achieve interoperability, CDMI provides a type of export 
that contains information obtained via the OCCI interface. In addition, OCCI 
provides a type of storage that corresponds to exported CDMI containers. OCCI and 
CDMI can achieve interoperability initiating storage export configurations from 
either OCCI or CDMI interfaces as starting points. Although the outcome is the 
same, there are differences between the procedures using CDMI’s interface over 
the OCCI’s as a starting point.

Fig. 15.1  Example of the REST-based API

http://www.cloud-standards.org
http://www.cloud-standards.org
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Both OCCI and CDMI are standards working toward interoperable cloud computing 
and cloud storage. The standards are being co-ordinated through an alliance 
between the OGF and the SNIA, as well as through a cross-SDO cloud standards 
collaboration group described subsequently. OCCI will take advantage of the 
storage that CDMI has provisioned and configured.

Since both interfaces use similar principles and technologies, it is likely that a 
single client could manage both the computing and storage needs of an application, 
scaling both to meet the demands placed on them.

15.1.8 � SDOs and their Involvement with Clouds

2009 was a significant year for the development of standards efforts in cloud comput-
ing. In July 2009, the Object Management Group OMG™ announced a collabora-
tion with leading technology SDOs to coordinate and communicate standards for 
Cloud computing and storage. Organizations that participate in this round-table style 
collaboration include the DMTF, OGF, SNIA, Open Cloud Consortium (OCC), and 
Cloud Security Alliance (CSA). Most SDOs already have many one-to-one liaison 
relationships, which are effective and productive for handling specific issues. This 
round-table-style collaboration provides a “bird’s eye view” of this broad and com-
plicated technical area, further helping the work already underway between these 
leading standards bodies. This is the main reason for the establishment of a Cloud 
Standards Coordination working group. The group has a goal to create a landscape 
of cloud standards work, including common terminology.

To support this collaboration, a public working group has been established, and 
anyone with relevant technical skills, interest, and commitment can participate. 
Participation by enterprise and government IT leaders is encouraged to ensure that 
their critical standards needs are being addressed. The work is an outgrowth of the 
already existing Standards Development Organization Collaboration on Networked 
Resources Management (SCRM) working group that has coordinated management 
standards in general [9]. The organizations involved have created a wiki to describe 
each organization’s standards and efforts in this space.

15.1.9 � An Example of Cloud Computing Interoperability  
at Microsoft

Interoperability at Microsoft is important, and in recent years the interoperability 
team has been working actively to make Windows the best platform to run PHP 
applications [10]. The PHP Toolkit for ADO.NET Data Services, ADO.NET Data 
Services, is shipped as a part of .NET 3.5 SP1 and provides a RESTful interface in 
data services and an efficient way to surface your data to the web. The data are then 
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easily consumable, served up in JSON or XML (POX). The PHP Toolkit for 
ADO.NET Data Services is an Open Source project that provides a set of utilities 
and libraries for PHP developers to easily take advantage of these ADO.NET Data 
Services. This toolkit was recently highlighted at the Gov 2.0 Summit in Washington 
DC to explore how technology can enable transparency, collaboration, and effi-
ciency in government.

The Zend Framework [11] has invited the open-source community and soft-
ware vendors to participate in the formation of a Simple Cloud API. IBM, 
Microsoft, Rackspace, Nirvanix, and GoGrid have already joined the project as 
contributors. In the coming months, they will work together to define APIs for 
these cloud application services, enabling a new generation of native cloud applica-
tions written in PHP.

The Simple Cloud API is an open-source project that makes it easier for developers 
to use cloud application services by abstracting insignificant API differences. One 
of the design goals of the project is to encourage innovation. To this end, the Simple 
Cloud API can be used for common operations, while users can easily drop down 
to vendor libraries to access value-add features. The Simple Cloud API is an 
example of Microsoft’s continued investment in the openness and interoperability of 
its platform. Currently, Microsoft Azure also supports the full Java stack including 
open-source tools such as the Apache web server. An example of the Azure Services 
Platform is given in the subsequent paragraph (Fig. 15.2).

DataPlex BI Reporting

Cloud Storage
(HA, DR, Sync, Scale, etc)

Others...

Fig. 15.2  Windows Azure and SQL services
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15.1.10 � A Microsoft Cloud Interoperability Scenario

At the Gov 2.0 summit, Microsoft presented a cloud interoperability scenario that 
takes advantage of the recently announced Toolkit for PHP with ADO.NET Data 
Services to view public government data with Windows Azure and PHP [12]. This 
scenario allows a Windows Azure application that exposes data in a standard way 
(XML/Atom), and shows how you can simply “consume” this data from a PHP web 
application. This scenario takes advantage of the Open Government Data Initiative 
(OGDI) [13] and Microsoft’s Open Government effort, built on the foundation of 
transparency, choice, and interoperability. Using open standards and API, developers 
and government agencies can retrieve the data programmatically for use in new and 
innovative online applications or mashups. Publicly available government data sets 
have been loaded into Windows Azure Storage, and the OGDI team built a data 
service that exposes the data through REST web services, returning data by default 
in the Atom Publishing Protocol format (Fig. 15.3).

15.1.11 � Opportunities for Public Authorities

More governments are making a commitment to cloud computing in order to address 
rising IT costs and making efficient use of labor, as well as for environmental 
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responsibility and openness to innovation. Cloud computing offers a number of 
benefits to government and public authorities, such as simplifying acquisition, 
budgeting, policy planning, and architecture along with the technological benefits, 
such as increased storage, automation, flexibility, mobility, and a shift in IT focus. 
As economies continue to struggle, governments need to take a deeper look at their 
expenses and make smarter, cost-effective decisions. In both London and Washington, 
the definition (as well as possibly the development of a government cloud, nicknamed 
G-Cloud) is constantly discussed. Therefore, open-source software is certainly los-
ing momentum and political appeal, while cloud computing is gaining press cover-
age and executive interest according to a recent Gartner report [14].

The US Government has been one of the leaders in outlining concrete plans to 
implement cloud-like technologies in areas such as desktop management (i.e. remote 
help desk) and secure provisioning, portals and collaboration, content and records 
management, workflow management, business intelligence, a Software-as-a-Service, 
as well as a data center that calls for government-to-government, government-to-
contractor, and contractor-to-contractor modes of service delivery.

A few barriers exist in that government’s sensitive and secret data must continue 
to be maintained in government-owned, government-operated facilities. In May 
2009, the EU launched a broad consultation on whether it should consider revising 
the 1995 data protection directive. Cloud computing and new business models are 
challenging government systems. Currently, around 90% of organizations in the EU 
do not engage in transfers of data outside the region, but cloud computing is very 
likely to change that. There are in fact a few examples of governments starting to 
take advantage of the emerging technology.

15.1.12 � Future Market Drivers and Challenges

As the current landscape of cloud computing has been described, it is important to 
understand where it is going in the future. Ultimately, the market will drive the 
overall adoption, but it is equally important to outline what it will take to prove it 
as a fully viable solution.

Just a short time ago, there was an issue with a lack of referenceable successes, 
with few large players offering clouds. Amazon were leading the field, (with EC2, 
S3, SimpleDB, CloudFront, and SQS), but with every passing month, larger IT 
players have been unveiling their new cloud solutions, such as IBM BlueCloud, 
Microsoft Azure, etc.

It is important, however, to define what are the catalysts for cloud computing in 
terms of the provider, the user, the technology itself, and available business models. 
The catalyst for business is to leverage clouds to get to market with new business 
models as well as the generation of Web 2.0 startups, to receive a better reliability 
through service-level contracts, availability of open standards to reduce lock-in, and 
concrete solutions to data-security issues. Finally, the technology itself needs to be 
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able to scale to support massive enterprise applications, provide seamless support 
for third party applications, and easily substitute in-house management and 
monitoring tools.

The current opportunities are for the next generation of cloud computing 
virtualization providers (e.g. 3Tera, Xen), computing giants with massive data 
centers (e.g. Amazon), bridging providers and integrated Platform as a Service 
(PaaS) (e.g. Google, Elastra), and for SaaS systems providers for databases, app 
servers, and business intelligence (e.g. salesforce.com).

Overall, hyper-competitive markets are pushing the business to demand ever 
faster time to market, reduced entry/exit barriers, while reducing IT costs, allowing 
SMEs to have world-class enterprise application functionality at affordable price 
points, and startups to build their infrastructure on clouds to gain cost advantages. 
Existing companies are starting to consider migrating just to remain at par.

15.1.13 � Priorities Moving Forward

While many cloud providers’ solutions for extending applications between physically 
distributed resources are still at the concept stage, the market should expect 
significant developments over the coming months by hosting services to the 
providers, which bridge the gap between dedicated application hosting and cloud-
based infrastructure services.

These two approaches have plenty in common, perhaps, the most important 
being that the larger Grid infrastructures and Clouds run on shared infrastructure 
accessed via the network, often remotely.

It is this common attribute that results in shared problems that both the Grid and 
Cloud communities need to address, including, but not limited to, the portability of 
services and data between grids or clouds, the secure access to and operation of 
those services, the secure movement and storage of data, the need for location 
awareness to cater for disparate regulatory requirements, unified management for 
both internal and external platforms, etc.

15.2 � Conclusions

Standardization and interoperability are invaluable characteristics to a successful 
application of distributed computing, either the already mature grid e-Infrastructure 
efforts or the momentum around its cloud-focused counterparts in the industry. 
As grids made the transition from academic and research exclusivity to potential 
industry adoption, the role of standardization took precedence. The same must 
be done for clouds, but being mindful that its arrival has taken quite a different path. 
Contrary to the evolution of grid, cloud computing has seen its growth through 
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business interest as the practical Infrastructure as a Service (IaaS) model. The 
challenge now is to see how this can be best adapted toward further strengthening 
of e-Infrastructure and its e-Science communities.

One of the Ten Cloud Computing Predictions for 2009, by Michael Sheehan 
[15], was the obvious conclusion that Cloud adoption will be significant in 2009. 
Moreover, Sheehan also insisted that the government will play a much larger role 
too. The French government’s mission is to bring the Cloud to their government 
infrastructure. With the 2008 US Election, Barack Obama proved how critical 
an online presence was to furthering the concept of change in many EU27 
governments. Cloud computing certainly implies risks as discussed in this chapter, 
but creates economies of scale that can benefit large as well as small government 
organizations.

One of the major concerns in today’s society is still data security. Cloud providers 
will give you a list of legal terminology about what will happen to the data in the 
cloud and who it is invisible to, and the customer may request to lock down sets 
of machines by building a firewall. Moreover, if the customer requires tighter 
controls beyond the service offered by default due to regulatory issues, then this 
becomes open to further discussion and no doubt ambiguous interpretation. If 
the customer has publicly available data, then this is a non-issue, but is still an 
area of further analysis. A recent Avanade study found that on a margin of five to 
one, consumers placed a higher priority of security of their data in the cloud over 
potential economic benefits and efficiencies [16]. These are not new issues; nev-
ertheless, some further challenges for the future in the scope of cloud computing 
cover the analysis of internal data protection, communication, foundational secu-
rity between the provider and the customer, and virtualization security.

At a Cloudscape event organized in Brussels in January 2009 to explore the 
cloud computing landscape and its impact on enterprise Information Technology in 
collaboration with an EC-funded project OGF-Europe [17], some thought-provoking 
conclusions were drawn to the extent that a follow-up was organized in February 
2010 to address the points further. A clear need for grid/cloud standardized opera-
tion guidelines emerged from interactive discussions exploring enterprise feedback 
on standards requirements.

Areas of further efforts among the e-Science and industry communities lie in 
pursuing the clarification of grid/cloud taxation aspects while operating grids/
clouds, introducing guidelines for handling/guaranteeing privacy in clouds and 
grids (liability issues), and in general providing guidelines for work across 
legislative domains.

Finally, while Enterprise and Government are pioneering fields, it is expected 
that industrial adoption will proceed apace as organizations seeking to gain 
energy efficiency and offload expensive data center infrastructure to be replaced 
by on-demand access to cloud resources. We anticipate that this field will be 
cost-sensitive, and in spite of much fear about security, 80% or more of the 
organizations’ IT implementation could be via cloud computing resources in 
the future.
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Abstract  With the growing adoption of cloud computing as a viable business 
proposition to reduce both infrastructure and operational costs, an essential require-
ment is to provide guidance on how to manage information security risks in the 
cloud. In this chapter, security risks to cloud computing are discussed, including 
privacy, trust, control, data ownership, data location, audits and reviews, business 
continuity and disaster recovery, legal, regulatory and compliance, security policy 
and emerging security threats and attacks. Finally, a cloud computing framework 
and information asset classification model are proposed to assist cloud users when 
choosing cloud delivery services and deployment models on the basis of cost, secu-
rity and capability requirements.

16.1 � Introduction

As organisations seek new ways of driving businesses forward, increasing demands 
are now placed on computer networks to provide competitive edge and create new 
opportunities at reduced cost. This has accelerated business and technological ini-
tiatives that promise to provide services at comparably low infrastructure and oper-
ating costs. The rapid growth of cloud computing is a good example.

This new model of service (cloud computing) offers tremendous reduction in 
operating cost; unfortunately, it has also introduced a set of new and unfamiliar 
risks. Most networks today are borderless, spanning across different network 
estates, security domains and enterprise, whose security policies, security protec-
tion mechanisms and business continuity plans are different, varying and diverse. 
Consequently, new security requirements are needed, new forms of protection strat-
egies become essential and existing practices may require reviewing.
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To address the inherent risks in cloud computing, fundamental security issues 
that exist in traditional networks must be evaluated in relation to cloud computing. 
Risks to cloud computing delivery models, such as software as a service (SaaS), 
hardware as a service (HaaS), platform as a service (PaaS) and infrastructure as a 
service (IaaS) must be identified and discussed in detail. Interdependent risks and 
cumulative risk arising from private, public, virtual private, localised and federated 
clouds must be outlined and discussed. Issues of information ownership, trust, con-
fidentiality, integrity, privacy and anonymity must be addressed. It is pertinent to 
note that understanding risks that exist in the cloud is fundamental to understanding 
how best to treat risks inherent in cloud computing.

16.2 � Cloud Computing (‘The Cloud’)

Cloud computing is an emerging technological development that leverages the 
Internet to provide unparalleled distributed computing service based on service-
oriented architecture (SOA) and virtualisation. Cloud computing appears to be 
ubiquitous, dynamically scalable and on-demand, which can be purchased on a 
‘pay-as-you-go’ basis without under or over provisioning or prior subscription. 
According to NIST, ‘cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable computing resources 
(e.g., networks, servers, storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or service provider 
interaction [1,2]’. This implies that cloud computing offers on-demand self-ser-
vice, a highly scalable shared pool of network resource that offers broad network 
access to users. These services are dynamic and affordable with minimal con-
sumer configurable interfaces.

There are five main attributes of cloud computing:

On-demand self-service•	
Ubiquitous network access•	
Location independence and homogeneity•	
Elastically scalable•	
Measured service•	

First, the cloud offers on-demand self-service; this means that the cloud can be 
used as and when required without prior subscription. It does not require pre-
booking or ‘phased-delivery’ for the consumer; hence, there is no need for under 
or over subscription in the cloud.

Second, the cloud offers almost infinite network access to vast infrastructure and 
computing resources, such as storage facility, memory, processor, hosting and myr-
iad applications. Third, the cloud uses a shared pool of resources, platforms and 
infrastructure residing on the Internet, which is located at various parts of the 
world, making the cloud location-independent. The services offered in the cloud are 
homogenous. The same service is provided exactly in the same way to all users. 
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This is because of its multi-tenancy delivery model. Fourth, cloud computing 
capabilities, such as storage, computing power, processing and hosting are elastic; 
resources are pooled together to provide vast amount of computing power. 
Finally, cloud computing services are measured; each service purchased or utilised 
by a consumer is measured and billed accordingly.

With the economic downturn in 2009, cloud computing has become a viable 
business and technological proposition, because of the significant reduction in both 
infrastructure and operational costs that it offers when compared with the tradi-
tional IT services. The cloud offers huge economies of scale and enhances out-
sourcing and consumerisation. It is understandable that cloud computing is 
attractive to users who range from government agencies, financial institutions, 
individual and corporate users to cybercriminals. This opportunity to cohabit and 
share a pool of resources with all consumers including cybercriminals brings to 
bear a significant element of risk. Therefore, a cloud computing environment 
requires an implicit level of trust as well as explicit level of vigilance and risk 
management to ensure success [3].

Figure 16.1 is a cloud computing deployment and delivery model. It comprises 
five cloud delivery models, namely, public or external cloud, community cloud, 
agency cloud, private and hybrid clouds. The models consist of three service meth-
ods, namely, cloud software computing (SaaS), cloud platform computing (PaaS) 
and cloud infrastructure computing (IaaS).

Fig. 16.1  Cloud computing deployment and delivery model
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A public or external cloud is a general-purpose cloud computing environment 
managed by a cloud provider. The cloud provider could be external provider, such 
as Amazon EC2, Google Apps, Salesforce, Rackspace, etc. that leases third-party 
cloud resource to the consumer. However, a cloud could be public even when third-
party cloud resources are not used; the most important aspect of a public cloud is 
its content. A community cloud is a cloud specifically consumed by a particular set 
of community, such as financial institutions cloud, health services cloud, etc. An 
agency cloud is a form of community cloud solely for the military, agency, or 
defence institutions, such as the Defense Information Systems Agency (DISA) 
cloud [4] and the NBC Federal Computing Cloud [5]. Agency clouds are not for 
public consumption. They are regulated and operated by the agencies themselves. 
A private (localised) cloud is an enterprise-owned cloud exclusively accessed for 
its operation or activity. It is not shared or co-owned with another enterprise, such 
as the Microsoft Azure on-premise platform cloud [5]. A hybrid cloud comprises 
two or more clouds, such as a private cloud joining another vendor’s provisioned 
public cloud. For current cloud offerings, see Fig. 16.2 [4].

Fig. 16.2  Current cloud market offering [4]
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The risks inherent in cloud computing are similar irrespective of the cloud model 
in use; however, there are unique security and information assurance requirements for 
each cloud deployment model. For example, security requirements for private clouds 
are different from that of a public cloud. Private clouds are perceived to be more secure 
than public clouds. Similarly, privacy concerns vary from private to public clouds.

To provide a realistic risk management to cloud computing, each cloud deployment 
model must be evaluated in its own right. In this respect, a cloud security relationship 
framework is proposed to provide this assessment (see Fig. 16.3). A cloud security 
relationship model is a theoretical framework to evaluate cloud deployment and 
delivery models based on security, cost and capability requirements.

16.3 � Understanding Risks to Cloud Computing

A major concern with cloud computing is that the cloud provider offers the 
resources in the cloud, that is, the software, platform and infrastructure to the user 
(cloud consumer). In addition, user data/information also reside with the cloud 

Fig. 16.3  Cloud security relationship framework
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provider. The risk with this type of service is that user information could be abused, 
stolen, unlawfully distributed, compromised or harmed. There is no guarantee that 
user’s information/data could not be sold to its competitor. Unfortunately, this par-
ticular risk applies to all the three types of cloud delivery models, namely, SaaS, 
PaaS and IaaS.

Other risks to cloud computing also exist, and range from privacy, data protection, 
ownership, location and lack of reliable audit standard to data security procedure of 
most pioneer cloud providers, such as Google, Amazon, etc. According to Rick 
Gordon of Civitas Group, a concern with regard to cloud providers, especially 
Google Apps includes the lack of reliable security audit standard, data lock-in and 
Google’s opacity regarding its internal data security procedures [7].

In this section, risks to cloud computing are discussed with the view to outlining 
technical, administrative and ethical controls to provide guidance to cloud users.

16.3.1 � Privacy Issues

Privacy even with traditional information security systems and networks is difficult 
to satisfy, and is a challenging issue to cloud computing. Cloud computing has 
significant implications for the privacy of personal information as well as maintain-
ing the confidentiality of business and government information [6]. Concerns over 
privacy with current cloud computing offerings are apparent and real. For example, 
in a letter from Pam Dixon, executive director of the World Privacy Forum to the 
Los Angeles Mayor, Antonio Villaragosa, it was stated that, ‘our concern is that the 
transfer of so many City records to a cloud computing provider may threaten the 
privacy rights of City residents, undermine the security of other sensitive informa-
tion, violate both state and federal laws, and potentially damage vital City legal and 
other interests [7]’. This concern is valid and true, especially with public clouds 
where sensitive individual and corporate information is put in the hands of third-
party cloud providers, whose cloud infrastructure may not be regulated, and could 
traverse through geographical borders that impact both legal and regulatory require-
ments of the information being transported or stored.

Further, information in the cloud is perceived to have weaker privacy gover-
nance over that held in a personal physical computer system [6]. Hence, cloud users 
must be aware of the terms of contract they sign with a provider, and should be 
informed of the provider’s privacy and security guidelines and practices.

We recommend that privacy and security requirements of the different forms of 
cloud models are investigated and assessed, because not all cloud models raise the 
same privacy and confidentiality issues. As shown in Fig. 16.3, each cloud model 
offers unique security requirements, privacy capabilities and varying cost implica-
tions. For example, private or agency clouds are most suitable for protectively 
marked materials or classified information, but are more expensive to operate, 
while public clouds are suitable for personal non-confidential information such as 
sharing photos or pictures with friends.
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Again, it is important that cloud consumers (individual or corporate) assess the 
information requirements and understand the underlying regulatory and compli-
ance requirements of their assets before migrating such assets to the cloud. 
Otherwise, they risk violating or undermining privacy, regulatory and compliance 
requirements of such assets.

Finally, users must apply due diligence on each cloud provider they intend to 
use, and must ensure that the necessary privacy laws are included in the service 
contract issued by the cloud provider.

16.3.2 � Data Ownership and Content Disclosure Issues

Another issue to consider before migrating to the cloud includes ownership of 
information or data residing on the provider’s cloud. The moment a user puts data 
to the cloud, not only could the privacy of the data be lost, but also the ownership 
‘authority’ over the data and right of disclosure could well be lost (by alienating 
ownership to the cloud provider). Although the lawful ownership and right of dis-
closure remains with the originating data owner, this could change quite quickly. 
Some providers retain the right of disclosure as data custodians, while others do 
not. This practice is gradually changing depending on the terms of the contract, 
which the provider issues to its customers.

There is a concern when the cloud provider becomes both the data owner 
and the data custodian. Even with traditional IT services, it is best practice to have 
separation of duties, where a different individual is the data owner, while another 
individual or group is the data custodian. This shifting paradigm with the cloud 
means that the cloud provider is both the data owner and data custodian for all data 
stored or transmitted from their cloud, including data from ‘delinquent organisa-
tions’, such as cybercriminals and organised crime groups. This practice violates 
the principle of separation of duties and job rotation; a fundamental principle of 
information security best practices.

We recommend that cloud users protectively mark their information and explic-
itly specify the ownership of information in the service contract. The service con-
tract must be signed and indorsed by the cloud provider in form of a declaration. 
Protective marking is an administrative control used to classify information assets 
based on the degree of sensitivity afforded to that asset. For example, information 
can be protectively marked as ‘TOP SECRET’, ‘SECRET’, CONFIDENTIAL, etc.

16.3.3 � Data Confidentiality

When a user puts information to a public cloud, what control does that user have 
over the data, its confidentiality, integrity or availability? When we consider small 
to medium-sized organisations or individual users, one could easily discuss the 
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risks associated with cloud computing services. What happens to the government, the 
enterprise in relation to the cloud? Can the cloud be used for government-protected 
marked information? For example, ‘SECRET’ document for defence agencies, such 
as for the CIA, MI5 or the MOD. I certainly do not think so, especially at this 
current stage of the cloud. These agencies have their own clouds, such as the MOD 
cloud, the DISA cloud, etc.; however, what is put in these clouds are still of great 
concern. It is pertinent to note that cloud computing is not ideal for all use cases. 
For example, protectively marked information asset up to the level of ‘SECRET’ or 
‘TOP SECRET’ is not suitable for cloud computing (see Fig.  16.4). Similarly, 
‘STRICTEST IN CONFIDENCE’ and ‘IN CONFIDENCE’ data may not be suitable 
for the cloud.

Fig. 16.4  Information classification to cloud mapping
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We recommend a risk-management approach when evaluating information 
assets to be migrated to the cloud, giving conscious attention to the security and 
information assurance requirements of those assets.

16.3.4 � Data Location

Where does the data that an end-user has created on an MCSP’s system reside? 
Location of end-user data is of great importance. For example, the EU Directive on 
Data Protection (Safe Harbour [8,9]) stipulates countries where EU private and 
personal data can and cannot reside or traverse.

The EU Directive on Data Protection of 1998 [9] is a comprehensive data 
protection legislation that orders its member states to establish a legal framework 
to protect the fundamental rights to privacy with respect to processing personal 
data that has extraterritorial effect. It prohibits the transfer of personal data or 
health records data to non-EU nations that do not meet the European ‘adequacy’ 
standard for privacy protection. The US and the EU share the goal of enhancing 
privacy protection for their citizens [9]. Clearly, achieving regulatory and legisla-
tive compliance in the cloud requires concerted effort from both the user and the 
provider, where the user knows the information requirements and is able to com-
municate that clearly to the provider, and in return, the provider is transparent and 
thus willing to address the regulatory and legislative mandates required with 
regard to the assets.

With the infrastructure as a service, the cloud provider can dynamically use loca-
lised infrastructures that exist outside the EU or US territories. This may contravene 
or abuse fundamental privacy and legislative mandates, especially if the end-user is 
not aware of where the information is held or transported to/from. This applies 
specifically to EU and US cloud consumers, SMEs, government and enterprise who 
may wish to use the cloud for delivering service. Other countries have other legisla-
tions that should be considered when using the cloud. Certain types of assets may 
easily be abused with cloud computing, for instance, personal medical data (health 
record data) are subjected to strict compliance act, such as the health information 
privacy and portability act (HIPPA). A significant concern is that personal medical 
data can be easily circumvented with the SaaS or IaaS models of the cloud. This 
highlights some of the inherent risks that exist with cloud computing [10].

That being said, there are cloud providers that operate territorial cloud service. 
For example, there are UK cloud providers that lease zoned UK only localised 
resources. In addition, there are US and Canadian cloud providers that offer loca-
lised provincial cloud services.

Cloud users whose information assets require location-specific data storage or 
transit requirements must confirm these with cloud providers that offer location-
based cloud service, and must ensure that they are included in the service contract 
offered by the cloud provider.
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16.3.5 � Control Issues

It is not until recently that many cloud security interest groups, such as the Cloud 
Security Alliance [11], the Cloud Computing Interoperability Group [12] and the 
Multi-Agency Cloud Computing Forum [4] began to seek ways of delivering effi-
cient and effective controls in the cloud to ensure that information in the cloud are 
secure and protected.

Currently, clouds are hugely uncontrolled, especially the public ones. 
Recommendations like the use of legal, regulatory, compliance and certification 
practices have been suggested in order to adequately control cloud services and 
practices [3,11,12]. Unfortunately, maintaining compliance with regulatory and 
legislative requirements in the cloud can be much more difficult to demonstrate. The 
attributes of cloud computing as being location-independent, with unclear borders 
and boundaries, providing shared pool of resources on a multi-tenancy architecture 
further make achieving demonstrable regulatory security compliance untenable.

The legal landscape, regulatory compliance and certification are constantly 
changing, and organisation must understand and evaluate current legal, regulatory 
compliance needs of their information before moving them to the cloud.

16.3.6 � Regulatory and Legislative Compliance

Regulatory compliance and certification are security initiatives with significant 
impact on information security practices [8]. Standards regulate how information 
security management is being implemented, managed and conducted. For example, 
ISO 27001–2005 is a security standard that recommends best practices for informa-
tion security management. Organisations seeking accreditation go through a regula-
tory compliance process. Compliant organisations are perceived to possess essential 
drivers to earn trust, and hence, attract business relations with other organisations. 
This proposition applies to cloud computing. In fact, obtaining certification to a 
particular standard is not going to be the only driver, and the coverage of each 
security accreditation or certification is anticipated to contribute towards establish-
ing trust. Furthermore, compliance to regulatory authorities will certainly earn 
some ‘Brownie points’ for corporate organisations. For example, corporate organi-
sations that are regulated by the financial services authority (FSA) must seek advice 
before using public clouds for their operations or risk of facing huge fines, and 
could possibly lose their practicing license. There should be guidance on what 
corporate financial institutions can put out in the cloud and what may not be per-
missible. As the cloud phenomenon unfolds and inherent risks understood, adequate 
guidelines must follow.

The legal landscape of traditional IT is continuously changing. A significant 
concern is that some of these legislations are territorial, even within a country, with 
separate pieces of jurisdiction. For example, the California Security Breach 
Information Act (SB-1386) legislation mandates Californian organisations that 
maintain personal information about individuals to inform those individuals if the 
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security of their information is compromised [13]. This piece of legislation stipu-
lates the disclosure of security breaches only in California. The application of 
SB-1386 and other legislations in the cloud are unclear.

16.3.7 � Forensic Evidence Issues

Information security forensic evidence and e-discovery possess a challenge too. 
In the cloud, what information constitutes legally acceptable forensic evidence? 
How is such information received in relation to the different cloud deployment 
models? If evidence is gathered from a public cloud, how authentic is that 
information perceived to be compared with when similar information is obtained 
from a private cloud? Similarly, with pre-trial discovery and e-discovery, as the 
cloud provider is the data custodian, while the user is the lawful owner of the data, 
who should provide pre-trial evidence in a court of law, and who is responsible with 
respect to discovery and other litigation subjects? With copies of most information 
at different clouds, which information/data constitutes an authentic copy of the 
information that is admissible in a court of law?

It is pertinent to note that the different cloud deployment models offer varying 
levels of security, privacy and acceptability; therefore, it is imperative that cloud 
users must evaluate the security, legal, regulatory and legislative requirements of 
their valued assets before choosing a particular cloud model, and a cloud vendor 
or provider.

16.3.8 � Auditing Issues

Auditing for security management aims to evaluate policies, practices, operations 
and technical controls of an organisation in order to assess compliance, detection, 
protection and security forensics [14]. The need for regular security audits is essen-
tial, and should not focus only on the reactive audits done when an incident has 
occurred, but also on proactive security audits done in order to assess whether 
security controls, security processes, procedures and operations are adequate and 
practical in protecting critical assets of the organisation. Two factors make demon-
strating security audit in the cloud a critical issue:

First, cloud providers must demonstrate their security audit procedure to their 
customers. Second, the level of audit coverage being conducted must be acceptable, 
bearing in mind the myriad of diverse and varied information assets that the cloud 
providers are data custodians for.

Auditing security requirements in a cloud environment can be difficult and sig-
nificantly challenging [15]. One approach to addressing auditing issues in the cloud 
is transparency from the cloud provider in managing information security. That is, 
the cloud provider must make its customers aware of its audit processes and the dif-
ferent levels of audit coverage. In this way trust and good relationship between the 
provider and its customers can be achieved.
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16.3.9 � Business Continuity and Disaster Recovery Issues

Cloud computing is dynamic and offers ubiquitous network access to vast amount 
of significant resources, and these resources are meant to be available swiftly and 
on-demand to legitimate users. Unfortunately, there have been cases when the 
availability of data in the cloud has become a major concern. For example, 
Amazon’s Elastic Compute Cloud (EC2) service in North America was temporarily 
unavailable at significant times due to ‘lightning storm that caused damage to a 
single power distribution unit (PDU) in a single availability zone [16]’. This 
highlights the importance of disaster recovery and business continuity plans in 
the cloud. The availability of resources in the cloud is of least importance to users 
according to most surveys. This is because the cloud offers ubiquitous and 
on-demand network access. Unfortunately, information in the cloud could still 
be unavailable when needed due to natural disasters, vulnerability exploits and 
deliberate attacks.

There are three reasons why cloud users must be concerned with the availability 
of their valued assets in the cloud. First, most cloud providers rent computing and 
data-centre infrastructures from other cloud providers. This means that when one 
cloud infrastructure is affected (unavailable), most probably, other providers will 
suffer similar losses, hindering the availability of resources to a wilder audience 
much more possible than with the traditional IT networks.

Second, the possibility that a cloud provider can file for bankruptcy, where 
the provider goes out of business with consequential financial liability to 
offset makes the availability of cloud resources a serious issue to consider. Finally, 
cross-vulnerability in the cloud due to the multi-tenancy implementation of cloud 
infrastructures and services makes the availability of resources in the cloud an 
important issue to consider.

In these respects, we recommend that users engage with their cloud providers to 
understand their disaster recovery processes and procedures, and where possible, 
make inputs as to how best this can be achieved. For instance, users may be pro-
vided backup copies of data on a monthly basis as part of the agreement. This 
practice can be extremely helpful, for example, in the case of bankruptcy of a cloud 
provider, or when natural disaster threatens the existence of a data centre. Further, 
users must be aware of their provider’s business continuity plans, for instance, 
whether the provider has hot-standby sites and whether resilience is built as an 
abstraction to all layers of its services.

16.3.10 � Trust Issues

Trust in both the traditional IT services and cloud computing must be earned. Trust 
is a major issue with cloud computing irrespective of the cloud model being 
deployed. Nevertheless, the cloud like traditional IT services can be secured, 
protected and dependable. It is believed that the cloud offers security advantages. 



28316  Security Issues to Cloud Computing

For example, intruders do not have access to the source code and providers often 
work hard to provide clean, unbreakable barriers between the customers [17]. 
However, this requires conscientious effort from both cloud providers and users; in 
addition, cloud providers must be transparent about their security policies, audit 
practices, data backup procedures and certification/accreditation. Once users are 
comfortable with a particular provider’s practices, together with the service level 
agreement (SLA) agreed upon, they are more willing to do business.

Nevertheless, cloud users must be open-minded and must not whole-heartedly 
trust a provider just because of the written-down service offerings, without carrying 
out appropriate due diligence on the provider and where certain policies are not 
explicit, they should ensure that missing policies are included in the service con-
tract. By understanding the different trust boundaries, each cloud computing model 
assists users when making decision as to which cloud model they can adopt or 
deploy. For example, with infrastructure cloud computing, a great trust relationship 
is created because user data backup is possible and applicable, where copies of a 
user’s data are backed up. Similarly, there is a possibility for the user to create and 
configure additional and customised access controls to protect its data. This level 
of trust is not possible with software cloud computing, for instance.

16.3.11 � Security Policy Issues

Whose security policy governs the cloud, the user or the MCSP? Obviously, the 
cloud provider’s security policy is what stipulates acceptance uses, specifies service 
level agreements and governs the cloud environment. What if the security policy of 
the MCSP is not acceptable to a cloud user, because the policy may be missing some 
policies that the users consider essential towards achieving the security and informa-
tion assurance requirements for their assets? To ensure that information assets in the 
cloud are adequately maintained, we recommend that cloud users must:

Carry out due diligence on the provider•	
Appropriately classify the information assets to determine their security, regula-•	
tory and compliance requirements
Consider the viability of each cloud model in relation to their information assets •	
requirements
Consider return on investment (RoI) of the cloud in relation to the security of the •	
asset

16.3.12 � Emerging Threats to Cloud Computing

New and unfamiliar threats to cloud computing are emerging. Examples include 
cross-virtual machine (VM) exploits, inter-processor exploits and cross-application 
vulnerability exploits. Although most of these widely publicised attacks to cloud 



284 C. Onwubiko

computing are theoretical [18], it is possible that within the next couple of years, 
these attacks may be realised. Therefore, precautionary measures must be put in 
place; mitigation plans and risk treatment plans must exist to address emerging 
vulnerability exploits and current attacks to cloud computing.

Above all, to appropriately profile cloud computing risks, each cloud service 
and deployment model must be evaluated against its security requirements (see 
Fig. 16.4).

16.4 � Cloud Security Relationship Framework

Managing security in the cloud is different from managing security in traditional IT 
systems or networks. The difference is significant from the level of trust of machine 
data to management of information in the cloud. Cloud computing is a new and 
emerging technology, and hence, inherent and cumulative risks to cloud computing 
are new, evolving and unfamiliar. Like any new technology, new and unfamiliar risks 
exist. Therefore, conscientious effort must be dedicated towards understanding risks 
that exist, in addition to finding appropriate ways of addressing such risks.

The current stage of the cloud is very immature. A lot of the offerings are geared 
towards adopters with little to no risk and a lot to gain from low-cost, pay-as-you-go 
resources [19]. Thus, current cloud computing deployments are not suitable for all 
use cases. However, like other utility services, such as electricity, cloud computing 
can be secured. To make the cloud secure, security must be built into every aspect 
of the cloud starting from its foundation stage.

To understand risks associated with cloud computing, risks that exist with tradi-
tional IT must be properly evaluated (as discussed in Section 3), while new and 
emerging risks to the cloud are investigated on a per cloud service and deployment 
model basis. To assist with this assessment, a framework is proposed (see Fig. 16.3). 
A cloud security relationship framework is a framework for assessing cloud com-
puting offerings (cloud service model, cloud deployment model and use cases) on 
the basis of cost, security and capability. The cloud computing framework com-
prises three components, deployment, delivery and user. These components are 
evaluated against three metrics, cost, security and capability.

Cost relates to the amount that users pay to use a particular cloud computing 
service operating on a specific delivery model in a given deployment. A cloud 
delivery model is a cloud computing service, for instance, SaaS, PaaS and IaaS, 
where each delivery model provides a set of specific functionalities. A cloud 
deployment model is a cloud computing type that offers a set of unique attributes 
and coverage, such as private, public, hybrid, community, localised, virtual private 
and external clouds. There is a considerable number of cloud computing models 
currently being used and developed. These terminologies are used loosely in many 
publications today; however, early taxonomies are provided in [20,21].

Security relates to the protection afforded to cloud computing services, such as 
confidentiality, integrity and availability. It is difficult to quantify security offerings 
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in the cloud. Thus, instead of using formal (mathematical) metrics as those discussed 
by Pfleeger [22], we have used metrics (low, medium and high) that are in current 
use and applicable to many use cases. In this study, low security is when one security 
requirement (confidentiality, integrity and availability) can be achieved; medium 
security is when two of the requirements are achievable, while high is when all the 
three requirements can be achieved.

Capability relates to the variety of offerings available with each cloud computing 
deployment. There is a direct relationship between cost and security of the cloud 
deployment models, such as public, community, agency, hybrid and private. This 
implies that private clouds provide ‘pre-requisite’ security requirements when com-
pared with hybrid or public clouds. Similarly, the cost implication for the same type 
of service grows from public to private clouds, while the capability (service-offering 
capabilities) is directly related to the cloud service type deployed. For example, 
infrastructure cloud computing (IaaS) offers more capabilities than PaaS or SaaS.

It is pertinent to note that not all cloud computing deployment models (public, 
private, agency, community and hybrid) raise the same security concerns, or offer 
the same confidentiality, integrity, availability or privacy of data or information. 
Certain cloud deployments are most appropriate to certain organisations. For exam-
ple, government, financial or health institutions are more inclined to hybrid or pri-
vate clouds than public clouds. Similarly, users transmitting or storing classified 
information, such as confidential information, should use hybrid or private clouds 
(see Fig. 16.4), while agencies, such as MOD, CIA or DISA, must use agency or 
privately operated clouds.

The cloud security framework (see Fig. 16.3) must be used in conjunction with 
the information assets classification model (see Fig.  16.4) when deciding which 
information assets need to be mitigated to the cloud.

We have shown that based on security and privacy requirements of information 
assets (confidentiality, integrity, privacy and impact), some assets are not suitable 
for the cloud. For example, ‘SECRET’ and ‘TOP SECRET’ information assets 
(information assets #14 and #15) are not suitable for the cloud (see Fig. 16.4).

Similarly, information assets #12 and #13 require minimum agency cloud, but 
can also use private clouds. Information asset #13, for instance, is classified as 
‘confidential’ and needs high confidentiality, high integrity, high availability and 
privacy requirements. However, if this asset is to be compromised, then the impact 
to the organisation will be critical. Therefore, based on the information require-
ments and impact level of this information asset, agency cloud, at the minimum, is 
required to host, store and transport this asset.

Information assets #1–#6 can be hosted in a public cloud, and information assets 
#6–#10 require a community cloud of some sort. For example, a financial commu-
nity cloud, if the information assets are owned by a financial institution, or a health 
community cloud, if owned by a medical or health institution.

Note that while information asset #5, for example, may require at the minimum 
a public cloud, this information asset may well be hosted in a private cloud too. The 
zoning of information assets to clouds is done based on the minimum security and 
privacy requirements of that information asset (see Fig. 16.4).
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16.4.1 � Security Requirements in the Clouds

A private (localised) cloud is a solely owned cloud, operated and used by an enterprise. 
It may be regulated and governed like other clouds, and most importantly, it is for 
‘restricted’ users only. Private clouds are more secure than public clouds, and there-
fore, private clouds are most suitable for transmitting classified information, such 
as confidential and/or proprietary information. Information assets with lesser secu-
rity requirements, such as personal information may still use a private cloud (see 
Fig. 16.4). It is pertinent to note that the use of a private cloud offers no guarantee 
as to the security or privacy of the information assets that it stores or transports. For 
example, the use of Microsoft Azure on-premise cloud platform does not provide 
any guarantee to the security and compliance of information that is stored or trans-
ported using this cloud. We recommend that organisations seeking to use the cloud 
for classified information or regulated transactions should use a private cloud, but 
must do so bearing in mind that the necessary security requirements of that infor-
mation asset are constantly assessed and reviewed. Furthermore, private clouds 
come with a prize; for instance, the cost to rent, deploy or operate a private cloud 
is comparably and considerably higher than a public cloud.

A public cloud is an open cloud maintained by a cloud vendor for the general 
use of everyone including cybercriminals. A public cloud is most probably the most 
currently used cloud, such as Salesforce, Amazon EC2 and Amazon web services 
(see Fig.  16.2, [4]). A public cloud is relatively safe and offers a wide range of 
capability at reduced cost.

Agency clouds, like private clouds, are perceived to be secure and reliable 
because they are privately owned by the military or defence agencies. Hence, rigor-
ous and complex security requirements are thought to be applied. Defence agency 
cloud may require separate legal, regulatory and security compliance measures 
different from those of public clouds. For example, the DISA cloud is subject to 
government legislation, while UK government clouds would be subject to CESG 
information assurance compliance and protective handling.

A community cloud is governed by the regulatory controls of that community,for 
example, health and financial institutions clouds. Integrated (hybrid) clouds combine a 
set of requirements from two or more co-joining clouds. These requirements are bound 
to vary depending on the specific requirements of the co-joining clouds. It is an illusion 
to think that hybrid clouds provide ‘high’ security. Each cloud must be assessed in its 
own right to determine its privacy, security and regulatory policies and practices.

16.5 � Conclusion

Cloud computing is an emerging technology that offers unparalleled distributed com-
puting resources at affordable infrastructure and operating costs. The cloud requires 
conscientious and diligent attention from both users and providers due to the inherent 
risks associated with its operating paradigm, such as ubiquitous network access, 
multi-tenancy service delivery, location independence, homogeneity and openness.
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In this chapter, cloud computing has been explained. Three of the widely used 
cloud services, namely, software computing, platform computing and infrastructure 
computing, and five of the deployment models, namely, private (localised), public, 
community, agency and hybrid clouds have been discussed.

Cloud computing, like existing utility services such as electricity, water and 
telephone, can be secure, safe and reliable; however, this can be achieved when 
security issues that exist with traditional IT services are evaluated in relation to 
cloud computing. Unfortunately, cloud computing offers varying levels of security 
and privacy based on the cloud model being deployed.

The proposed cloud security framework to assess cloud offerings provides a 
systematic assessment of cloud computing services based on cost, capability and 
security. It has been shown that the three cloud service models offered unique secu-
rity requirements. Similarly, the capability of the deployment models (public, com-
munity, agency, private and hybrid) has been found to be unique and varied.

As organisations use the framework and information classification model pro-
posed in this chapter to evaluate cloud services and information requirement 
respectively, we recommend that they do so by knowing that not all information 
assets should be migrated to the cloud.
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Abstract  Despite the excitement surrounding the cloud, a relatively small percentage 
of organizations have actually begun incorporating cloud computing into their 
technology portfolios. Of the many obstacles to adopting the cloud model of deliv-
ery and consumption of computing resources, the number one concern, from users 
to CIOs/CTOs, is security. The lack of strong security controls can resonate through 
the cloud, opening all of the applications and services that are running across the 
cloud to exploitation. In this chapter, we examine cloud security, focusing our dis-
cussion on gaps within the existing ISO 27002 security controls when applied to 
cloud computing. These gaps are used to build a list of potential security concerns 
that may not be addressed by traditional (non-cloud) data center policy and proce-
dures. Using the results of this gap analysis, a set of recommendations on how to 
incorporate security into the cloud is provided. Additionally, case studies of both 
public- and private-cloud provider security mechanisms are presented.

Abbreviations

AWS	 Amazon Web Services
CIO	 Chief Information Officer
CTO	 Chief Technical Officer
EC2	 Elastic Compute Cloud (Amazon EC2)
FIMSA	 Federal Information Security Management Act
GLBA	 Gramm–Leach–Bliley Act
HIPAA	 Health Information Portability and Accountability Act
ISO	 International Organization for Standardization
IT	 Information Technology
NIST	 National Institute of Standards and Technology
RAM	 Random Access Memory

J.P. Durbano (*) 
Northrop Grumman 1840 Century Park East Los Angeles, CA 90067-2199, USA 
e-mail: james.durbano@ngc.com

Chapter 17
Securing the Cloud

James P. Durbano, Derek Rustvold, George Saylor, and John Studarus 

N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,  
Systems and Applications, Computer Communications and Networks, 
DOI 10.1007/978-1-84996-241-4_17, © Springer-Verlag London Limited 2010



290 J.P. Durbano et al.

SLA	 Service Level Agreement
SOX	 Sarbanes–Oxley

17.1 � Introduction

Cloud computing represents an exciting evolution of application and infrastructure 
solutions, prompting Information Technology (IT) departments around the world to 
investigate what the cloud can do for their organizations. Despite the excitement sur-
rounding the cloud, a relatively small percentage of organizations have actually begun 
leveraging cloud computing, citing concerns such as vendor lock-in, lack of acceptable 
service-level agreements (SLAs), and limited governance procedures. Of the many 
obstacles to adopting the cloud model of delivery and consumption of computing 
resources, the number one concern, from commercial users to developers to CIOs/
CTOs, is security [1]. These concerns are motivated by a variety of factors including:

1.	 Handing over control of hardware resources to a third party
2.	 The fact that other companies (including competitors) may also utilize the same 

cloud platform
3.	 Meeting the requirements of existing regulations

The lack of strong security controls can resonate throughout the cloud, opening all 
of the applications and services to exploitation. Put simply, a single vulnerability 
can contaminate the entire cloud. Providing a cloud environment with strong, 
demonstrable security controls is desired by all cloud users. In fact, certain user 
communities, such as those subject to regulatory compliance, must maintain strong 
security controls in order to consider the cloud a viable platform. For example, 
government customers must satisfy FISMA [2], healthcare providers are bound by 
HIPAA [3], publicly traded companies follow SOX [4], and financial institutions 
are subject to GLBA [5].

To secure the cloud, we begin by applying traditional data center security tech-
niques. However, the very nature of cloud computing (i.e., multitenant, geographi-
cally distributed, virtualized, etc.) introduces new security challenges. A structured 
approach to identifying these security issues includes an analysis of the new tech-
nologies introduced by cloud computing and a gap analysis against current stan-
dards, such as the ISO 27002 security controls.

In this chapter, we examine cloud security. It is impossible to present a complete 
overview of cloud security issues and possible resolutions in the context of a single 
chapter, and the reader is referred to the excellent work being performed by orga-
nizations such as the Cloud Security Alliance [6]. For this reason, we focus our 
discussion on gaps within the existing ISO 27002 security controls when applied to 
cloud computing. These gaps are used to build a list of potential security concerns 
that may not be addressed by traditional (noncloud) datacenter policy and proce-
dures. Using the results of this gap analysis, a set of recommendations on how to 
incorporate security into the cloud is provided.
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17.1.1 � What Is Security?

Before we can discuss how to secure the cloud, we must first define what is meant 
by “security.” What does it mean to have a “secure” cloud? What aspects must be 
addressed by any cloud security solution?

For the purposes of this chapter, we state that a “secure” cloud is one that 
addresses the following information security principles: confidentiality, integrity, 
availability, identity, authentication, authorization, and auditing. Representative 
questions from potential cloud adopters include:

•	 Confidentiality: Can anyone else see my data when it is in the cloud?
•	 Integrity: Can anyone else modify my data when it is in the cloud?
•	 Availability: Will my data/applications always be up and running? What if the 

cloud provider goes out of business?
•	 Authentication: When people access my data and applications, how does the 

cloud ensure that they are who they claim to be?
•	 Authorization: How does the cloud ensure that people can only access the data 

and applications that they are allowed to access?
•	 Auditing: How can I verify that all of these items are consistently addressed?

Now that we have sufficiently scoped our definition of security, we examine the existing 
security controls to identify gaps in coverage associated with cloud computing.

17.2 � ISO 27002 Gap Analyses

ISO 27002 (formerly ISO 17799) “establishes guidelines and general principles for 
initiating, implementing, maintaining, and improving information security manage-
ment in an organization” [7]. Although the standard offers a high-level description 
for providing information security, it does not include detailed information on how 
the security controls should be implemented.

By comparing the ISO 27002 security controls against the technologies and use 
cases of cloud computing, a number of security gaps were identified and are dis-
cussed below. Because cloud computing extensively leverages virtualization tech-
nologies, much of the discussion is focused on virtualization gaps.

This information is intended to provide a high-level overview of some of the 
challenges associated with securing the cloud. There are additional gaps against the 
ISO standard that are not discussed and many other issues to consider. The inter-
ested reader is referred to [6] for more details.

Because ISO 27002 is organized around “families” of related controls, our dis-
cussion follows this organization. In this section, we address the following ISO 
27002 families:

Asset Management•	
Communications and Operations Management•	
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Information Systems Acquisition, Development, and Maintenance•	
Information Security Incident Management•	
Compliance•	

17.2.1 � Asset Management

The goal of Asset Management controls is to protect organizational assets. Within 
this family, gaps were identified in the following: Asset Tracking.

Traditionally, physical access is required to insert new servers into the network. In 
a cloud data center, virtual environments can be provisioned without the need for 
physical access to the network. Thus, it may be possible to have rogue virtual servers 
on the network. Controls must be introduced to track these new virtual assets across 
the network to make sure appropriate security measures are in place.

Also, it is important to develop a consistent naming scheme for servers on the 
network in order to maintain accurate logs and to track events. Naming schemes for 
data center hosts are typically location- and application-centric. However, these 
schemes are not always applicable to virtual servers, which migrate from server to 
server and even across physical sites. Similarly, servers may be shared by multiple 
applications, making application-based naming ineffective.

Finally, in a virtualized data center, there will be virtual devices that may come 
and go as instances are modified. Instances are simply cloud resources, and could 
represent virtual machines, software-as-a-service modules, storage units, etc. 
Examples of virtual devices include network interfaces, consoles, serial ports, USB 
ports, floppy, CD ROMs, and storage systems. These virtual devices could be used 
to gain unauthorized access to the system or to copy data on/off the instances.

17.2.2 � Communications and Operations Management

The goal of Communications and Operations Management controls is to maintain the 
availability and integrity of information and equipment. Within this family, gaps were 
identified in the following controls: Change Management, Capacity Management, 
System Utility Access Control, Patch Management, System Audits, Media Destruction 
and System Reuse, Data Encryption, Logging and Monitoring, and Backups.

Change Management: Existing data center change control processes are simplified 
by the fact that many times individual hosts are assigned exclusively to an applica-
tion. In a cloud environment, one physical server typically runs many virtual 
machines and is responsible for a number of business tasks. Thus, a change to a 
single host may impact multiple applications within the data center.

Capacity Management: There are three primary issues associated with capacity 
management in the cloud. First, the cloud environment must be effectively sized. 
One of the benefits of using a cloud environment is the ability to rapidly provision 
new instances. As such, there must be mechanisms in place to determine the number 
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of instances the existing infrastructure can handle without impacting business 
tasks.

Second, all applications running within the same physical segment of the cloud 
are, in effect, competing with each other for the same CPU, memory, storage, and 
networking resources. Because of this, it may be possible for a single application 
to cause a denial-of-service attack within the cloud by demanding a large amount 
of resources (thereby negatively impacting other applications).

Finally, an application ‘X’ running in a cloud may be able to gather information 
about the state of other applications due to the number of resources available to appli-
cation ‘X’. For example, if application ‘X’ notices that available CPU, disk, or network 
resources have been reduced, it may be able to deduce that the other applications on 
the cloud are running at a higher level than normal. This information might be useful 
to a malicious individual trying to gather information about the state of the cloud.

System Utility Access Control: Cloud computing will result in new utilities and 
management consoles that must be used in a secure manner. These are unlike tra-
ditional system administration tools, since they effectively provide administrator 
capabilities (e.g., create, destroy, and move) to “standard” users. These tools must 
support controls to prevent misuse.

Patch Management: There are two primary concerns associated with applying 
patches in a cloud environment: patching the underlying “cloud” infrastructure and 
patching individual instances. New controls will need to be put into place to patch 
the underlying host operating system (hypervisor) without impacting the virtualized 
servers running on that host. Instances may need to be migrated to an alternative 
host, especially if rebooting is required. Also, individual instances may be offline 
when patches are applied and thus will need to be patched immediately when 
brought online. Instances will need to be scanned when brought online to make sure 
they are not missing any patches.

System Audits: Traditionally, physical systems are audited when first built and put 
into production. In a cloud environment, virtual instances of operating systems may 
be built and put into production with little or no oversight. Procedures will need to 
be modified to include audits at the creation of the system and every time a virtual 
system comes back online after having been modified.

Media Destruction and System Reuse: New controls will be needed to guarantee 
that, upon destruction, the instance is indeed removed completely from the cloud 
environment. This includes all of the file systems, memory paging files, and meta-
data. For the most critical data, such as classified government information, the 
persistent storage may need to be physically removed and destroyed.

Data Encryption: A malicious user copying off a dormant image of an instance can 
view not only the file system associated with the image but also the volatile mem-
ory image that is stored to disk. Passwords and other confidential data, normally 
encrypted on disk but not in memory, may end up stored on disk in an unencrypted 
format. New controls are required to encrypt an instance while it is stored on disk 
and as it is being migrated between servers.
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Logging and Monitoring: With the introduction of the cloud, a new operating 
system, the hypervisor, must be monitored. Additionally, individual logs from 
physical servers and virtualized instances will need to be gathered, processed, and 
aggregated into a centralized location. The distributed nature of the data processing 
across the cloud will require sophisticated log processing to correlate information 
across multiple logs from many sources in different log formats.

Backups: The backup of a single physical resource may contain information 
from a number of instances. Policies and procedures must ensure that no data leaks 
can occur between instances.

17.2.3 � Information Systems Acquisition, Development,  
and Maintenance

The goal of Systems Acquisition, Development, and Maintenance controls is to 
prevent information loss and errors, as well as unauthorized modification or access. 
Within this family, gaps were identified in the following controls: Message Integrity 
and Technical Standards.

Message Integrity: The introduction of new tools, user interfaces, and APIs to sup-
port and interact with the cloud will introduce new control messages across the 
network. Such messages will be used to create, launch, and deprovision cloud 
resources, as well as to implement and verify various security controls. As such, 
these messages are obvious targets for attack and must be protected to ensure that 
they cannot be altered, duplicated, or deleted.

Technical Standards: Cloud computing is beginning to leverage new technologies 
that require changes in how software is developed, tested, deployed, and managed. 
Existing controls, policies, and procedures will need to be modified to handle these 
new types of software to prevent poorly written and untested software from being 
introduced into production. Additionally, new standards are required for hypervisor 
operating systems.

17.2.4 � Information Security Incident Management

The goal of Information Security Incident Management controls is to ensure that, 
when security incidents occur, a consistent process is followed to remedy the situ-
ation. Within this family, gaps were identified in the following controls: Reporting 
Security Events and Collection of Evidence.

Reporting Security Events: With the introduction of the hypervisor, there are new 
security events that must be logged, reported, and possibly investigated (such as 
moving an instance across physical resources). Existing procedures will need to be 
expanded to handle these new security events.
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Collection of Evidence: With virtual servers, the controls and procedures in which 
evidence is gathered must be modified. This could vary from taking the physical serv-
ers offline (and migrating off any nonimpacted instances) to simply hibernating and 
cloning the affected instances. Performing digital forensics on virtual machines has 
important implications that have yet to be fully explored. When a virtual machine 
is powered off, its disk image remains available to the host operating system. 
This exposes the instance to potential tampering in a manner that does not exist with 
physical machines. Defining acceptable methods for collecting evidence in a virtual-
ized environment will be essential to performing incident response and forensics.

17.2.5 � Compliance

The goal of Compliance controls is to ensure that systems comply with all relevant laws, 
regulations, and any other constraints imposed on the system. Within this family, gaps 
were identified in the following controls: Technical Compliance and Audit Tools

Technical Compliance: Compliance issues are paramount when operating within a 
highly regulated environment. Just as with traditional data centers, auditors will 
demand that cloud environments remain compliant. The physical location of data 
will be of particular importance in the cloud, especially in the context of data privacy, 
business continuity planning, incident response, and forensics.

Audit Tools: Audits must identify rogue instances on the network and other suspi-
cious activity or control failings. New tools are required to verify that all instances 
are in compliance. These compliance checks must be run automatically against 
instances immediately after provisioning, after maintenance, and again when 
decommissioned.

17.3 � Security Recommendations

In the previous section, we identified a number of security gaps against the ISO 
27002 standard that are unique to virtualized systems and cloud computing. In this 
section, we provide a list of 20 recommendations (summarized in Table 17.1) that 
attempt to address many of these gaps. Although some of these recommendations 
are not unique to cloud environments, they become more critical to address when 
working in a cloud. This is by no means an exhaustive list of steps necessary to 
protect a cloud environment. Instead, it is meant to provide the reader with some of 
the many actions that must be taken to ensure a reliable, secure cloud.

	 1.	 Provide globally unique names to every instance in the cloud that allow key 
instance attributes to be identified. From the name, one should be able to iden-
tify the application as well as the owner. All instances created across the cloud 
should be assigned a name provided by the cloud. This is a globally unique 
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identifier that is used to cross-reference information about the instance. Instance 
names are kept for the life of the cloud to preserve records and logging integ-
rity. If instance names are to be viewed by unprivileged personal or processes, 
then the instance name itself should not reveal any useful information about the 
application or the data being stored within the instance. A user-defined name 
(i.e., “alias”) may be permitted for convenience, but the globally unique name 
will be the standard identifier used within the cloud.

	 2.	 Record resource locations, both physical and virtual, throughout an instance’s 
entire lifecycle to enable traceability. Records of physical resources and data 
that were used or generated by an instance should be maintained from creation 
to destruction. This is important for successful incident response and digital 
forensics. See Recommendation 16 for additional details.

	 3.	 Do not implicitly trust the cloud or any instances in the cloud; every interaction 
in the cloud demands authorization and authentication. Neither the cloud nor 

Table 17.1  Summary of cloud computing security recommendations

Recommendations

  1.	 Provide globally unique names to every instance in the cloud that easily allows key 
instance attributes to be identified

  2.	 Record resource locations, both physical and virtual, throughout an instance’s entire 
lifecycle to enable traceability

  3.	 Do not implicitly trust the cloud or any instances in the cloud; every interaction in the cloud 
demands authorization and authentication

  4.	 Encrypt instances and data when stored to disk and while migrating between servers
  5.	 Restrict dynamic utilization of resources to predetermined levels to prevent an “internal” 

denial-of-service attack
  6.	 Virtually “shred” retired instances and data when no longer needed
  7.	 Assign priorities (i.e., SLAs) to every instance in the cloud to ensure appropriate 

availability and resource utilization
  8.	 Utilize a single management, logging, and monitoring system capable of supporting the 

entire cloud
  9.	 Restrict console access (physical and virtual) to users with a defined business need
10.	 Create new instances according to defined, tested, and approved specifications
11.	 Execute applications across multiple physical servers to improve reliability
12.	 Provide centralized authentication and authorization services
13.	 Provide a centralized key management system to allow the cloud to communicate sensitive 

information
14.	 Digitally sign control messages within the cloud in order to prevent tampering and 

unauthorized use
15.	 Restrict data ingress/egress points in the cloud to mitigate the introduction of malicious 

software and removal of private data
16.	 Record the current state and lineage records (from creation to destruction) of physical and 

virtual resources
17.	 Isolate suspicious instances and replace with alternate instances
18.	 Scan the cloud for unauthorized instances in order to identify, isolate, and remove them
19.	 Audit resource utilization records to detect suspicious activity
20.	 Audit instances at “life” events, such as creation, migration, hibernation, and startup, to 

ensure compliance
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any instances should trust each other. When an instance stores any data within 
the cloud, it should encrypt the data. Similarly, the cloud should not trust any 
particular instance. This includes limiting the amount of cloud resources that 
are usable by any particular instance (i.e., to prevent a denial-of-service attack). 
See Recommendations 4 and 5 for additional details.

	 4.	 Encrypt instances and data when stored to disk and while migrating between 
servers. All instances should be encrypted by the cloud provider when being 
stored to disk or in transit from one physical server to another across the network. 
This is to prevent unauthorized access to the information stored within the 
instance. Additionally, individual instances should take their own precautions and 
encrypt sensitive information, including virtual memory (RAM), that may persist 
on disk (e.g., through paging files or if the instance is hibernated to disk).

	 5.	 Restrict dynamic utilization of resources to predetermined levels to prevent an 
“internal” denial-of-service attack. Automatic growth should be capped at a 
predetermined level. A cloud administrator can manually override this limit 
after a review. Without this limit, it may be possible for one business applica-
tion to consume vast amounts of resources on the cloud and effectively cause a 
denial-of-service for all other applications.

	 6.	 Virtually “shred” retired instances and data when no longer needed. When there 
is no longer a business use for an instance or data, it should be removed from 
the cloud and disposed of properly. The image on the file system should be 
virtually shredded (i.e., overwritten with random data).

	 7.	 Assign priorities (i.e., SLAs) to every instance in the cloud to ensure appropriate 
availability and resource utilization. When a new instance comes online within the 
cloud, it should be allocated a business criticality. This rating is used to determine the 
order in which resources are allocated across applications within a cloud. Those appli-
cations with a higher business criticality will have first rights to cloud resources.

	 8.	 Utilize a single management, logging, and monitoring system capable of sup-
porting the entire cloud. The cloud should have a singular management inter-
face to control and check the status of the various aspects of the cloud. The 
implementation of this management interface could be centralized or distrib-
uted, allowing for multiple consoles that provide the same information. 
However, any one console should be able to display information about the 
entire cloud. Logs and events across all instances should be consolidated and 
presented in an aggregated manner.

	 9.	 Restrict console access (physical and virtual) to users with a defined business 
need. Access to device consoles (physical or virtual) within the cloud should be 
restricted to users with a defined business need. The ability to start and stop an 
instance on the network should be restricted to the owner of the instance and 
authorized delegates.

	10.	 Create new instances according to defined, tested, and approved specifications. 
New instances should be built, ideally through an automated process, to pre-
defined, tested, and approved technical specifications (such as templates). 
Arbitrary instances should not be allowed onto the cloud without going through 
an approved process that includes defining a technical specification.
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	11.	 Execute applications across multiple physical servers to improve reliability. 
Distributing a business task in an intelligent manner across a number of physi-
cal servers improves the reliability of the task, since it is no longer reliant on 
any one server.

	12.	 Provide centralized authentication and authorization services. Authentication, 
the verification of the identity of a process or individual, should be handled by a 
centralized service within the cloud. By centralizing the authentication of users 
and processes, it is easier to detect suspicious activity, such as failed logins. 
This also reduces the number of copies of sensitive data, such as usernames and 
passwords, across the cloud.

	13.	 Provide a centralized key management system to allow the cloud to communicate 
sensitive information. Centralized key management provides a mechanism for 
the cloud to securely communicate sensitive information. Segregation of this key 
management from the cloud provider, and by roles within the same provider, is a 
worthwhile consideration because of the separation of access and enhanced level 
of data privacy that can be provided. At a minimum, each administrative user on 
the cloud would be assigned a public/private key pair that could be used to facili-
tate secure communications. This key management infrastructure should be used 
for distributing initial super user credentials and for managing instances.

	14.	 Digitally sign control messages within the cloud in order to prevent tampering 
and unauthorized use. The key infrastructure described above should be used to 
encrypt all messages, such as the control messages to create, destroy, or other-
wise modify instances on the cloud. If needed, these control messages would be 
encrypted in addition to being signed. Time stamping of all control messages 
should be required to prevent replay attacks.

	15.	 Restrict data ingress/egress points in the cloud to mitigate the introduction of 
malicious software and removal of private data. Interfaces where data can be 
copied to and from the cloud should be restricted to administrator use and mon-
itored. This includes network and storage media interfaces. Physical access to 
media (e.g., tapes, disk drives, USB interfaces) should be restricted to prevent 
unauthorized data access. Cloud storage clients should use approved network 
interfaces to upload, download, and access cloud data. Network data ingress 
and egress should be monitored for malicious software and unauthorized data 
transfers.

	16.	 Record the current state and lineage records (from creation to destruction) of 
physical and virtual resources. As instances are brought online and destroyed, 
it is important to keep a list of all approved instances. This list will be used to 
audit the cloud, ensuring that there are no rogue instances running. These 
records should include the physical location of each instance, state (e.g., run-
ning, suspended, isolated, destroyed), and owner. Historical records of instances 
should be maintained after an instance is removed from service.

	17.	 Isolate suspicious instances and replace with alternate instances. If suspicious 
activity is noticed, the offending instance should be frozen and replaced with an 
alternate instance. The suspect instance would then be isolated from the rest of 
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the cloud for analysis. It may also be necessary to isolate the physical server 
used by the suspicious instance. In this case, all instances currently running on 
the same hardware must also be isolated for inspection and transitioned to new 
physical resources.

	18.	 Scan the cloud for unauthorized instances in order to identify, isolate, and remove 
them. The introduction of rogue instances is a significant concern, and the cloud 
should be scanned frequently to ensure only legitimate instances exist. Any 
instance that is not on the list of authorized instances should be removed from 
the cloud and isolated. It may also be necessary to isolate the physical server 
used by the suspicious instance. In this case, all instances currently running on 
the same hardware would have be isolated for inspection and transitioned to 
new physical resources.

	19.	 Audit resource utilization records to detect suspicious activity. Resource utili-
zation is an important tool to identify suspicious activity on the cloud. An audit 
of the total resource usage, including memory, disk, CPU, and network activity, 
across all instances on the cloud, can be used to locate suspicious instances. 
This data should also be compared against historical records to identify poten-
tial anomalies.

	20.	 Audit instances of “life” events, such as creation, migration, hibernation, and 
startup, to ensure compliance. After an instance is brought to life on the cloud, 
it may go through various life events, such as hibernation, a move across physi-
cal hardware platforms, or an increase/decrease in available resources. At each 
life event, the instance should be assessed for compliance with the cloud’s 
security requirements. If the instance is no longer in compliance, it should be 
isolated.

17.4 � Case Studies

Many of the 20 recommendations proposed above are actively being applied by 
both public and private cloud providers. In this section, we describe some of the 
security features offered by two particular providers, Amazon.com and a Fortune 
100 company, in order to show alignment with our recommendations.

17.4.1 � Private Cloud: Fortune 100 Company

The first case study is for a private cloud built for a Fortune 100 company. 
Although a private cloud, the need for security and privacy is not removed; proprietary 
information is still hosted in the cloud and must be protected. Table 17.2 identifies 
7 of our 20 security recommendations that this company has incorporated into 
their security model.
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17.4.2 � Public Cloud: Amazon.com

The next case study is Amazon Web Services (AWS) Elastic Compute Cloud 
(EC2). Amazon acknowledges that maintaining security and privacy in a cloud 
environment is more complex than when managing a single datacenter. Table 17.3 
identifies 6 of our 20 security recommendations that Amazon has incorporated into 
their security model. Detailed security information for Amazon is beyond the scope 
of this chapter, and the interested reader is referred to [8].

17.5 � Summary and Conclusion

Of the many obstacles to adopting the cloud model of delivery and consumption of 
computing resources, security ranks at the top of the list [1]. The lack of strong 
security controls can resonate through the cloud, opening all of the applications and 
services that are running across the cloud to exploitation.

Table 17.2  Fortune 100 customer private cloud security features alignment with cloud security 
recommendations

No. Recommendation Private cloud implementation

  3 Do not implicitly trust the cloud or 
any instances in the cloud; every 
interaction in the cloud demands 
authorization and authentication

A hardware appliance is used to 
provide multiple security contexts 
and restrict communication between 
tenants.

  9 Restrict console access (physical and 
virtual) to users with a defined 
business need

Separate controls are provided to users 
to enable management (e.g., VM 
creation/deletion/sizing) that do not 
involve console access.

10 Create new instances according to 
defined, tested, and approved 
specifications

Templates are provided to users in 
order to instantiate preconfigured 
VMs.

11 Execute applications across multiple 
physical servers to improve reliability

Users are free to launch VMs across 
dozens of servers to support their 
high availability needs

12 Provide centralized authentication and 
authorization services

A centralized Active Directory service 
provides these services.

15 Restrict data ingress/egress points in the 
cloud to mitigate the introduction of 
malicious software and removal of 
private data

All network traffic (i.e., user-entered 
data) flows through the same 
firewall; only administrators can 
bypass this mechanism and access 
is tightly controlled.

19 Audit resource utilization records to 
detect suspicious activity

Every VM is monitored for resource 
“spikes” (e.g., memory, processor, 
network); triggers are configured to 
notify administrators.



30117  Securing the Cloud

First and foremost, the cloud is a data center and therefore traditional data center 
protections should be applied. It is not necessary to “start over” with security in the 
cloud. Many of the existing protections can and should be applied to the cloud. 
However, there are a number of gaps in existing coverage because of the unique 
aspects of cloud computing. In this chapter, we identified a number of these gaps (as 
compared against the existing ISO 27002 security controls). From these gaps, we 
provided 20 recommendations to help alleviate security concerns.

This chapter was intended to serve as an introduction to some of the many issues 
surrounding security in the cloud. There are additional gaps against the ISO standard 
that were not discussed and many other security issues to consider. Fortunately, 
groups such as the Cloud Security Alliance are actively investigating these issues. 
Also, this chapter focused on the ISO controls, but similar analyses could be 
performed against other controls (e.g., NIST 800-53) and regulatory documents 
(e.g., SOX, GLBA) unique to communities of interest.

Table 17.3  AWS security features alignment with cloud security recommendations

No. Recommendation Amazon implementation

  3 Do not implicitly trust the cloud or 
any instances in the cloud; every 
interaction in the cloud demands 
authorization and authentication

Every AWS interaction requires a “signed” API 
call (see also recommendation no. 14).

  6 Virtually “shred” retired instances 
and data when no longer needed

When customer storage is no longer used, every 
block of data is automatically wiped. AWS 
also uses a proprietary disk virtualization 
layer to ensure customer data remains private 
when virtual disk blocks are returned to 
resource pool.

  8 Utilize a single management, 
logging, and monitoring system 
capable of supporting the entire 
cloud

AWS utilizes bastion hosts for cloud 
management.

  9 Restrict console access (physical 
and virtual) to users with a 
defined business need

Administrative access, both physical and 
virtual, is strictly controlled according to 
legitimate business requirements. Those 
access privileges are immediately revoked 
when an employee no longer has a need for 
access. Each administrator is assigned unique 
cryptographically strong SSH keys. Access 
to bastion hosts is logged and audited on a 
regular basis.

12 Provide centralized authentication 
and authorization services

AWS utilizes bastion hosts for cloud 
management.

14 Digitally sign control messages 
within the cloud in order 
to prevent tampering and 
unauthorized use

Customers are issued a unique key. This key, or 
an authorized X.509 certificate, must be used 
to sign all Amazon EC2 API calls. Signing 
API calls ensures that control messages 
within the cloud are authorized and prevents 
tampering. API calls in transit are encrypted 
with SSL.
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There is certainly a tremendous amount of work remaining to “secure” the 
cloud. However, it is important to note that every new computing paradigm has 
brought with it unique security challenges. The Internet is an excellent example of 
this; certainly, allowing remote users and computers to access internal resources has 
proved incredibly challenging to protect. However, the Internet has changed how 
we do business, communicate, and live our lives. Therefore, the goal of security is 
to mitigate risk to an acceptable level. Business is centered on risk management and 
cloud computing will be treated as any other business decision. If the community 
can develop controls to address the issues outlined in this chapter, then businesses 
will move to the cloud for the benefits that it offers.
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Abstract  Service-Oriented Architecture (SOA) has demonstrated the value of 
defining a decoupled policy layer for applications. This design pattern promotes a 
declarative-style approach to policy enforcement and offers a basis for reuse of rule 
sets. When an intermediary applies policy to a communication stream, it has util-
ity beyond the simple application of authentication and authorization. In this role, 
policy is the language to articulate all actionable functions on a protocol stream, 
including (but not limited to) general cryptography, message transform, content 
validation, routing, orchestration, service level agreement enforcement, counters, 
audit, event management, and monitoring. Policy thus becomes the underpinning 
for the security and management of applications and data. This chapter is about 
the application of decoupled policy enforcement technology to cloud computing. It 
explores the use of the SOA Policy Enforcement Point (PEP) as a policy gateway in 
the cloud and shows this to be an effective security model for cloud services.

18.1 � Introduction

Security of applications and data remains the primary concern among early adopt-
ers of cloud technology [3, 11, 24, 28]. This is not surprising, as the cloud com-
munity has struggled with articulating a comprehensive and cohesive security 
model. Early efforts from organizations such as the Cloud Security Alliance show 
promise [4], but cloud has fundamental challenges around trust that technology 
alone will not overcome. In this chapter, we demonstrate that a design pattern and 
associated technology that matured in the Service-Oriented Architecture (SOA) 
space, the intermediary SOA Policy Enforcement Point (PEP), can form the basis 
of an effective security model for applications and data residing in clouds.
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SOA builds on earlier formalized approaches to distributed application develop-
ment and integration, and indeed contributes to other emerging methodologies [29]. 
Arguably, it is the most successful paradigm for large-scale application development 
among heterogeneous systems. Cloud applications are borrowing heavily from 
SOA methodologies and philosophical stance [12], so clearly successful techno-
logical solutions developed under SOA are worthy of consideration for migration 
to cloud architectures [14]. Indeed, many of the security challenges solved by SOA 
architects now appear in cloud deployment [20].

The enforcement of policy governing access to services – which at its simplest 
covers only authentication, authorization, and audit – can be complex to implement 
because of the diversity in application platforms and architecture. Thus, the best 
practice for policy enforcement is to decouple this from services. This strategy has 
a number of favorable outcomes. It allows for the consistent management and 
enforcement of policy across a broad spectrum of services; it offers the opportunity 
for reuse; it simplifies necessary integration with identity infrastructure; and finally 
it transcends limitations imposed by the existing languages and libraries. As a side 
effect, this approach allows modeling of policy as an aspect of an application or 
service module. This promotes a declarative approach to rule sets, offering respon-
sive change and no direct coupling to compiled and linked application builds.

The purpose of this chapter is to propose the deployment of SOA PEPs into cloud 
environments as a means of providing a flexible and robust security and monitoring 
layer for cloud-based applications and data. It will specifically explore how differ-
ences between cloud environments and on-premise IT (the traditional deployment 
locale for SOA) affect the SOA PEP. Where appropriate, it will suggest ways to 
overcome issues caused by characteristic differences in the cloud environment.

This chapter will restrict its view to SOA PEPs used in intersystem communica-
tion, under application-layer protocols such as SOAP and the related WS-* embel-
lishments. This is not to diminish the role of Web browser to server communications 
in cloud scenarios (indeed, at present this constitutes the bulk of the transaction 
volume in cloud computing). However, Web-oriented policy enforcement is largely 
a solved problem and the existing implementations transfer to cloud-based deploy-
ments with little challenge, as evidenced by the growing adoption among SaaS 
providers of security models based on SSL and SAML, OpenID, or OAuth. This 
chapter will instead acknowledge the increasing importance of application-to-
application XML-based traffic in enterprise-centric cloud computing and focus on 
the specialized issues faced in governing these transactions both within cloud 
providers and across the public Internet.

18.2 � Decoupling Policy from Applications

The capabilities and constraints of an architectural model drive the scope of the policy 
used to manage system entities residing in it. The Web, for example, benefited greatly 
from a highly constrained architectural model [9]. All resources can be addressed 
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through the URI [2]; this identifier is relatively unambiguous, visible, and inexpensive 
to parse within the HTTP. HTTP offers few options for identity claims and SSL provides 
a decoupled security layer protecting transmission. The high degree of constraint and 
rigor that defines the Web allows policy to consist of little more than confidentiality 
and integrity, authentication, authorization, and some audit – all elements that promote 
a clear separation between Web application and policy enforcement.

Web architecture is the basis of Web services. However, in contrast to its founda-
tion, Web services are less constrained, vastly more complex, and suffer from an 
approach to standardization that is highly distributed. The basic processing and 
security models offer a breadth of scope that leaves considerable underspecification 
[17]. This has made implementation in application servers complex and prone to 
issues with interoperability.

In the SOA community, one approach to these challenges has been to separate 
security and monitoring functions into a PEP decoupled from the application ser-
vices themselves. Policy, which is a concrete language for asserting the require-
ments that constitute the run time governance of services, is the logical place to 
accommodate the more diverse needs of Web services and to articulate a strict 
message-processing model for enforcement points. Policy enforcement thus takes 
on a much more significant role in facilitating service-oriented communications 
than for the conventional Web.

The canonical model for decoupled policy enforcement promotes a separation of 
concerns between the system entity responsible for enforcement, the Policy 
Enforcement Point (PEP), and the system entity responsible for decision-making, 
the Policy Decision Point (PDP), recognizing that the latter is often a centralized 
resource shared among many lightweight enforcement instances [30]. This has 
been well described in the context of Web applications [16], but the model is of 
similar value when applied to Web services transactions.

18.2.1 � Overlap of Concerns Between the PEP and PDP

The essential tension in this model is between the desire to have centralized, 
authoritative decision-making and the practical need for distributed enforcement. 
The PDP requires visibility of key elements of a transaction to render decisions 
effectively; the PEP has full visibility, but it cannot practically relay this entire 
context to the PDP. Identity-centric PDPs should be in proximity to directories and 
serve as unambiguous authority for decision-making. To meet performance, secu-
rity, and reliability demands, PEPs should reside with applications. The communi-
cation between PEPs and PDPs must reflect an optimization of data necessary to 
render an effective decision without significantly degrading transactional through-
put. This has ramifications for cloud deployment.

In the conventional Web, the policy model segments cleanly because of the lim-
ited scope of policy in the architecture. Web PEPs are responsible for enforcing 
privacy and integrity expectations of policy locally; to escalate an access control 
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decision, the PEP simply bundles identity claims, intended actions, and target URI 
and relays this to a PDP.

Web services transactions, in contrast, blur the distinction between these system 
entities because a lot of the decision-making demands additional message context 
that is not practical for a PEP to relay to a central PDP. Thus, SOA PEPs retain 
considerable internal decision-making responsibility. This independence is a cru-
cial factor when deploying into cloud-based environments, where communication 
with a centralized PDP (which may reside on-premises instead of within the cloud) 
could be impractical for reasons of security or latency. Distribution of authority 
comes at a cost of increased policy management and provisioning.

18.2.2 � Patterns for Binding PEPs to Services

There are two common deployment patterns for PEPs: as agents, which integrate 
directly into the application container and as intermediaries, which are independent 
of the application container and often reside on a separate physical or virtual host. 
There are tradeoffs associated with each approach that have particular ramifications 
in the context of cloud deployment. The important consideration here is how to 
secure the point of interface between the PEP and the relying party service (which 
in general resides inside an application server container). This defines the trust 
model between these entities.

18.2.3 � Agents

The agent-based model of PEP deployment uses a plug-in that integrates directly 
into the execution model of the application container. The point of interface is an 
application server API.

There are a number of reasons that make this strategy attractive. The tight bind-
ing between the PEP and the application server execution context means that vali-
dated identity claims can be propagated directly into the application, using 
technologies such as JAAS in Java application servers or thread impersonation in 
systems supporting a high degree of integration between OS and application server 
(such as Microsoft environments). Collapsing this into a single execution context 
trivially provides security and establishes trust across the last mile – the hop 
between the PEP and the application. Agents distribute security processing along 
with applications, thereby benefiting from scalability strategies associated with the 
application and avoiding potential security bottlenecks.

However, there are issues with this approach. The tight, code-level binding between 
PEP and application server has its own challenges. With the exception of the Java 
servlet filter API, there are no standardized and widely adopted interfaces to applica-
tion server execution context. This implication is that organizations with a large number 
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of heterogeneous systems (including simple version and patch differences between 
like-servers) find agent-based PEPs difficult to deploy broadly and consistently.

In practice, this leads to a lowest-common-denominator approach to functionality 
in agents. For simple Web application agents, requiring little more from policy than 
authentication, authorization, and audit, this is sufficient; however, it has limited 
agent applicability for Web services PEPs, as these require advanced policy pro-
cessing capabilities. Furthermore, introducing third-party code into application 
servers injects manageability risks. This has fostered a pejorative association with 
agents in the commercial marketplace, leading some vendors to explicitly promote 
their “agent-less” architecture.

The colocation of a PEP and an application server may be concealing other 
potential risks. Binding the PEP to a generalized application server install makes 
this critical security layer subject to the integrity of the underlying OS. Hardening 
modern operating systems is a complex and highly specialized task, and the best 
practices may be compromised to accommodate server needs or simply from a lack 
of appreciation of their importance. If an attacker successfully compromises the 
OS, the entire security model collapses, rendering the PEP superfluous.

Agents have been widely successful in conventional Web servers, both on-
premise, in SaaS applications, and in generalized cloud deployment of Web appli-
cations. In these cases, HTTP servers tend to be monocultures, de-emphasizing 
diversity issues with the agent interface. The limited demands of Web policy also 
allow Web agents to be lightweight and simpler to package with server 
installations.

18.2.4 � Intermediaries

The intermediary model delegates PEP processing to an independent unit that can 
simultaneously serve one or more downstream relying parties. It operates as a 
policy-driven reverse-proxy to these applications. The point of interface here con-
sists of basic network (e.g. TCP) and application layer (e.g. HTTP) protocols. 
These of course benefit from standardization and widespread support – this matu-
rity makes deployment essentially universal.

The conventional on-premise SOA deployment of PEP intermediaries consists 
of hardened, performance-optimized appliances that are physically separate from 
application servers. This model invests PEPs with a high degree of trust; they serve 
as an independent policy layer that fully gates all communications to and from less 
policy capable internal services. PEPs are tuned for high-performance processing 
of common traffic profiles, particularly XML-based transactions where significant 
benefit is realized by leveraging purpose-built acceleration chips for essential 
operations such as schema validation, transform, and query. Intermediary PEPs are 
rarely a performance bottleneck because of the vertical scalability benefits of such 
optimizations and the horizontal scalability potential that comes from placing addi-
tional units in parallel.
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The intermediary model has the benefit of a network hop to clearly define layering 
between policy and service. However, in the cloud, the underlying networks are 
inherently untrustworthy; this adds considerable complication to the security model 
between the PEP and relying party, demanding that it becomes more explicitly 
protected than with agents. The following table describes this:

Issue Details Solution

Trust model Relying party must trust PEP. Trust of PEP security tokens 
(username/password, X.509 certs, 
Kerberos, etc.)

Subject declaration PEP must propagate validated 
principal identity.

Use of authoritative vouching 
mechanism, such as SAML 
tokens, or various proprietary 
approaches (IBM’s LTPA or TAI, 
custom headers, etc.)

Privacy and 
integrity

Securing the communications 
between PEP and its 
relying party.

SSL/TLS or message-based security 
models such as WS-Security

Relying party server 
resiliency

Make relying party 
inaccessible except through 
PEP.

Internal and external firewall rules to 
reject connections other than to/
from PEP. Highly restrictive local 
access control

The commercial sector markets intermediaries for Web servers as Web applica-
tion firewalls. Despite their advantages, this product category sees less deployment 
than agents-based solutions, primarily because of the ease with which agents can 
handle the more limited policy requirements of the Web.

Intermediaries, in contrast, are the dominant solution for SOA Web services. 
Here, the lack of definition and constraints on the architecture demand much 
greater functionality from policy and thus greater sophistication from PEPs than the 
limited operating environment of an agent can uniformly support. Web services is 
fundamentally an approach to integration – an insight that implies a potential diver-
sity of service provider hosts that make agent integration impractical.

18.3 � PEP Deployment Patterns in the Cloud

The term cloud computing suffers greatly from industry hype, ambiguity, and over-
load of meaning. NIST offers a reasonably comprehensive definition that character-
izes cloud in terms of essential characteristics, service, and deployment models [18]. 
NIST acknowledges that community debate is continually refining our understanding 
of the term, and they have updated their paper in response to evolving perception.

There is wide acceptance of the three cloud service models NIST describes. 
These can be characterized not just in terms of functionality offered to customers, but 
also by where the boundary of control lies in the stack between customer-managed 
and provider-managed elements (where the stack defines layers including host and 
network infrastructure, operating systems, applications, data, etc.). The opportunities 
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for deployment of SOA PEPs into the cloud are largely a function of where these 
control boundaries lie. Cloud-based PEPs are virtual appliances that consist of a 
policy execution engine operating under a security-hardened and performance-
optimized operating system. Thus, deployment of virtual PEPs in the cloud requires 
a customer-accessible hypervisor execution environment.

18.3.1 � Software-as-a-Service Deployment

Software-as-a-Service (SaaS) offers no real opportunities for SOA PEP deployment. 
SaaS implementations are thin-client Web applications operated entirely by the pro-
vider, but open to minor configuration by the customer, such as Salesforce.com or 
Google GMail. Policy enforcement for Web applications, by virtue of its limited 
scope (the security model simply consists of basic authentication, sometimes SAML 
SSO and federation, and SSL/TLS transport protection), is generally integral to the 
host application servers and is therefore under complete control of the provider.

SOA PEPs, however, do have a role to play in securing access of on-premise 
services by SaaS applications. This is a conventional, edge-of-network PEP deploy-
ment in the on-premise DMZ, implemented using either hardware or virtualized 
SOA PEPs.

18.3.2 � Platform-as-a-Service Deployment

Like SaaS, Platform-as-a-Service (PaaS) offers no current opportunity for deployment 
of virtual PEP appliances. Although PaaS relaxes the boundaries of control to offer 
customers access to an application deployment environment, the container-based 
execution model – such as Google’s AppEngine – is generally too restricted to support 
the diverse connectivity and operating requirements of a mature SOA PEP code base.

18.3.3 � Infrastructure-as-a-Service Deployment

Infrastructure-as-a-Service (IaaS), in contrast to SaaS and PaaS, offers the greatest 
degrees of freedom of control to the customer, and thereby an opportunity for virtu-
alized PEP deployment. IaaS offerings such as Amazon’s Elastic Compute Cloud 
(EC2) shift the boundaries of customer control to an abstracted hypervisor, which 
can host a virtualized PEP and virtualized, subordinate SOA services under PEP 
management. By providing finely grained, policy-based control over all communica-
tions to or from a cloud-resident service, the PEP allows a cloud customer to reassert 
control over IaaS-resident applications. This higher level of visibility and control 
serves to offset the loss of lower-level, physical controls necessarily surrendered to 
the cloud provider. This deployment model is the focus of this chapter (Fig. 18.1).
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18.3.4 � Alternative Approaches to IaaS Policy Enforcement

There is a number of existing approaches to securing services in IaaS clouds. Both 
simple Web security and VPNs offer the advantage of simplicity, generality and 
familiarity. However, both suffer from significant limitations in their scope that 
make virtual PEPs, which consolidate a broader range of capabilities under policy 
control, a much more attractive choice.

18.3.5 � Basic Web Application Security

Simple security models – consisting of basic credentials in HTTP, interface to con-
ventional LDAP directories for authentication and authorization, and SSL for con-
fidentiality and integrity – are widely supported in application servers hosting rich 
Web services. But application servers do not uniformly or consistently support 
more sophisticated message-based security models, SLAs, threat detection, orches-
tration, content-based routing, load distribution, etc. – all valuable functions in 
SOA messaging environments with diverse service consumers and producers.

Fig. 18.1  Virtual PEPs deployed in the cloud provide security and management for applications 
in the cloud. When paired with on-premise PEPs, they can create a secure tunnel between applica-
tion in the internal network and cloud instances
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SOA PEPs, in contrast, consolidate and parameterize all of these capabilities 
under a policy that is bound to each individual service.

18.3.6 � VPN-Based Solutions

In mid-2009, Amazon introduced its Virtual Private Cloud (VPC) offering as a 
solution to securely integrate EC2 with on-premise enterprise networks. VPC con-
sists of a standards-based VPN server and an undisclosed mechanism for isolating 
EC2 instances to a specific customer domain. Other vendors, such as CohesiveFT, 
have promoted VPN solutions for securing communications to the cloud.

VPN-based solutions have the advantage of providing generalized confidenti-
ality and integrity for all tunneled protocols. This has the distinct advantage of 
supporting virtually all communication protocols and therefore access to applica-
tions that are not service-oriented. But VPNs suffer from a lack of constraint 
with respect to service entitlements. VPNs secure networks, not applications. 
In environments with a significant trust imbalance – such as between on-premise 
IT and a cloud provider – VPNs can potentially offer an open vector for attack 
if a system hacker compromises a cloud-resident application or operating 
environment.

SOA PEPs put channel (or message) encryption subordinate to the entire execu-
tion context of policy, which can incorporate authentication, authorization, threat 
detection, optimized content validation, SLA enforcement, load distribution, and 
audit. Because policy is ultimately bound to individual services, this severely limits 
the attack surface available to compromised applications.

18.4 � Challenges to Deploying PEPs in the Cloud

The NIST definition illustrates that cloud computing is characterized by five essen-
tial characteristics, including resource pooling and rapid elasticity. PEPs deployed 
into IaaS clouds face unique challenges around performance, security, and manage-
ment because of the underlying architecture that supports these characteristics. The 
following sections examine these challenges.

18.4.1 � Performance Challenges in the Cloud

The commoditization of processing cost in the cloud is attractive, but there are 
special considerations that go into making effective use of this. For PEPs deployed 
in IaaS facilities, these include fault tolerance, scalability, clustering, generalized 
acceleration, and content encoding.
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18.4.2 � Strategies for Fault Tolerance

SOA PEPs achieve fault tolerance through system redundancy; however, traditional 
methods for providing independent, high-availability failover may not function in 
the cloud. Failover techniques that make use of gratuitous ARP – such as Linux-HA – 
will certainly be restricted because of the risk of IP hijacking by an instance.

A better approach is to load balance incoming HTTP traffic across two or more 
PEPs using conventional HTTP application delivery controllers. This basic infra-
structure is commonly available in cloud installations because it is the basic scaling 
strategy for conventional Web applications, which at present constitute the majority 
of cloud provider’s business. Load balancer failover makes more economic use of 
deployed resources than a running instance in standby as failover occurs with no 
interruption of service. This also provides the basis for a practical scalability model.

18.4.3 � Strategies for Scalability

Elasticity is a basic characteristic of cloud computing, which offers an opportunity 
to better manage PEPs operating under traffic load that is unpredictable and in a 
continual state of flux. As load increases, new PEP instances can launch on-
demand; as it decreases, underutilized instances can terminate (to use Amazon 
nomenclature). This offers a distinct advantage over on-premise SOA PEP deploy-
ments with fixed capacity.

As with fault tolerance, for HTTP-based transports, the existing HTTP load 
balancers can distribute traffic across the breadth of the running instances. Vendors 
such as Citrix have pioneered a model under which the HTTP load distribution 
system controls application instance launch. This should focus on PEP instances, 
which in turn control the launch of applications under their policy control, thus 
creating a cascade pattern of elasticity.

Elasticity, however, does introduce new challenges with provisioning of PEP 
instances on launch, and the potential for loss of critical state information on termi-
nation. Clustering is a strategy that addresses some of these issues.

18.4.4 � Clustering

Clustering can overcome some provisioning and operational challenges when 
deploying multiple PEPs simultaneously. In addition to providing a means for shar-
ing configuration and policy information between nodes, clustering offers a fast 
channel for synchronization of time-critical information such as shared counters or 
coordination against replay attacks exploiting the WS-Security model.

However, traditional application clustering technologies may not be deployable 
in cloud environments. Clustering assumes a locality of deployment to reduce 
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latency, and potentially to allow propagation of broadcast or multicast protocols for 
synchronization. In on-premise computing, it is common to group PEPs on a single 
rack and integrate these through a switch allowing physical control over such a 
distribution. Cloud environments offer no such deployment specification. PEP 
instances may be geographically isolated, resulting in isolation by router boundar-
ies or at a minimum multiple switch hops that will not propagate this traffic. 
Amazon, for example, abstracts their operating environment into coarse divisions 
they call availability zones. These roughly map to distinct data centers within an 
operating region; however, Amazon does not publically provide deeper architec-
tural details of how these are organized.

PEPs thus need to operate independently and synchronize exclusively off shared 
persistent storage. Amazon was the first public cloud provider to create a range of 
persistence mechanisms as services, including Simple Storage Service (S3), 
SimpleDB, Elastic Block Storage (EBS), and Relational Database Service (RDS). 
As a continuum, they illustrate the spectrum of tradeoffs between scalability, reli-
ability, availability, trustworthiness, and traditional versus cloud-centric architec-
tural models. Issues to consider for PEPs are unpredictable latencies that may affect 
time-sensitive operations such as replay detection or policy synchronization. For 
example, the use of shared underlying infrastructure, such is the case with EBS, 
may provide highly nondeterministic performance. Similarly, the underlying data 
propagation realities that account for Amazon’s eventual consistency strategy may 
prove difficult to reconcile with the PEP need for high-performance access to a 
persistent store.

18.4.5 � Acceleration Strategies

Optimization is always an exercise in balancing tradeoffs. In SOA PEPs, the com-
putationally expensive operations are XML processing and basic cryptographic 
calculations. Appliance-based SOA PEPs use custom hardware to accelerate these 
that is not applicable in virtualized environments. An important design tradeoff is 
therefore to sacrifice low-level optimization for the overall gains realized through 
elastic scalability in cloud environments.

18.4.5.1 � Accelerating Message Processing

Specialized hardware can accelerate low-level XML processing, including 
XSLT, XML Schema validation, and XPath query into documents [13, 26]. 
Similarly, regular expression parsing benefits from application in specialized 
hardware.

However, a new generation of software-based, highly optimized libraries is 
emerging. These include pure software approaches (Excentric Works), and optimi-
zation that utilizes the existing architecture in commodity chips [5].
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18.4.5.2 � Acceleration of Cryptographic Operations

Cryptographic operations, such as RSA key operations, also see benefits from 
hardware acceleration. This hardware may integrate higher-level protocol optimiza-
tion (such as SSL acceleration), FIPS-compliant cryptographic algorithms, and 
Hardware Security Module (HSM) protection of keys (nCipher, Sun, Safenet). 
HSM modules in particular find wide application in military and intelligence 
markets.

FIPS-compliant software cryptographic libraries are widely available (RSA, 
Certicom), and drawing on the benefits of elastic deployment can offset crypto-
graphic optimizations.

Protection of key material is an open problem for clouds. In private clouds, it is 
conceivable to interface with a physical HSM shared between virtual images. In 
public clouds, a software-based secure key store is the only alternative. This has 
inherent risk as virtual images may leave behind residual disk images on termina-
tion, potentially exposing key stores to scavenging and brute force decryption.

18.4.6 � Transport Content Coding

Message content compression can be economically advantageous between on-
premises computing facilities and cloud providers. HTTP includes content coding 
[8], but only on the response message; this is insufficient for bidirectional SOAP 
messaging (or highly parameterized REST requests). A similar nonstandard model, 
also leveraging algorithms like zlib, gzip, and compress (or dictionary substitutions 
of common SOAP idioms), could extend to requests. However, the challenge is that 
PEPs at either end must synchronize compression parameters out of band, or utilize 
proprietary negotiation protocols.

18.4.7 � Security Challenges in the Cloud

The great challenge with PEPs deployed in the cloud – and indeed, in all distributed 
computing – is the secure propagation of identity context between tiers. Privacy and 
integrity may act in support of this fundamental issue.

18.4.8 � The PEP Air Gap

The virtual PEP deployed in the cloud acts as a policy air gap between the external 
Internet and internal applications. It deliberately breaks transport semantics into 
ingress and egress segments, kept separate and mediated through policy. This affects 
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all transport layers, including TCP, SSL, and message transport such as HTTP or 
message-oriented middleware (MOM). With the latter in particular, the policy air 
gap may break QoS characteristics (such as transactional context, guaranteed one 
time delivery, end-to-end delivery reliability, etc.) unless explicitly propagated 
using protocols like XA.

Propagation, however, may not be entirely desirable in cloud environments. The 
policy-mediated air gap is an important design pattern because it establishes a clear, 
customer-managed demarcation between the inside of the cloud and the outside 
Internet. Both sides have a distinct set of security challenges and demand different 
approaches to threat mitigation and establishment of trust.

The air gap pattern also serves as a reminder to application designers to build for 
resiliency. Cloud providers are highly visible and accessible, making these natural 
targets for system cracking attempts. Recent attacks against public cloud-resident 
applications such as Bitbucket (Nohr 2009) underscore the need to recognize that 
all cloud services may be subject to continuous assault and should be hardened in 
the manner of traditional DMZ-based applications – notwithstanding the protective 
capacity of the PEP. This is not a typical design imperative for on-premise SOA 
applications.

18.4.9 � Binding PEPs and Applications

As with any multi-tenant facility, the internal cloud network must be considered a 
hostile environment. All communications to or from application instances must 
pass through the PEP security and management layer. There are two strategies to 
bind PEP and managed application in the cloud: intermediary isolation and the 
protected application stack.

18.4.9.1 � Intermediary Isolation

In the intermediary isolation model, a single PEP can simultaneously protect one or 
more virtualized cloud application instances. The PEP runs in its own virtual 
instance; this is self-contained, hardened against attack, and optimized for high 
throughput.

The challenge here is providing last mile security and isolation of the application. 
Protect the hop between the PEP and each application instance with SSL with mutual 
certificate authentication. Application servers universally support SSL and it is appro-
priate for such point-to-point transmissions in a single hop, synchronous environ-
ment. Use of WS-Security message-oriented security models is not recommended as 
this does not add any value for such a localized transmission and suffers from 
increased processing overhead, complexity, and uneven support. An exception to this 
is some WS-Security token profiles, as these solve trust problems in a standardized 
framework. If there is a need to propagate a statement describing attributes, entitlements, 
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or an act of authentication on the PEP, utilize the SAML sender-vouches model [19]. 
Application server support for SAML is growing, but for many it remains an unfor-
tunate gap. External firewall rules (called security groups in Amazon’s Cloud Front) 
should block access to the internal application. Internal firewalls on the application 
instance should block all connections, except those originating from the PEP 
addresses protecting it and from explicit administrative hosts.

The administrative overhead of this bidirectional binding can be considerable if 
the number of PEP or application instances routinely changes in response to trans-
action volume. Policies in the PEP must register application hosts to route requests 
to, using internally addressable IP addresses. Each time an administrator deploys a 
new application instance, policy will need to change across all PEPs. Launch of a 
new PEP forces a change to the internal firewall rules and the trusted SSL client list 
on each application instance to allow connections. At present, this has no satisfac-
tory solution. Use of technology such as Rightscale’s framework for on-demand 
application configuration may address some of these issues.

18.4.9.2 � The Protected Application Stack

In the protected application stack (or colocation) model, PEPs and applications are 
coresident in a single virtualized image. The application thus inherits hardening of 
the base operating system applied for the PEP. Internal firewall rules allow only the 
PEP ingress or egress communications; the application therefore cannot initiate or 
accept external communications except by proxy through the PEP.

This model differs subtly from the agent model. It does not integrate PEP and 
application into a single process space through an API. Instead, the point of inter-
face between these remains the network layer using local host connections. It also 
inverts the application hierarchy: the application is now subordinate to the secure 
container of the PEP. The OS is hardened with the perspective and expertise of a 
PEP architect, rather than that of an application server.

VM colocation trivially solves last mile issues because it confines this hop within 
the security context of the hardened operating system. As a side effect, the binding 
between PEP and application is static, thus greatly simplifying elastic deployment.

There are disadvantages to this approach. The initial configuration is more complex 
because of the potential for conflict between installation and operational expectations 
of the PEP code base and the application. There is also some risk of compromise to 
the underlying OS hardening to accommodate application resource requirements. This 
runs counter to the design intentions of an appliance-based security PEP.

18.4.10 � Authentication and Authorization

The fundamental challenges around authentication and authorization in cloud 
deployments concern the strength of security tokens and the accessibility of identity 
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information for the purpose of validation or attribute retrieval. These challenges 
conspire to suggest a particular approach to access control in the cloud. This 
approach promotes a shift away from identity-centric authorization, toward autho-
rization based on evaluation of a broad range of transaction characteristics.

Cloud-based PEPs are unlikely to have access to corporate directories or conven-
tional IAM systems to validate security tokens (the latter being tightly bound to 
directories). Few organizations make these internal systems directly accessible 
outside their firewall. Even with a VPN bridging on-premise and the cloud, the 
latency incurred for access makes their use highly impractical.

Directories and IAM systems are certainly deployable in the cloud (though sub-
ject to many of the same issues explored here). PEP themselves may have internal 
directories that are valuable for development and test, but may not be practical for 
production deployment. However, the real risk with any cloud-resident directory is 
that it creates a new identity silo that is independent of existing on-premise identity 
stores. This is clearly undesirable.

Cloud-based PEPs must function independently. They must validate tokens 
against trust models locally; this collapses much of the traditional functionality of 
a PDP into PEP basic services, expressed through local policy. This influences both 
the token types that are practical to use in the cloud and the approach to service 
authorization.

Weak security tokens – such as user name and password pairs – have no place 
in the cloud. Public cloud providers are highly visible and accessible targets for 
system crackers. Brute force attacks against basic access control are trivial to 
implement and a positive result can often compromise an entire application and its 
data. Anecdotally, in our own recent deployments of applications on Amazon, we 
have observed random attack rates exceeding 8,000 attempts in the initial 72 hours 
of operation. These are largely naive password guessing attacks that may fail to 
gain access, but succeed in locking out legitimate access. Amazon recognizes this 
threat and mandates a public key-based, mutual authentication approach to govern 
access to the root shell of virtual instances. This overrides the traditional basic 
authentication mechanisms on Unix images.

Every policy governing access to cloud services should adopt a similar approach. 
It is reasonable to assume that any service residing in the cloud – not just the root 
shell – will be subject to continuous password guessing attacks. Policies therefore 
must not assert requirements for basic security token types. WS-Security Username 
Token Profile [22] and HTTP basic authentication, even using highly randomizing 
password rules, introduce unacceptable risk. Preferred are multifactor authentica-
tion schemes using physical devices that cycle through one time passwords (there 
are a number of manufacturers of these devices, and Amazon now supports a simi-
lar offering). No standardized bindings exist to Web services, so these may require 
proprietary bindings to HTTP or customized WS-S security tokens to function.

Certificate-based authentication mechanisms – including approaches that lever-
age PKI such as SAML – are a stronger approach. This provides a strong authenti-
cation model that offers a higher level of assurance to parties in a transaction. In 
addition, certificate extensibility offers authoritative statements from trusted third 
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parties about attributes associated with a key holder. This can help to decouple 
authorization from pure identity – which may be impractical to administer at 
remote cloud sites – and move toward access decisions based on evaluation of a 
broad number of characteristics – such as organizational unit, membership, rank, 
etc. In combination with other transactional characteristics communicated by the 
sender, this can become the basis of formalized authorization models such as Role-
based Access Control (RBAC) (RBAC 2009), and Attribute-based Access Control 
(ABAC) [15].

SSL/TLS offers optional client-side certificate authentication (in addition to 
server authentication and channel confidentiality and integrity) [6, 10]. WS-Security 
x509 Certificate Token Profile [23] articulates a means to sign message contents, 
binding this to a certificate. Commercial PEPs may include integral CA capabilities 
for creating and managing certificates.

Certificates associated with identities are typically long lived (usually on the 
order of years); nevertheless, it remains important to evaluate their current validity. 
On-premise SOA deployments could often overlook certificate revocation because 
of in-place security mechanisms and procedures. Cloud-based PEPs, however, by 
virtue of their global accessibility, must be rigorous in applying revocation checks. 
This implies regular CRL updates or use of the OCSP protocol. Both are practical 
in the cloud, but both can place a very high processing cost on clients. CRLs gener-
ated by the U.S. Department of Defense have grown so large and unwieldy that 
simple distribution and evaluation has become largely impractical [7, 27], neces-
sitating a move to OCSP despite its added latency.

Certificates are also not practical containers for authoritative statements about 
ephemeral attributes or entitlements. SAML tokens, in contrast, support these. 
SAML has the benefit of offering short lifetime of the assertion (solving revocation 
issues by forcing an aggressive timeout), a binding to subject evidence (such as key 
pairs), and providing a means to make statements about acts of authentication, 
authorization, and arbitrary name/value attributes. Profiles exist describing the use 
of SAML in HTTP and for Web services.

SAML provides a means to make explicit declarations about authorization. This 
allows central, on-premise administration of entitlements, issued by a local Security 
Token Service (STS), relayed with a message to a cloud-based PEP, and evaluated 
under the trust model in effect. This has the advantage of centralized administration 
for both on-premise and cloud entitlements.

Despite this, it is a more common practice in cloud architectures to impose a 
separation of concerns between authentication and authorization. In this model, 
initial validation of identity claims is made in the enterprise, and thus, close to 
authoritative directories. Authorization, in contrast, is moved close to services to be 
enforced on cloud-based PEPs.

There are various approaches for articulating entitlements for suitable for 
remote, cloud-based evaluation. Native PEP policy can express authorization rules; 
this approach has the advantage of direct association with services. XACML [21] 
is a more standardized, albeit complex, alternative. In general, XACML is admin-
istered and evaluated in a centralized, cloud-based PDP, accessible to all PEPs 
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using the XACML Request element embedded into SOAP messages. It is also pos-
sible to locally encapsulate XACML within PEP policy context.

Most SOA PEPs also provide the ability to accept Kerberos security tokens in 
message or transport [23]. In practice, Kerberos has less practicality to the cloud 
because of the high administration cost of local key management and integration 
into ticket services.

Finally, while much of this last section concerned validation of sender identity, 
server-based authentication is also critically important to the client, particularly for 
clients sending a message to applications hosted in public cloud-provider. SSL and 
the WS-Security message security model both address this as side effects of the 
privacy and integrity policy.

18.4.11 � Clock Synchronization

Clock synchronization is very important when using short-lived security tokens like 
SAML or Kerberos tickets. Even minor time deviations between token issuers and 
PEPs can cause approval problems. Virtual instances inherit their clock from the 
host, and unpredictable clock skew was a common issue with early virtualization 
technologies. Virtual cloud PEPs should synchronize clocks regularly with an 
authoritative time source shared by all participants in a transaction.

18.4.12 � Management Challenges in the Cloud

A number of open issues exist around management of PEPs deployed into IaaS 
facilities. These center around secure persistence, provisioning, and visibility issues 
in high latency environments (such as those that exist between on-premise opera-
tional consoles and cloud providers).

18.4.13 � Audit, Logging, and Metrics

Auditing, logging, and accumulation of metrics are important operations in any 
application infrastructure. In the cloud, these face challenges associated with per-
sistence and collection.

Audits record events of significance; they are distinguished from logs, which 
document day-to-day operational information. Elements of policy often generate 
audits explicitly to record important runtime transaction events, such as detection 
of an attack signature, or even recording of entire message content. Audits also 
record noteworthy events in the operational lifecycle of the PEP – an update to 
policy is a typical example. The high value of audit data demands persistence and 
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integrity. Logs, in contrast, have immediate relevancy for diagnostic purposes, but 
less long-term value for forensics. As a result, logs commonly rotate automatically 
over old entries to keep the collection size within reasonable bounds.

Persistence of logs and audits in cloud providers is problematic. Audits (and 
optionally logs) must stream to long-term resilient storage instead of local disks 
that will be lost on instance termination. Syslog is one accepted mechanism to do 
this. Audits, however, should also be cryptographically secure to prevent disclosure 
of sensitive message contents (such as security credentials), and to guard against 
alteration. This can be computationally expensive to apply at run time.

Audit volumes can be very large. Data transfer costs between cloud providers 
on-premise faculties can be very high [1], making streaming or export of audit and 
log data to existing tools impractical.

Metrics collection may also produce very large data volumes. It is often neces-
sary to record historical transaction rates for purposes of future load planning, so 
most SOA PEPs maintain sliding counters describing each service under their man-
agement. Depending on the time granularity of the bin, these data structures can 
become extremely large. Regular transfer to on-premise storage can incur consider-
able cost. Leveraging inexpensive local cloud storage can offset this, as evaluation 
of this data generally involves a rollup inside a reporting engine that can reside in 
the cloud.

Other existing SOA PEP alerting mechanisms may also be infeasible in the 
cloud. Policy-driven alerts that use SNMP to communicate with on-premise man-
agement infrastructure may be impractical because of security risks and latency. 
SMTP-based altering, common in on-premise SOA, may not be feasible to imple-
ment in the cloud. Cloud providers do not want their platforms to become a launch-
ing pad for spam traffic, so may block outgoing SMTP traffic. Furthermore, there 
are anecdotal reports of organizations blacklisting mail from Amazon AWS IP 
ranges because of the threat of spam [25].

A final issue is event correlation between infrastructure elements during forensic 
investigation. In traditional on-premise SOA, logs from routers, load balancers, and 
conventional firewalls provide extremely valuable data to operators investigating 
issues, such as an attack or transaction failure. These data are not available to cus-
tomers in the cloud.

18.4.14 � Repositories

One of the challenges of virtualized cloud environments is the ephemeral nature of 
the operating environment. Centralized policy and configuration repositories pro-
vide an important service in cloud environments to manage this. They function as 
the system of record – that is, the central authoritative source for policy and con-
figuration that can be pushed to PEP enforcement points. Repositories must lever-
age long-term, scalable storage in cloud environments to mitigate potential loss of 
data on instance termination.
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Commercial SOA registry/repository offerings, such as those from SoftwareAG, 
HP, and IBM, take on management of all the metadata associated with services. These 
incorporate workflow around asset creation and authorization, environment migra-
tion, and deployment of policy and service into production. At present, these are not 
cloud-centric. Turnkey cloud management and security solutions, such as RightScale 
and Symplified, implicitly have some of these capabilities in their offerings, but these 
are not general cloud registry/repositories. The generalized cloud policy registry/
repository will become an important infrastructure component for cloud-based PEPs, 
but at present, there are no commercially successful implementations of this.

18.4.15 � Provisioning and Distribution

Policy naturally assimilates dependencies on local information that may change as 
the policy moves between environments. Consider a migration from development, 
to QA, and finally into production environments: the IP addresses change, as do 
dependencies on external systems such as PDPs, representations of identity, etc.

Elastic computing exacerbates the dependency problem. Policy content may 
change in response to variation in traffic volume. Some of these changes are deter-
ministic and thus solvable using simple mappings applied to policy documents. At 
present, there is no comprehensive and standardized solution to this challenge.

18.4.16 � Policy Synchronization and Views

Synchronization of policy between PEPs in the on-premise DMZ and PEPs 
deployed in the cloud is an open issue. The existing protocols address some simple 
aspects of security. SSL/TLS, for example, incorporates a negotiation mechanism 
that converges on a cipher suite common to both parties. A similar approach is 
required for other aspects of policy.

WS-Security Policy (Nadalin et al. 2007) provides a means for a service pro-
vider to declare a means to secure a transaction using either SSL or WS-S message-
based security. Its scope includes confidentiality, integrity, and security tokens.

This approach provided the much-needed declarative policy around security, but 
much work remains. There is a need for a standardized approach to negotiate a 
reciprocal policy contract (like SSL does), as well as declaration of traditionally 
out-of-band parameters of policy such as transport compression. In the absence of 
this, synchronization of policy remains largely a manual operation.

The determination of appropriate policy views for a client, based on factors such 
as identity and entitlements, is an open area of research. All policies contain ele-
ments not intended for client consumption, such as authorization rules or internal 
routing. Accurate and secure resolution of suitable externally facing views of policy 
is an unresolved problem in need of further investigation.
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18.5 � Conclusion

Too often, technological trends focus on what is new and fail to learn the lessons of 
the past. In the cloud community today, there is a misperception that SOA largely 
failed and that cloud will be the approach that successfully drives down IT costs 
and increases agility in the enterprise. In truth, cloud advocates can – and should 
– learn from the lessons of SOA. There is much to gain from recognizing cloud 
computing as an evolutionary step and a logical deployment model for services 
developed under the principles and guidance of SOA.

The adherents of SOA are careful to promote the discipline not as technology, 
but as an architectural approach. Technology may not be a perfect realization of the 
philosophical goals of SOA; however, it is a pragmatic lens through which one can 
explore the more practical aspects of the discipline, especially when applied to an 
emerging sector like cloud computing. This chapter was about such a technology.

This chapter proposed the use of SOA PEPs, a security technology with proven 
value in on-premise SOA, as a means to secure and manage application services 
residing in the cloud. We found that a number of new challenges arise from the 
changes in control and operating environment that is inherent to cloud computing. 
The approach shows promise, though there remain open areas for research, particu-
larly around cloud-based policy repositories and provisioning of PEP instances. 
Nevertheless, a run time, cloud governance architecture, based on the existing vir-
tualized PEP infrastructure, is a practical and pragmatic approach.
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Abstract  Over the last 5 years, the digital media sector has undergone a radical 
change in its business model. An industry once focused on broadcasting to a fixed 
published schedule must now support an on-demand usage model across a wide 
range of fixed and network devices using a variety of content formats. This media 
revolution has brought significant changes to user viewing patterns and demanded 
significant changes in the broadcaster’s business model. In turn, this has resulted 
in significant changes to the content creation workflow and radical changes in the 
infrastructure that is used to support digital media creation, distribution, delivery 
and archive. For the last 7 years, the Belfast e-Science Centre (BeSC) has worked 
with the British Broadcasting Corporation (BBC) to research emerging network-
centric technology and their applications within the broadcasting sector. This 
work pioneered the use of grid technology within the broadcasting sector and 
evolved, over the last 4 years (the PeRvasive Infrastructure of Services for Media 
(PRISM) project), into piloting a cloud-based media infrastructure that supports 
traditional and network-centric access to BBC content. The PRISM media cloud 
has services and test users across the United Kingdom and brings together owned 
and on-demand resources to support its user content access services. The service 
cloud is deployed on demand using owned and on-demand resources, and oper-
ates as a dynamic market selecting services based on need and usage criteria. In 
this chapter, we describe the PRISM cloud and the market ideas that underpin its 
operation.
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19.1 � Introduction and Background

Digital media has become a pervasive part of people’s lives. Once video was transmitted 
to the home and viewed on a television. The focus for the broadcaster was on creat-
ing programmes to be broadcast according to a well-defined broadcasting schedule; 
creating an attractive schedule was an important part of the broadcaster’s business 
model to ensure success. There were generally few television stations and each 
targeted a broad audience with peak adult viewing and targeted programmes for 
children. There has been a rapid expansion in the number of television channels, 
such as CBeebies children’s channel or the Science Fiction channel, which target 
increasingly narrower audiences.

In addition, it is now the norm for video to be available on-demand from a range 
of content providers such as established television broadcasters, offering for exam-
ple new catch-up services such as the British Broadcasting Corporation’s (BBC’s) 
iPlayer [6], or newer content providers such as YouTube [14]. This on-demand 
content is available at home using set-top boxes from cable or satellite providers, 
and via broadband network connections directly to network enabled in-home 
devices. It is commonplace that media is downloaded on-demand to a networked 
device at home or on the move when required; or it might be downloaded to a 
device and stored for future use. New companies and a new economy have been 
established that sell and deliver content directly to a user for use on their networked 
device using the network as the sales and delivery platform, such as Apple’s iTunes 
Store or Amazon’s Download service.

This media revolution has led to significant changes in the way the industry 
operates and the resulting workflows. A traditional broadcaster, such as the BBC, 
must now support a range of user access mechanisms, or platforms, in their day-to-
day operation. Their traditionally small number of (schedule-driven) linear broad-
casting channels has increased rapidly, from two channels 5 years ago to seven 
channels today, and they sit alongside cable, satellite, online news services and 
content on-demand services, and support conventional and high-resolution mate-
rial. Each of these platforms requires content and metadata management, and they 
often have different content control access rights. For example, online content from 
the BBC’s iPlayer is available for 7 days after transmission and only within the UK. 
A broadcasting infrastructure must manage these platforms efficiently and cost-
effectively in the cost-sensitive media domain.

What makes digital media an interesting domain to work in is that it is a golden 
example that combines large-scale data requirements, millisecond-based quality of 
service (QoS) requirements and high security needs because (to the broadcaster) 
digital content is its lifeblood. Thus, for example, digital media combines data needs 
that are currently larger (and rising faster) than that projected for the Large Hadron 
Collider [1] and must support many millions of users all with high degree of reli-
ability. For any new technology, the digital media domain is a demanding one.

The Belfast e-Science Centre has been working with the BBC for 7 years, 
researching the use of emerging technology within the broadcasting domain. Initially, 
BeSC and the BBC pioneered the use of grid technology [2] within the broadcasting 
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chain for traditional terrestrial broadcasting in the Gridcast project [3]. More recently, 
we have been working with a wider range of partners1 to demonstrate the use of 
network-centric applications and cloud infrastructures to create dynamic, highly scal-
able infrastructures to support the multi-platform digital media infrastructure

In this chapter, we discuss the evolution of our early cloud work within the Gridcast 
project into the dynamic service cloud that is used to support on-demand content access 
within the PeRvasive Infrastructure of Services for Media (PRISM) project. The PRISM 
infrastructure has been in field deployment for over 2 years to support a test consumer 
group. It provides content access via a set-top box to streamed or downloaded content 
from the BBC, or streamed content directly to networked enabled devices, such as 
mobile phones, computers and games consoles. The PRISM infrastructure uses auto-
deployment and auto-scaling and has no human operators managing the service infra-
structure – infrastructure is auto-provisioned when required and failed services are 
re-deployed automatically when failure is detected. This automation acts as a market of 
resources that are capable of hosting services and services that need compute resources.

19.2 � A Media Service Cloud for Traditional Broadcasting

Traditional terrestrial broadcasting is a complex operation – traditional broadcast-
ers, like the BBC, are usually collections of affiliate or regional broadcasters that 
operate sometimes to the same broadcasting schedule and sometimes modified ver-
sions of a core broadcasting schedule. The infrastructure is most often built to 
assume the distribution of live content from a controller location. In the simplified 
example of Fig.  19.1, as discussed later, three of the BBC’s regional networks 
(BBC Northern Ireland or BBCNI, BBC Scotland and BBC Wales) are fed from a 
large-scale store of content centralised in London.

Content for the common core, or network, schedule is distributed at its sched-
uled broadcast time (as-if-live) to the affiliates for distribution to the supported 
platforms. Broadcast automation manages content delivery to the broadcast plat-
forms that are supported. If content is not being broadcast at the scheduled network 
time, then it is recorded at the affiliate for time-shifting and that content is managed 
locally. The core network infrastructure is designed to support live and high-quality 
video transmission – which will always be an important part of the broadcasting 
infrastructure requirements.

19.2.1 � Gridcast the PRISM Cloud 0.12

The traditional broadcasting infrastructure model, outlined above, gives a robust 
and reliable infrastructure – however it does reduce the flexibility of the business 

1 Partners in the later work included Qinetiq plc and BT plc.
2 The diagrams here depict the services as clouds are from the initial technical discussions with 
the BBC in the summer of 2003.
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as it makes customisation and consumer market targeting more difficult for the 
affiliates. In the Gridcast project, we created a cloud infrastructure to support the 
traditional broadcasting activities that were deployed and in test use in autumn 
2003 – it was written using the Globus Toolkit Version 3, developed initially in GT3 
Alpha1 and it tracked GT3 development to an architecture release to coincide with 
that Globus toolkit release (Fig. 19.2).

The Gridcast infrastructure consisted (from today’s perspective) of a collection of 
service clouds that provided the outward presence of the affiliate broadcaster and the 
associate core network control. The services permitted remote technical service sharing 
and the coordination of content output – one of the early motivations was in line with 
the grid ideas of permitting resource sharing and optimisation of infrastructure usage.

The support of schedule-based broadcasting is implemented by content being 
shared from the central repositories or the broadcasters themselves to the point of 
use. Thus, for example, the scheduling services for BBCNI would request a copy 
of the content to support its scheduled output – live output, such as for news 
programmes, is shared using a live network feed. This architecture thus defined a 
typical IT focused content sharing network with collections of repositories 
sharing content.

Fig. 19.1  BBC nations and regions infrastructure
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However, sharing is not just a simple matter of copying content. Content sharing 
must be performed securely and the Gridcast infrastructure had a role-based secu-
rity model that used role-annotated X509 digital certificates [5] to denote the rights 
of a requesting user – and thus all requests for content where made using secure 
service exchange that validated these user credentials. Each individual content item 
within the infrastructure could have an associated security policy that defined who 
could copy the material and indeed where it could be stored and for how long. In 
practice, the rights to content were defined by a few large-scale content policies 
based on the genre of the content; for example, a policy that defined news content 
or one for drama. A content policy could require that content was shared in a rights-
protected fashion and thus demand a key to unlock it for viewing.

In addition to security considerations, content sharing across the Gridcast infra-
structure was managed to support scheduled broadcasting – storage within the 
regional broadcast locations is limited and the content is not required for extended 
periods by the individual affiliates. The Gridcast content movement was organised 
by a transport broker that was driven by the broadcast schedule and the quality of 
service required by that schedule, as depicted in Fig. 19.3.

The Transport Broker is charged with organising content movement within the 
broadcast organisation to ensure that each affiliate has the content required when it 
is required and in the correct broadcasting format – if a required format did not exist 
when requested, then it would be created in time for the required sharing of that 
content. Within the infrastructure, we integrated a collection of transport types that 
varied from open source, such as GridFTP [7], proprietary content delivery net-
works to live switched feed. The selection by the transport broker was made using 
a market-driven approach – each transport offers its QoS for a transaction and 

Fig. 19.2  (a) Broadcaster Cloud. (b) Broadcaster Services
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defines an associated cost of delivering that QoS and the broker chooses based on 
the required QoS and the cost defined by the requester.

This content-sharing approach brings significant business benefits to the broad-
caster and its affiliate broadcaster enabling them to construct reactive schedules tai-
lored to the needs of the target audience. Further, sharing can be from copies of 
content held across the broadcaster community and not just the central content reposi-
tories, enabling load sharing of content requests across the broadcasting infrastruc-
ture. The Transport Broker API evolved within the Gridcast infrastructure towards the 
end of the project (2004) to manage the various content stores within the broadcast 
infrastructure as a collection of content storage clouds, as depicted in Fig. 19.4a.

Fig. 19.3  A content broker for content sharing

Fig. 19.4  (a) A content cloud. (b) The Gridcast service cloud.
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The transport broker’s role is then to provide a simple and implementation-
independent view of available content – effectively the broker gives the view that it 
had access to all content and in any format that was required, and its underlying 
services moved content to support this view and external technical services enable 
content processing when required, Fig. 19.4b. This cloud implementation enabled 
automatic load balancing of content transfers and also the pre-emptive format con-
version and placement of content to satisfy predicted content requests.

This (as we view it now) cloud approach also extended to the organisations and 
the technical services within the broadcasters – effectively creating a location-
independent collection of broadcaster clouds. A broadcaster cloud managed the 
output for a particular broadcaster and cooperated with its affiliates. This approach 
enabled the broadcasting cloud’s role to be changed dynamically. Thus, all broad-
casters could act independently, or act to the same schedule or to change the role as 
to which broadcaster was managing the core schedule – bringing resilience to the 
broadcast infrastructure. A more detailed discussion of the architecture, the sup-
porting broadcasting services and a broadcasting service management infrastruc-
ture can be found in [3, 9].

19.3 � An On-demand Digital Media Cloud

Gridcast was focused on issues internal to a broadcaster – the sharing of content 
and technical services that enabled the broadcaster to fulfil its business role. This is 
still a significant issue to a broadcast and indeed any technical organisation. 
However, as discussed earlier, a mainstream broadcaster must manage this tradi-
tional broadcasting role along with managing access via satellite, digital terrestrial 
broadcasting and increasingly on-demand content access – each of which places 
different requirements on the broadcast infrastructure.

In addition, the broadcasting economy has changed significantly over the last 
3 years. The broadcaster would have once expected in-house resources to manage the 
content workflow from commissioning through to delivery to the consumer; today, 
the broadcaster must interact with an increasingly diverse collection of service pro-
viders, each delivering one component of the final product (e.g. post-production, 
subtitle, playout, etc.) Each of these service providers must be integrated within the 
content workflow and be part of the broadcast content management infrastructure. 
In essence, there is a content economy, as depicted in Fig. 19.5, where content is 
traded and shared across broadcasters and service providers.

It is commonplace for broadcasters to cooperate in sharing technical resources 
and content. Basic technical services might be contracted to third-party specialist 
media companies, delivery of content to platforms might be managed by a broad-
cast company, such as Red Bee in the UK who provide playout services for a num-
ber of broadcasters, and web content managed by a web streaming specialist. This 
diverse economy places significant emphasis on managing relationships between 
economy members.
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In Fig. 19.6, the high-level service architecture for the PRISM infrastructure is 
depicted. At the core of the architecture is a cloud store that manages all content 
within the infrastructure – this cloud store is a development of the one used within the 
Gridcast infrastructure and is a managed, loosely coupled collection of individual 
cloud stores that provide a single view of all available content. The user has a collec-
tion of devices on which content may be accessed. These devices use commercial 
gateway providers to provide content for a user – so a satellite box is necessary for 
access content from satellite transmissions, a broadband network box provides access 
to the Internet, etc. The role of the infrastructure is to enable managed access to the 
content that is available to the user enabling multi-platform content access.

Within a broadcaster, broadcast control staff interact with the content cloud to 
manage the availability of content – for example, broadcasting schedulers manag-
ing content release or legal specialists reviewing and commenting on content prior 
to its release. The content cloud is supported by local in-house and third-party ser-
vice providers that enable content to be prepared and refined for release – for 
example, providing content conversion or specialist quality control services.

To the broadcaster, a platform is managed by a content provider that has an 
established (and often contractual) relationship with that broadcaster to provide 
content to users – this relationship will define when content will be made available, 
for how long it is available and in what form it is provided by the broadcaster and 
by the provider to the user. The exchange of content may also require the exchange 
of supporting metadata to enable the content to be indexed and classified by the 
provider – for example to enable its designation to be suitable for particular age 
groups or to enable user searches for locating particular content.

The traditional ways to manage this type of business relationship would require 
human control of the transfer or (more recently) using automated content manage-
ment workflows as part of content development lifecycle management. In the 
PRISM infrastructure, the focus is on automation and fine-grained control of 
behaviour and the approach is to control behaviour using content policies that focus 
on individual content management and expected behaviour given operations and 
events on that content. A content policy is a Security Access Mark-up Language 
(SAML) [10] document that specifies who exercises control over content, the 
operations that can be performed and by which type of user, and any consequent 
action that should be performed if an operation succeeds or fails. Each user and 
service within the infrastructure is identified by a security credential that identifies 
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Fig. 19.5  A media economy
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them and their role within the infrastructure – for example, specifying an individual 
as a scheduler for particular content. Individual content can have a specific content 
policy and extend, restrict or relax generic content policies for the group or genre 
of content it belongs to. Thus, a global broadcast policy might be defined, which is 
refined by an affiliate broadcaster; this in turn is refined by its genre and specialised 

Fig. 19.6  Content provider infrastructure
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by the individual content. Content policies can be changed dynamically and can 
include actions that should be performed when a policy itself is changed – enabling 
a highly dynamic environment to be created.

Thus, the relationship between a broadcaster and a content provider is an action 
within a content policy – for example, when content is made available, an action 
with a content policy might define that it is automatically shared with particular 
content providers, or simply define that it is available to share. The means of sharing, 
the format and the timing of sharing are also defined by policies within the cloud 
store. This policy-driven approach also manages content sharing and processing by 
external service partners. For example, when content is to be transcoded, a content 
policy may define that it is done by a third-party company and define how the trans-
fer to the service company is to be performed. This might mean that a physical copy 
of the content is created and dispatch by courier requested, or more generally within 
the infrastructure that the Media Dispatch Protocol [12] is used to auto-negotiate and 
initiate the transfer of content directly to the chosen content service provider.

19.4 � PRISM Cloud Implementation

An implementation of a broadcasting infrastructure presents a significant challenge 
in that it includes activities that are scheduled and predictable, and activities that 
are demand-driven and unpredictable. In delivering content to users, a minimum 
QoS is expected; otherwise, users will not use the content services. And, yet, the 
predictable and scheduled activities required by a broadcaster within the infrastruc-
tures must be maintained.

In addition, a broadcast infrastructure includes fixed assets, potentially mobile 
assets and an increasing need to scale the infrastructure dynamically to meet user 
demand. Thus, large-scale content stores will be in fixed and defined locations 
within broadcast locations – for example, the BBC may implement a single, centra-
lised large-scale content store with smaller stores available within affiliate broad-
casters or even at the premises of its production partners. This situation is further 
complicated by specialist service equipment being clustered around these content 
stores to support content processing – where the locality to the content reduces the 
need to move large-scale content across congested networks. A solution must live 
with this reality and permit these fixed assets to be supplemented to support pre-
dicted and unpredicted spikes in demand – for example, the rush of users requesting 
content for a new programme shortly after it is released.

19.4.1 � Cloud Resources

The PRISM infrastructure is defined as a collection of resource clouds that can be used 
to support services within the media infrastructure. The cloud is composed of fixed 
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service assets that provide defined functionality and utility assets that can be used to 
support these fixed assets – these utility assets can be services, compute resources and 
storage resources, and be owned or bought on demand, as depicted in Fig. 19.7.

This model enables the media cloud to scale as demand increases and to occupy 
a low resource footprint when demand is low – thus, for example, at night when 
most of the affiliate broadcasters are operating the same broadcasting schedule and 
user on-demand usage is low, the individual affiliate services can be shut down and 
their resources are released, with all affiliate services operated by a single broad-
casting service and online infrastructure reduced. (The PRISM auto-deployment 
system will power-off owned resources or will release utility resources to reduce 
the infrastructure cost as needed.)

The API to these various clouds is uniform and defined using the libcloud library 
[4], which provides a standard and simple model for resource end-to-end manage-
ment. The library uses a find (to locate a suitable resource) operation, reserve (to 
hold a resource) operation, instantiate (to make a resource available) operation and 
discard (to release a resource) operation model. The find operation takes a collec-
tion of restrictions that define resource properties – these enable selection based on 
resource characteristics through to location and cost.

Fig. 19.7  A resource cloud



338 T. Harmer et al.

This multi-provider cloud approach has shown to offer a flexible and highly 
resilient infrastructure. For example, if the broadcaster has no in-house infrastructure 
available, then the infrastructure is allocated entirely on utility resources – the only 
weak link is the physical connection to the broadcast platforms. As demand increases, 
the availability of utility resources enables the services to scale to meet this demand.

19.4.2 � Cloud Service Deployment and Management

The PRISM service cloud is managed by the Debut auto-deployment and management 
infrastructure (an overview of Debut is given in [9]) that provides service, virtual 
machine and application deployment, monitoring and scaling. Debut operates as a 
cloud broker in selecting resources for services/storage/applications, as a deploy-
ment layer and as a monitor and SLA layer for deployed resources. Each deployment 
block (in Debut terms), which is one or more applications/services/stores, defines its 
deployment requirements – following the libcloud model these are defined as restric-
tions that specify basic items such as version of software, trusted software providers 
and host operating system, infrastructure requirements such as network bandwidth 
and firewall requirements, and locality requirements such as particular location. The 
restriction framework is a generic one and can easily be extended by a user to specify 
particular needs in a deployment. The restrictions are used to select the resources 
that are suitable for a deployment from the clouds that are being managed.

The Debut deployment layer performs software deployment driven again by 
restrictions that specify the kind of environment, such as bare metal or virtual con-
tainer type, on a selected resource and either notify a user of the allocated location 
or link this location into other applications that use the deployed software, and thus 
enable a large-scale infrastructure to be composed as a series of deployments. The 
management layer also performs automatic service scaling and enables SLA 
requirements such as response time or load factors on applications or services that 
will trigger automatic scaling of an application/service/store.

19.5 � The PRISM Deployment

The PRISM infrastructure is currently supporting a non-public content access trial 
with users able to access content from a range of locations and devices as illustrated 
in Fig. 19.8.

At its core, the PRISM infrastructure has a cloud that implements the traditional broad-
casting infrastructure, as outlined earlier, that provides digital media content in terms of 
audio from radio broadcasts and video from TV broadcasts. This infrastructure also pro-
vides access to live streaming broadcasts for all of the supported BBC channels.

A content cloud implements a large-scale media store with associated process-
ing capabilities and metadata indexing and search capabilities. The content store for 
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supporting a traditional broadcast channel has been extended to publish content 
automatically along with its metadata to the on-demand content cloud. This publi-
cation is controlled by automatically applied content policies outlined earlier.

Content is accessed through content access services that provide authenticated and 
multiple protocol content use. The content services support direct access to media by 
devices using an open collection of metadata search and content transport services. In 
addition, the content access services support a web interface with thumbnail-based 
browsing and searching based on TV Anytime metadata [12]. For example, it is pos-
sible to search for a programme based on artist, title, description, language, subtitling, 
audio description and approximately 1,000 fields that describe the nature and lifecycle 
of the media content. In the current user trial, the infrastructure is actively accessed by 
different devices types including a prototype set-top box developed for the BBC; com-
puters using a range of web browsers; mobile phones or computer games consoles.

The infrastructure requires user authentication when using the content services. 
The services use a range of access protocols such as Open ID [8], Shibboleth [11] 
and X509 certificates. For most users in the trial, Open ID has been the authentica-
tion mechanism of choice as it enables their current online accounts, at Google, 
Hotmail, Facebook, etc., to provide user authenticated access services. Once 
authenticated, the access services assign a user a profile that controls their access 
to content. Thus, the service provides role-based views of content that control all 
aspects of use from ability to search and the content that can be searched, to the 
type of delivery mechanism that can be used, such being able to download and 
whether the media is rights protected when downloaded.

Fig. 19.8  The deployed PRISM cloud
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The search and content services are designed to be multi-format and multi-pro-
vider. The search query language is designed to aggregate results taken from a 
range of online providers as well as the content metadata taken from the broadcast-
ing cloud. Thus, a user query can specify that searching should be across the 
PRISM content cloud, YouTube, Flickr as well as web sites, such as BBC News. 
The content services provide direct access to content within the PRISM cloud and 
mediated access to other providers enabling the client services to have a single 
point of access to content.

Over the 1.5 years of deployment, the infrastructure has managed more than 1.5 
PetaBytes of content along with supporting processing and metadata.

19.6 � Summary

The PRISM cloud has evolved over 3 years into a limited, non-public, dynamic content 
on-demand infrastructure that is supporting a trial collection of consumers. The infra-
structure has managed more than 1.5 PetaBytes of data currently and its content archive 
grows by 30 hours of content every day. The cloud approach has proven to give a highly 
reliable and scalable infrastructure, which can cope with equipments and network loss 
– for example, the infrastructure has coped with losing one of its large-scale content 
stores by automatically deploying backup resources to on-demand providers.

19.7 � Content Note

The PRISM project is an R&D project and as such it is not a statement of BBC 
technology direction or internal infrastructure requirements – it is an experimental 
infrastructure that is evaluating approaches and technologies and how they might 
be used within a broadcasting infrastructure.
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Abstract  Cloud computing is an important next step in the trend toward inexpen-
sive and universal access to information and sophisticated computing resources that 
help close the digital divide between the computer haves and have-nots. In cloud 
computing, the end-users can access fully functional software and services online 
at little or no cost using inexpensive computers or mobile communication devices 
that connect them via the Internet. Innovative service providers no longer need to 
own and maintain development or production infrastructures and can automatically 
scale their production operations to meet growing demand much more easily and 
economically than possible with internal data centers, traditional hosting, or man-
aged services arrangements. The cloud’s inherent ability to dynamically scale up or 
scale down the infrastructure commitment as demand changes on a pay-as-you-go 
basis has a positive impact on the service provider’s overhead costs, energy costs, 
and in reducing its carbon footprint.

Cloud economics as presented in this chapter refers to the economic forces, busi-
ness drivers, and structural issues affecting the broad costs and benefits of adopting 
the cloud technologies or the creation of private or public utility clouds. Here, cloud 
economics also deal with the economy inside the cloud, which includes monetiza-
tion, charging, billing, and taxation of products and services inside the cloud.

20.1 � Cloud Computing Reference Model

The cloud can be divided into three major verticals, namely, the cloud user, the cloud 
vendor, and the original cloud provider (OCP) as shown in Fig. 20.1. The cloud vendor 
is an organization that has a local tax registration and offers the cloud services to the 
cloud user with guaranteed quality of experience (QoE) and quality of service (QoS) 
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within the framework of a service level agreement (SLA). A cloud vendor can be a com-
pute, storage and application brokerage and clearing house that provides prenegotiated 
access to the cloud services such as infrastructure as a service (IaaS) provider, platform 
as a service (PaaS) provider, and software as a service (SaaS) provider [1]. The IaaS 
service provider offers the physical computing hardware that includes the processing 
power through a set of central processing units (CPUs) in a cluster. IaaS will also provide 
the online memory (Random Access Memory – RAM) and the disk storage. The PaaS 
provider is responsible for supplying and managing all the middleware platforms neces-
sary to enable the software to run over the cloud. Finally, the SaaS provider will offer the 
software applications that will be used by the end-user.

The cloud vendor offers the QoE and the QoS that the end-user requires; the cloud vendor 
will provide the data security and meet the regulatory and legal requirements as required by 
the user or the regulators. The cloud vendor ensures that SaaS, PaaS, and IaaS are available 
to the end-user as services that are elastic and can scale up or scale down on demand. The 
cloud vendor also guarantees that the cloud service is fault-tolerant and is available on a 
continuous basis with proper security that includes confidentiality, integrity, availability, 
authentication, authorization, accounting, and anonymity (CI5A) [2]. The cloud vendor will 
charge the end-user for the consumed cloud resources based on the QoE.

At one time, energy companies used to manufacture power transmit it from 
generating stations to the distribution center, and finally deliver it to a household for 
a fee. The same was also true with telecommunications vendors who used to own 
the entire infrastructure starting from customer premises equipment to the transmis-
sion line. However, today many telecom and energy resellers are virtual operators 
who do not own any infrastructure. They use energy and telecom infrastructures 
from different providers to offer better QoS, cheaper tariffs, or value-added services. 
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This helped competition and improvement in service quality with new job creation 
and economic opportunities. Similarly, in the cloud, the cloud vendor is a virtual 
organization that offers the last-mile services to the end-user. It may not even own 
any cloud infrastructure – it will source cloud resources from various original cloud 
providers such as SaaS, PaaS, or IaaS from different parts of the world to offer the 
cloud services that meet certain SLA. The original cloud provider such as an IaaS, 
PaaS, or SaaS can also become a cloud vendor by offering guaranteed services qual-
ity and meeting local tax requirements.

In many cases, the small and medium enterprises (SMEs) or a household will 
interact only with the cloud vendor at the last-mile and may not even know the origi-
nal cloud providers. The service model for the cloud vendor will mainly be driven 
by the end-to-end services they provide based on QoS, SLA, and QoE. These ser-
vices may be the entire computing environment starting from software application 
to data storage and management or even simple resources such as four processors 
for 1 hour. The service can be private or public and accessible through any network 
whether wire-line or wireless. The pricing of the resources by the original cloud 
provider will be driven by some fixed price derived from raw computing power and 
the storage (memory and disk), whereas the pricing of the cloud service to the end-
user will depend on the SLA and QoE the user perceives.

Currently, many large cloud providers are actively recruiting vendors and resellers 
of their services. Like any value-added reseller sales channel, the providers are look-
ing to leverage the vendor’s sales efforts, client relationship management expertise, 
and value-added services such as cloud application development or customization, 
legacy system integration, etc., to increase the provider’s revenues and to maximize 
the utilization of their facilities. Cloud vendors will create new economic opportuni-
ties that promise to increase innovation and entrepreneurship in the delivery of the 
cloud services that will directly impact the QoS and QoE of the end-users.

20.2 � Cloud Economics

Cloud economics as presented in this section refer to the economic forces, business 
drivers, and structural issues affecting the costs and benefits of adopting the cloud 
technologies.

20.2.1 � Economic Context

As this chapter is being written, every enterprise in the world is facing a global 
economic recession that has profoundly affected all developed countries as well as 
those developing countries that develop products sold in those markets. Uncertain 
times also bring opportunities, but taking advantage of strategic opportunities typi-
cally must now be done quickly without additional capital funds or corporate 
resources.
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In addition, for information technology (IT) managers, energy cost management 
is not a small issue1. The challenge today is to increase computing power utilisation 
with lower energy consumption. In addition, the maintenance of legacy enterprise 
data centers absorbs the majority of IT budgets and IT managers are looking for 
ways to create increased capacity and flexibility within their current computing 
facility and hardware footprint, thereby lowering costs and increasing their return 
on assets (ROA). There has been increasing attention paid to alternatives that pro-
vide the pay-as-you-go options, unlimited scalability, quick deployment, and the 
minimal maintenance requirements. Cloud computing is a paradigm that promises 
to meet all these requirements.

20.2.2 � Economic Benefits

Occasionally used to refer to the economics of cloud computing, the term 
“Cloudonomics” was coined by Joe Weinman in a seminal article entitled “The 10 
Laws of Cloudonomics” [4]. While far from being a comprehensive or exhaustive 
list of economic factors, his “10 Laws” serve as a useful starting point in our discus-
sion. He examined the strategic advantages provided by public utility cloud ser-
vices over private clouds and traditional data centers. He posits that public utility 
clouds are fundamentally different from traditional data center environments and 
private clouds. For individual enterprises, cloud services provide benefits that 
broadly fall into the categories of lowering overall costs for equivalent services 
(you pay only for what you use), increased strategic flexibility to meet market 
opportunities without having to forecast and maintain on-site capacity, and access 
to the advantages of the cloud provider’s massive capacity: instant scalability, paral-
lel processing capability, which reduces task processing time and response latency, 
system redundancy, which improves reliability, and better capability to repel botnet 
attacks. Further, public cloud vendors can achieve unparalleled efficiencies when 
compared with data centers and private clouds because they are able to scale their 
capacity to address the aggregated demand of many enterprises, each having differ-
ent peak demand periods. This allows for much higher server utilization rates, 
lower unit costs, and easier capacity planning netting a much higher return on assets 
than is possible for individual enterprises. Finally, because the location of the pub-
lic cloud vendor’s facilities are not tied to the parochial interests of the individual 
clients, they are able to locate, scale, and manage their operations to take optimum 
advantage of reduced energy costs, skilled labor pools, bandwidth, or inexpensive 
real estate.

These are not the only benefits that have been identified. Matzke [5] suggests 
that the levels of required skills or specialized expertise along with the required 

1 IBM cites a study [3] that reports that US data center managers are anticipating a 35% increase 
in energy expenses over the next 4 years.
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economies of scale drive the optimum choice for resourcing IT initiatives. For him, 
the availability of scalable skills combined with other economies of scale are 
among the compelling benefits of cloud computing2. This is especially true for 
enterprises that are located in labor markets that have very few or only very expen-
sive IT staff resources available with the requisite skills.

20.2.3 � Economic Costs

The costs associated with cloud computing facing early adopters include the 
potential costs of service disruptions; data security concerns; potential regulatory 
compliance issues arising out of sensitive data being transferred, processed or 
stored beyond defined borders; limitations in the variety and capabilities of the 
development and deployment platforms currently available; difficulties in moving 
proprietary data and software from one cloud services provider to another; integra-
tion of the cloud services with legacy systems; cost and availability of program-
ming skills needed to modify legacy application to function in the cloud 
environment; legacy software CPU-based licensing costs increasing when moved 
to a cloud platform, etc.

20.2.4 � Company Size, Economic Costs, and Benefits  
of Cloud Computing

The economic costs or benefits of implementing cloud services vary depending on the 
size of the enterprise and its existing IT resources/overheads including legacy data cen-
ter infrastructure, computer hardware, legacy software, maturity of internal processes, 
IT staffing, and technical skill base. These factors determine the strategic costs and 
benefits that accrue to individuals and corporations depending on their relative size.

In the past, large corporations have had an advantage over small corporations in 
their access to capital and their ability to leverage their existing human, software, 
and hardware resources to support new marketing and strategic initiatives. However, 
since the advent of cloud computing, the barriers to entry for a particular market or 
market segment for a startup company have been dramatically reduced and cloud 
computing may have tipped the balance of strategic advantage away from the large 

2 Those with low requirements for economy of scale and skills can be addressed with on-site 
resources. Initiatives with low scalability requirements but higher skill requirements can be han-
dled through traditional outsourcing arrangements. Projects with high scalability requirements but 
low skill scalability requirements can be addressed through collocation or traditional hosting 
arrangements. Finally, projects that require both economies of scale as well as scalable skills are 
best addressed by cloud computing all other things being equal [4].
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established corporations towards much smaller or startup companies. A small, 
dedicated, and talented team of individuals can now pool their individual talents to 
address a perceived market need without an immediate need for venture capital 
funds to provide the necessary IT infrastructure. There are a number of cloud pro-
viders who provide software development environments that include the requisite 
software development tools, code repositories, test environments, and access to a 
highly scalable production environment on pay-as-you-go basis.

Also contributing to this trend is the open-source movement. While licensing 
issues, support, and feature considerations may dissuade larger enterprises from 
using open-source software in the development and deployment of their proprietary 
products, the availability of open-source software in nearly every software category 
has been a boon to SMEs, the self-employed, and startups.

As these small companies grow into midsize and large companies, they face 
changing cost equations that modify the relative costs and benefits of cloud com-
puting. For instance, at certain data traffic volumes, the marginal costs of operating 
with a cloud provider’s infrastructure may become more expensive than providing 
the necessary IT infrastructure in-house. At that point, there may be advantages of 
a mixed-use strategy in which some of the applications and services are brought 
in-house and others continue to be hosted in the cloud. The following tables will 
identify the differences that SMEs and large enterprises face in both the benefits 
and costs of cloud services (Tables 20.1 and 20.2).

20.2.5 � The Economics of Green Clouds

The development of green data centers and green clouds is shaped by two important 
factors. The first is a global awareness of the devastating potential of climate change 
due to human activity primarily through carbon emissions. The second is the rising 
costs of energy. These two factors have focused IT infrastructure planning and 
decision-making on energy cost reduction, dynamic resource allocation strategies, 
and have moved green issues from the category of nice-to-do to strategically impor-
tant for all midsize and large corporations. In 2008, IBM did more than 30 energy 
assessments around the world and found that 60–70% of the energy used in the data 
centers was used for indirect purposes such as cooling and lighting the facilities with 
only 30–40% of the energy being used directly by the computing hardware [3].

Public cloud providers locate their data centers where bandwidth, cheap energy, 
abundant water for cooling, and proximity to markets are optimal. Google [6] and 
other cloud providers have focused on creative approaches to efficient resource 
usage including not only electricity usage but also water recycling and equipment 
recycling upon disposal. Through purchasing servers and other equipment designed 
to minimize energy usage, these cloud providers minimize the non-computing energy 
overhead and maximize their utilization rates through the dynamic allocation of 



34920  Cloud Economics: Principles, Costs, and Benefits

Table 20.1  Economic benefits of cloud adoption

Economic 
benefits

Small and medium  
enterprises (SMEs) Large enterprises

Strategic 
flexibility

Critical in getting quickly to 
market. Cloud services 
allow startups to rapidly 
develop and deploy their 
products as long as they 
can use the open source or 
proprietary development 
platforms of the cloud 
providers. As the cloud 
market offerings mature, 
there will be many more 
platform options available.

Cloud services can provide large 
enterprises the same strategic benefits 
as startups for new initiatives as long 
as legacy software integration and 
data issues are not significant. With 
appropriate software development 
talent, operating units can rapidly 
develop and market test new 
innovations without putting additional 
strain on IT budgets, staff, or hardware. 
Longstanding internal IT management 
policies and standards may have to be 
re-examined and modified to allow this 
to happen.

Cost reduction Pay-as-you-go pricing may 
be critical if operating 
capital or venture capital 
funding is not available. 
With cloud services, 
growth can more easily be 
funded through operating 
revenues and there may 
be tax advantages to 
converting what would 
have been longer-term 
depreciation expenses 
to fully loaded current 
expenses.

Cloud services provide the same cost 
benefits for isolated and exploratory 
initiatives. Instant availability and 
low setup costs for new development 
and deployment environments allow 
operating units to explore new 
initiatives quickly at low cost without 
increasing internal IT hardware 
or staff overheads. For high data 
traffic volumes, it may become more 
economical to bring the operations 
in-house. Because maintaining legacy 
hardware and software absorb the 
majority of IT costs, large corporations 
may see significant costs savings 
by selectively moving noncritical 
applications and processes to external 
clouds.

Software 
availability

Software as a Service (SaaS) 
and Platform as a Service 
(PaaS) provide necessary 
software and infrastructure 
at low entry cost. 
Limited online version 
functionality may be more 
than offset by dramatic 
cost savings.

Existing volume licensing of legacy 
desktop and process-integrated 
enterprise software may make the 
status quo more attractive if end-user 
retraining, process modifications, and 
other change costs are high. Legacy 
desktop software may have more 
features and functionality than is 
currently available in SaaS versions. 
But the legacy software licensing costs 
may dramatically increase if it is hosted 
in a private cloud environment.

(continued)
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Table 20.1  (continued)

Economic 
benefits

Small and medium  
enterprises (SMEs) Large enterprises

Scalability One of the most dramatic 
benefits for SMEs and 
startups. If successful, 
applications designed 
to autoscale can scale 
endlessly in a cloud 
environment to meet the 
growing demand.

Large enterprises with significant 
hardware, legacy software, and staff 
resources can benefit from cloud 
scalability by identifying CPU-
intensive processes such as image 
processing, PDF conversion, and video 
encoding that would benefit from the 
massively scalable parallel processing 
available in clouds. While this may 
require modifying legacy applications, 
the speed benefits and reduced local 
hardware requirements may far 
outweigh the software modification 
costs.

Skills and 
staffing

While the proper design of 
cloud applications requires 
high-level software 
development skills, their 
maintenance and support 
is vastly simplified in 
the cloud environment. 
Cloud providers handle all 
maintenance and support 
issues for both hardware 
and platform software 
at costs that are either 
bundled into the usage 
fees or available in various 
configurations as premium 
services. This allows 
significant cost savings 
through reduced staff 
overheads.

Because the majority of enterprise IT costs 
goes to support legacy applications and 
hardware, the greatest staffing benefits 
will be seen in new cloud initiatives 
that do not add to the staffing burden. 
Longer term, as the enterprise begins 
to analyze cloud technology potential 
for its legacy operations, retraining of 
existing staff or bringing in new staff 
with cloud technology skills will be 
necessary to take advantage of the new 
paradigm. Thus, some investment will 
have to be made before large-scale or 
long-term benefits will be seen. The 
staffing investment may be significant 
if the enterprise is attempting to create 
a private cloud to handle dynamic 
resource allocation and scalability across 
its operating units. In this case, it may 
face significant staff investment as well 
as the required hardware, software, and 
network investment to implement and 
maintain their private cloud.

Energy 
efficiency

Because SMEs can 
dramatically reduce or 
eliminate local servers, 
cloud computing provides 
direct utility cost savings 
as well as environmental 
benefits.

Even very large enterprise IT data centers 
cannot achieve the energy efficiencies 
found in the massive facilities of public 
cloud providers even with aggressive 
high-density server and virtualization 
strategies. In periods of economic 
downturns, green initiatives typically 
cannot compete for scarce capital funds. 
By employing a mixed strategy that 
off-loads applications and processing 
to external clouds when feasible, IT 
managers are able to minimize their 
energy costs and carbon footprint.

(continued)



35120  Cloud Economics: Principles, Costs, and Benefits

computing resources. This combination of lower energy overhead amortized over a 
much higher server utilization rate allows cloud suppliers to provide computing 
services far more efficiently with a much smaller energy and carbon footprint.

Because of the scale of operations of large cloud providers, they are able to 
achieve efficiency rates and server utilization rates that are unachievable in even 
large corporate data center operations. Thus, cloud computing holds the promise of 
not only providing attractive cost savings at the enterprise level but also may con-
tribute to the larger societal objectives of energy efficiency and environmental 
protection and sustainable development.

20.3 � Quality of Experience in the Cloud

To retain and recruit customers in the cloud, the experience of the customer has to 
be managed in a very sensitive fashion. In the cloud, experience will be measured 
in terms of experience in a virtual environment (VE) [8] where challenges will 
relate to user-agents and devices, the virtualized environments used, the presence 
attributes, and the tasks to be performed. Experience assurance (AE) in the cloud 
will deal with a community of vendors, providers, and partners; where the cloud 
vendor will empower the customer – the customer will be able to choose and mea-
sure the perceived value of a service. In addition, the cloud vendor must be proac-
tive – communicating a problem before the customer discovers it; also, a 
remediation must be in place before customer asks for it. Experience happens 
through moment of truth (MoT), when people meet people; therefore, the cloud 
vendor must be in constant touch with the customer and also must improve based 
on the feedback from the customer.

To ensure security and service quality in the cloud, a cloud vendor has to go 
beyond its own domain of control. This becomes even more complex when the cloud 
vendor is a virtual organization and does not own service infrastructures. For exam-
ple, to provide a secure and fault-tolerant service, the cloud vendor must ensure that 
all the original cloud providers in the value-chain agree on some level of security 

Table 20.1  (continued)

Economic 
benefits

Small and medium  
enterprises (SMEs) Large enterprises

System 
redundancy 
and data 
backup

This is a large benefit for 
SMEs, the majority of 
which are poorly prepared 
for hardware failures and 
disaster recovery [3]. 
Cloud storage can reduce 
downside risks at low cost.

Because cloud technologies distribute both 
data storage and data processing across 
potentially large number of servers, the 
likelihood of data loss due to hardware 
failure is much lower than in most large 
private data centers. The cloud data 
storage can provide a cost effective 
supplemental back-up strategy.
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Table 20.2  Economic costs of cloud adoption

Economic costs
Small and medium 
enterprises (SMEs) Large enterprises

Data security SMEs are better able to use 
third-party services such 
as payment processing 
to handle secure 
transactions.

Data is an enterprise’s most important IT 
and operating asset. Current uncertainty 
regarding the security of the data assets 
stored in public clouds is one of the most 
significant barriers in cloud adoption. 
Large enterprises may not want their data 
stored in countries where intellectual 
property piracy is prevalent. Some 
companies may not want their data stored 
on equipment used by their competitors.

Data 
confidentiality

SMEs face the same data 
confidentiality issues as 
large enterprises.

One of the advantages of cloud computing 
and storage for confidentiality is that 
the data transfer and storage algorithms 
encrypt the data into units that are difficult 
to reconstruct without the specialized 
algorithms/keys if the data are intercepted 
in transfer or the cloud security is 
compromised.

Data regulations SMEs face the same 
regulatory data 
location issues as large 
enterprises.

Depending on the company’s industry, 
there may be significant regulatory 
issues regarding data location. Data that 
identifies the individual in certain health 
and financial contexts are subject to US 
regulations. Similarly, the EU has laws 
that restrict the transfer of certain data 
outside of its borders.

Data integrity The data integrity and 
reliability of cloud 
suppliers may be higher 
than that provided by 
the existing internal 
systems.

Cloud technologies are relatively new and 
storage and data transfer algorithms slice 
the data into small units, which are stored 
and transferred dynamically within the 
storage region. Estimating and factoring the 
risks of potential data corruption of mission 
critical data at this early stage of cloud 
implementation may be difficult leading 
to nonadoption, especially if the existing 
internal systems, processes, and protocols 
are working.

Data transfer 
costs

For new initiatives that do 
not require the transfer 
of legacy data to the 
clouds, transfer costs 
are minimal. Getting 
locked into a particular 
cloud service provider 
is currently a market 
concern due to the lack 
of open standards among 
the providers.

Moving the existing data sets to clouds requires 
data integrity check to ensure that all of the 
data has been transferred fully and that it has 
not been corrupted. For very large data sets, 
this may represent significant staff costs. 
Cloud vendors typically charge data transfer 
costs. If the data set is large and there is 
significant data churn due to transaction 
processing, it may be more cost-effective to 
look at more traditional hosting options.

(continued)
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Table 20.2  (continued)

Economic costs
Small and medium 
enterprises (SMEs) Large enterprises

Integration costs 
and legacy 
application 
reengineering

In startups and small 
companies, potentially 
little or no integration is 
required between cloud 
applications and legacy 
applications.

Potentially significant costs to have new 
cloud applications interact with legacy 
applications or to modify legacy 
applications to offload processing to 
cloud-based components. Conversely, 
there may be advantages to reengineering 
legacy applications and hosting them in 
a public cloud when integrating Web 2.0 
functionality with legacy applications.

Software 
licensing

Cloud services (SaaS, PaaS) 
provide significant 
software licensing cost 
savings for startups and 
small companies.

Migrating large enterprises to cloud based 
SaaS may not be cost-effective relative 
to the existing enterprise licensing 
agreements. Depending on the licensing 
agreements for third-party software, 
especially if licensing fees are based 
on the number of CPUs using the 
software, hosting legacy applications 
in a cloud environment may involve 
significantly increased licensing costs or 
noncompliance with the agreements if the 
software is installed on a machine image 
used for autoscaling as the user demand 
increases.

Cloud availability 
– “rolling 
brownouts”

Unavailability of the 
cloud services or slow 
performance due to 
heavy traffic is a serious 
concern when choosing 
a cloud vendor.

Same as with SMEs. Currently, even 
large vendors have experienced slow 
performance or suspended service due to 
overwhelming utilization.

Customer’s QoS
Requirement

QoS achieved by
Service Provider

QoS perceived by
Customer   

QoS offered by
Service Provider

Alignment gap 

Execution gap 

Perception gap 

Value gap

Customer Service Provider

Fig. 20.2  Viewpoints of quality of service

policy and QoS guarantee. The cloud vendor can learn from telecom industry and 
implement the ITU Recommendation G1000 [9] where QoS is expressed on a service-
by-service basis. For QoS to be truly useful across the industry, it must be meaningful 
from four viewpoints, which are illustrated in Fig. 20.2. These viewpoints are:
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Customer’s QoS requirements•	
Service provider’s offerings of QoS (or planned/targeted QoS)•	
QoS achieved or delivered•	
Customers’ survey ratings of QoS (perceived QoS)•	

To address these viewpoints in a timely manner, the cloud vendor can consider the 
grade of service (GoS) used in telecom traffic engineering [10]. The GoS deals with 
resource instead of services – it deals with number of controls to provide a measure 
of adequacy of a group of resources under specified conditions. The key point to 
conform to GoS standards is to apportion individual values to each network element 
in a fashion that the target end-to-end QoS is obtained.

The challenge here is that the GoS and QoS have different interpretations. While 
the QoS views the situation from the customer’s point of view, the GoS takes the 
provider’s point of view. To resolve the ambiguity, it is necessary to introduce ser-
vice level agreement (SLA) in this context. An SLA is a contract between a customer 
and the cloud vendor to define QoE. The purpose of SLA will be to ensure that QoE 
is understood in the same manner by the customer and the cloud vendor. Also, it can 
be implemented in the cloud using definitions and rules [11]. Furthermore, the SLA 
defines what is to happen in case the terms of the contract are violated [12].

The security challenges in the cloud will be higher and more complex compared 
with what the world has seen earlier. The major difference is that a user does not 
have full control of the infrastructure and the people who manage the data and the 
cloud infrastructure. Many security attacks that were not possible in a private net-
work will be possible in the cloud owing to its large attack surface. Therefore, in 
addition to standard security offered by the cloud providers, there will be separate 
end-to-end security services provided by the cloud vendor.

To realize QoS, QoE, and security, we propose the cloud service quality man-
ager (CSQM) architecture as shown in Fig.  20.3. There are six entities in this 
architecture.

1.	 Access requestor (AR)
2.	 Policy decision point (PDP)
3.	 Policy repository (PR)
4.	 Policy enforcement point (PEP)
5.	 Cloud decision point (CDP)
6.	 Service Quality Manager (SQM)

The access requestor (AR) is an endpoint device or user-agent seeking access to 
some service or resource from the service provider. The policy decision point 
(PDP) is a system where a policy decision related to security requirement or QoS 
requirement is made. Typically, the policies fall into two main categories: general 
policies that are applicable to all the users; specific policies that are applicable to 
an individual user, a particular service, or a group of users or services defined in an 
SLA. The SLA is designed to meet certain key performance indicators (KPIs) based 
on certain key quality indicators (KQIs). Policies are stored in policy repository 
(PR). The PR will coordinate with other databases such as inventory for services, 
resources, and GoS. The policy server will host the PR and evaluate the policy 
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conformance through the PDP. The policy enforcement point (PEP) is responsible 
for enforcing a policy. Because policy may not directly be understood by all equip-
ments or applications, it is necessary to translate these policies into service-specific 
configuration rules and enforce through activation and control systems. The cloud 
decision point (CDP) captures, interprets, and decides about the events received 
from the cloud vendor and original cloud providers like SaaS, PaaS, and IaaS. 
These events are alarms, performance, and security data collected in proactive and 
reactive fashion. A CDP works like a sensor that processes various events and sends 
them to the PDP for review and policy enforcement. All these policy servers and 
CDPs will be managed by the cloud service quality manager (CSQM).

20.4 � Monetization Models in the Cloud

In the cloud, there are four different models of monetization:

1.	 Each and every service is priced and charged to the consumer. IaaS and PaaS 
will fall in this category – IaaSs and PaaSs will monetize the services they offer. 
All single tenancy resources will fall into this category – in single-tenancy a 
resource can be used by only one user at any given point in time – here demand-
-supply-driven pricing will prevail. Some SaaS services will also fall in this 
category – this model for SaaS will evolve from the earlier model of application 
service provider (ASP). This model is quite successful in the wireless networks 
where network operators are in control of the network and therefore all the 
services that are offered through these networks are monetized. Monetization of 
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SaaS will be transaction-based. Even a multitenancy object will be converted 
into single-tenancy object through digital rights management (DRM).

2.	 The second model of monetization will be offering part of the service free and part 
of the service as chargeable. Here, the free part of the service will mainly be match-
making platforms, such as job sites portals, dating sites, search engines, or the 
virtual travel agents. Here, the monetization will be through the match or comple-
tion of a transaction. In this model, the service provider will offer the content free 
and determine the intent of the user for using this content. Once the intent is known, 
the provider will propose a match and commit a business transaction.

3.	 The third model is where a service is free. The user is free to use or modify the 
service or content. This will follow the principle of Bhikshu economy. Bhikshus 
are Buddhist monks who offer service for free – in return, community supports 
their livelihood (“366: A Bhikshu who, though he receives little, does not despise 
what he has received”) [7]. If one finds a value in it, one makes a contribution. 
Unlike a capitalistic economy, pricing is not dependent on demand and supply 
– one can pay any amount that is worth the experience. Another interesting con-
cept of Shramadana from Buddhist philosophy will prevail in the cloud, wherein 
public pays back by joining the community and offering their intellect, time, and 
labor instead of cash. Wikis and GNU software are examples of this practice.

4.	 The fourth model is free service that might have some restriction for monetization. 
Many governments are following the principle that all outcomes of research proj-
ects funded by governments will be open-domain where not only the results but 
also the data will be available in the open domain for not-for-profit usage. Healthcare-
related projects in the USA and other parts of the world fall in this category.

Data logistics will play a significant role in the cloud monetization. Data logistics 
will include functions like

Data acquisition•	
Data cleaning•	
Data transformation•	
Data transportation•	
Data storage (offline)•	

Data acquisition or cleaning of data will be a complex process where it might be a service 
provided by the SaaS provider or the cloud vendor. Though not likely, data acquisition 
and cleaning service might be offered by the IaaS or the PaaS through a partner. Data 
acquisition will deal with a first-time user where the data need to be transformed into the 
electronic form. Data might exist in paper form or some other nonelectronic form, which 
need to be converted into electronic form understandable and accessible by the software 
application. In data cleaning service, the data will be examined and validated to ensure 
that the data that has been captured is indeed correct and free from redundancy or miss-
ing components. Data transformation will be a service where the data of the end-user is 
transformed into a format that is understandable by the software application. Transportation 
of data will mainly be the role of the cloud vendor where the data is transported from the 
end-user’s premise to the computing infrastructure in the cloud.
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20.5 � Charging in the Cloud

The charging for the resources and invoicing the end-user will be the responsi-
bility of the cloud vendor. For the cloud usage, the cost to the end-user will be 
the combination of communication cost and the charges the user will pay to the 
cloud vendor. Communication will be provided by an internet and communica-
tion service provider (ICSP). The ICSP charges will mainly be based on the 
traditional spatial and temporal properties of the single-tenancy resource usage 
like bandwidth, and duration of usage. Cloud computing has the following three 
characteristics.

1.	 Infinite virtual computing resources available on demand, thereby eliminating 
the need for cloud computing users to plan far ahead for provisioning.

2.	 The elimination of an upfront commitment by cloud users, thereby allowing 
companies to start small and increase hardware resources only when there is an 
increase in their needs.

3.	 The ability to pay for use of computing resources on a short-term basis as needed 
(e.g., processors by the hour and storage by the day) and release them as needed, 
thereby rewarding conservation by letting machines and storage go when they 
are no longer in use.

Capital expenses (capex) versus operational expense (opex) is one of the advan-
tages of using cloud computing. There have been many discussions comparing the 
cost of a 24 × 7 use of a cloud infrastructure from a cloud vendor like Amazon EC2 
instance against the cost of hosting a server within the data center. Usually, provid-
ers take the average price of a 1U server, divide it by 36 (the number of months in 
the typical expected service life of a piece of equipment), and compare the savings. 
If operational costs like energy, cooling, manpower, etc. are included, the cloud 
looks very attractive from an operational costs’ point of view.

20.5.1 � Existing Models of Charging

The existing models of charging can be divided into charges by the IaaS, PaaS, and 
the SaaS. In case of a SaaS business with varying demand over time and revenue 
proportional to user hours in an IaaS, Armbrust et  al. [13] have proposed the 
tradeoff charging model through the following equation:

≥× − × −( ) ( )datacenter
cloud cloud datacenter

Cost
UserHours revenue Cost UserHours revenue

Utilization

They also proposed the revenue equation for adverts-supported model in which the 
number of adverts served is roughly proportional to the total visit time spent by 
end-users on the service.
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20.5.1.1 � On-Demand IaaS Instances

On-Demand Instances from an IaaS allows a customer to pay for compute capacity 
by the hour with no long-term commitments. This frees the customer from the costs 
and complexities of planning, purchasing, and maintaining hardware and trans-
forms what are commonly large fixed costs into much smaller variable costs. For 
example, at Amazon for an Extra Large Instance with 15 GB of memory, 8 EC2 
Compute Units (four virtual cores with two EC2 Compute Units each), 1,690 GB 
of instance storage, 64-bit platform will cost $0.80 per hour. However, there are 
hidden costs in many of these charging models; one such hidden cost worth men-
tioning here is the data access. Some cloud vendors offer storage at a very attractive 
price but charge on transactions that accesses the disk.

20.5.1.2 � Reserved IaaS Instances

Reserved Instances by an IaaS gives the customer an option to make a low, one-
time payment for each instance the customer wants to reserve and in turn receives 
a significant discount on the hourly usage charge for that instance. After the one-
time payment for an instance, that instance is reserved for the customer, and the 
customer has no further obligation.

Simple statistics reveal that reserved instances though give a cloud customer the 
option to make a low, one-time payment for each instance, they are not suitable for 
a short-term usage. Hence, we envisage a new charging model of Value Instance. 
Here, the one-time payment for each instance to be reserved is calculated taking 
into consideration a percentage of the on-premise hardware cost.

20.5.1.3 � PaaS Charging

Just getting the computing resource from the IaaS provider may not be sufficient; 
the charges for the PaaS need to be provisioned. PaaS cloud vendors enable an 
application where they charge their platforms on rental basis. These rentals are 
based on the number of servers or number of instances of PaaS the customer will 
need to use. If the application is not cloud ready, there could be additional charges 
for cloud enablement. There are different charging models for the PaaS user. These 
are sometimes charged per-resource like a piece of middleware, which might be in 
a range of $100–500 a year. Some of the PaaS providers charge on a per user basis, 
a model similar to Google App Engine.

20.5.1.4 � Cloud Vendor Pricing Model

Because QoS and SLA play a significant role in the cloud, the cloud vendor will 
have a back-to-back QoS and SLA with both the ICSP and the cloud providers that 
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will need to provide QoE- and SLA-based charging as well. If there is an SLA 
violation, a credit to the user will have to be initiated.

20.5.1.5 � Interprovider Charging

There will be many cases where the revenue collected by the cloud vendor needs to 
be shared with partners and other providers who are part of the value-chain. This 
demands an inter-provider charging agreement that will rate and calculate the 
charges payable to or receivable from the partner provider like the SaaS, PaaS, or 
the IaaS. This will be driven by the following considerations:

1.	 Bill & keep – this is a special type of billing agreements between the providers 
where the provider keeps [14] all the money they collect from the subscriber. 
Nobody shares any revenue with any other provider.

2.	 Usage of resource is measured, rated, and billed at the point of interconnection 
(POI). Rates will be determined by service combined with spatial, temporal, and 
instance attributes.

20.6 � Taxation in the Cloud

It is easy to formulate a taxation policy for tangible movable or immovable assets; 
it is also possible to formulate a taxation policy when these assets cross the border 
of a state. Tax is levied at the point of consumption of the service; therefore, con-
ventional taxation principles will not be able to support the complex needs of taxa-
tion in a virtual cloud environment. Cloud computing is predicated on a concept of 
borderless global services. Governments, for one reason or another, do not like this 
idea – at a basic level, governments need borders.

The taxation in the cloud will be the responsibility of the cloud vendor who will 
have a local tax registration and be governed by the local tax regulations. Taxation 
in the cloud can be managed with similar taxation model as mobile network opera-
tors or mobile virtual network operator (MVNO). A mobile subscriber can consume 
the service of the home service provider while at the home network; the subscriber 
can use the service of a foreign network being present at the home network. The 
subscriber can also be roaming in a foreign country with different taxation policies 
and consume services of the foreign network or the home network. Similarly, in the 
cloud, the end-user could be in one country and the cloud vendor could be in another 
country offering services from providers that originate in other countries.

Over a period of time, we believe that there will be clearing houses that will 
manage the interstate and intercountry taxations of the consumables. This might 
lead to a situation where there are dangers of double taxation. If tax is based on 
the location of the registered office of a cloud computing company, then there is 
always an option to the virtual offices to be located in a lower tax or tax-free 
export zone.
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Abstract  Service Level Agreements (SLAs) become increasingly important 
in clouds, grids and utilities. SLAs that provide bilaterally beneficial terms are 
likely to attract more consumers and clarify expectations of both consumers and 
providers. This chapter extends our existing work in SLAs through evaluating 
application-specific costs within a commercial cloud, a private Eucalyptus cloud 
and a grid-based system. We assess the total runtime, as well as the wait time due to 
scheduling or the booting time of a virtual instance. With relatively short processes, 
this start-up overhead becomes insignificant. In undertaking these experiments, we 
have provided some justification for a recent hypothesis relating to a preference for 
job completion time over raw compute performance [4].

21.1 � Introduction

Cloud computing [14, 17], and its recent forefathers of grid systems [1, 2, 3, 6] and 
utility computing [5, 14], have led to a number of organisations reappraising their IT 
infrastructures. Organisations with existing IT infrastructures are increasingly ques-
tioning the ownership model of computing, with cost management [7] being a key 
concern. Clouds, grids and utilities have also become the basis for, or a core part of, 
other businesses, and are typified by the strong emergence of Software as a Service 
(SaaS). The move towards SaaS, essentially Internet-based software applications, is 
reported by producers and consumers alike to be both strategically and financially 
beneficial. Removing the need for physically locating, powering and cooling, certain 
kinds of core and bespoke infrastructure – with regular maintenance schedules and 
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concomitant staffing – presents a different cost model for IT. Though email is 
typically given as a prime example of a widely used SaaS, software such as Google 
Apps, SalesForce, Zoho, g.ho.st and MobileMe can support a variety of uses. Such 
software may be offered for free up to certain limits, beyond which differential 
costs will be applied to specific levels of support or quantities of storage; models 
for such costs will vary by provider, requiring the consumer to ascertain the best 
value for money offering. Popular SaaS offerings with relatively fixed characteris-
tics, such as email, readily scale to the number of users and user demands, implying 
that utilisation can be maximised and the resulting cost-efficiencies can be passed 
on to consumers.

While SaaS may offer solutions for generic software needs, specific computa-
tional activities that rely on mechanisms of distributed computing for complex cal-
culations, Web Services for remote access, P2P networks for file sharing and 
distribution, and so on, present different challenges. Cloud computing has grown to 
encompass wider infrastructural issues for businesses, offering organisations and 
individuals the opportunity to use different forms of commoditised computer sys-
tems, with various associated costs for processor hours and storage in managed 
facilities. Such facilities can be used by organisations internally, or as part of the 
external-facing business activity, or as part of an overall customer offering in which 
the offering may encompass the costs of processor hours and storage. Although 
accessing such systems has long been technically possible, the costs have typically 
been rather less transparent and efficiently maximising use of the infrastructure has 
been of less economic importance. Traditionally, peak requirements tended to dictate 
the size of a system; now it is possible to run 1,000 servers for a short period without 
having to own them, and the costs of doing so should not far exceed that of using a 
server for 1,000 hours. The IT infrastructure can grow and shrink as needed, with 
costs directly proportionate. Businesses are exploring solutions within this space 
that might help with cutting costs; however, the range of choices is substantial.

Cloud systems may not be to everybody’s tastes for a variety of reasons: lack of 
bandwidth makes such systems either difficult or impossible to use; organisations 
may prefer the existence of tangible assets; legislative/regulatory issues may be too 
great; and concern may exist over vendor dependency or so-called lock-in. 
Alongside such issues, we would also include the importance of having well-
specified bilateral Service Level Agreements (SLAs) that provide generally under-
standable clauses for assurances of availability, reliability and liability. In previous 
work [10–13], we have explored the construction of SLAs such that a price com-
parison service – as exists for other products. Commercial Cloud systems enable us 
to capture price–performance information relating to specific applications with 
relatively well-known demands on systems, and to be able to determine how such 
a comparison service may be formulated. Such a comparison service will necessar-
ily depend on both the performance requirements of the user and the current avail-
ability of the system, as well as the price willing to be paid by the consumer. A 
variety of factors are involved in determining the best value: a supercomputer may 
be able to undertake specific kinds of analysis at a much faster rate than a com-
mercial cloud system [15] once the required work has been appropriately initiated. 
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On the other hand, if the system is unable to perform such a task for an extended 
period, or there is a larger overhead due to scheduling [4], running more slowly on 
available systems may be specifically advantageous depending on the value of the 
results and time at which they are provided. These factors of price, performance, 
time to completion (availability), likelihood of completion (probability of failure) 
and penalty (liability) are key to being able to produce such a comparison service, 
and necessary alongside the description of the required service itself in order to 
populate the SLA.

In this chapter, we build on previous work in SLAs through experiments with a 
public cloud, a private cloud and a grid system to determine the relative costing as 
would be required for such a price comparison service. We use a Value-at-Risk 
(VaR) Monte Carlo Simulation on a public cloud (Amazon EC2) to obtain costing 
information, and contrast the performance with a private cloud (Eucalyptus install 
at the University of Surrey) and grid system (Condor install at the University of 
Surrey) to determine an exchange rate. While a recent study compared performance 
characteristics of EC2 and Eucalyptus, addressing storage, CPU, network transfer 
and network latency [1], start-up time for these systems appears not to have been 
accounted for, yet can be a major overhead for large numbers of short processes. 
Applications such as VaR emphasise the importance of overall time to completion, 
and a Monte Carlo approach is readily parallelised but may favour particular levels 
of parallelism depending on the number of simulations. In relating price and per-
formance, at minimum we may ascertain when it is appropriate to scale across 
private and public clouds, and potentially which direction is favoured.

21.2 � Background

Commercial grid and utility computing was largely driven by big technology 
vendors such as IBM, Sun, HP, Oracle and Microsoft. Products and services 
such as IBM’s Computing On-Demand, Sun’s network.com, Oracle 10g and 
Microsoft’s High-Performance Computing (HPC) cluster solution were vari-
ously labelled as grid and utility, and variously priced and packaged. Sun’s 
network.com had a relatively clear pricing – US$1 per CPU hour. However, 
limited uptake meant that the service was eventually closed down. The US$1 
price point was used in 2003 to equate computing resources [6]. An updated 
consideration of this price point suggests that substantially improved perfor-
mance is now available, but the costs are most likely to vary according to the 
application when elements of the cost are treated separately: ‘most applications 
do not make equal use of computation, storage, and network bandwidth; some 
are CPU-bound, others network-bound, and so on [14]. Specific application 
requirements need to be reckoned with when determining how best to configure 
the cloud system. Prices for Amazon AWS are typically used to exemplify this: 
here, CPU, memory and storage often move together (Table 21.1), while network 
transfers and persistent storage necessitate further calculations.
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If we have good understanding of the requirements of an application such that we are 
able to find matching resources at the right price, then we may begin to search through 
the options on offer. Here, the consumer is attempting to achieve the best approxi-
mate fit. However, the best value may have come if a wider variety of configurations 
were available or could be specifiable. The consumer would outline their needs, and a 
range of providers would make offers to the consumer in order to secure their business. 
Consumers may get better pricing depending on a variety of factors, and the service for 
comparability would offer opportunities for markets in computational equivalents of 
financial instruments – where these may be contracts of different values based on the 
SLAs – and even derivatives of such instruments. These SLAs may need to reference a 
portfolio of computational resources, introducing some notion of risk into the SLA itself 
(see, for example, [9]). This would further suggest that organisations may offer variable 
SLAs in which price accounts for risk – cheaper resources imply more risk and less 
liability in the event of failure. Here, we have been inspired by the notions of tranches 
and subordination in financial CDO models such that higher-value SLAs are those that 
shall be satisfied first [10–12]. We believe that such a framework might assist providers 
or brokers to optimise system utilisation and offer the best value for money with dynami-
cally configured systems. As such, cloud markets may emerge based on such consider-
ations and others made previously in relation to grid economics [8]. However, much of 
the work of understanding applications in order to derive the required service description 
terms and guarantee terms for the SLAs is still needed, and initial comparability across 
resources, as described in the remainder of this chapter, is a vital step towards this.

21.3 � Experiment

21.3.1 � Target Application: Value at Risk

Value at Risk (VaR) typically computes a value from a distribution of returns 
(profit or loss against the previous day) of financial instruments. The value 
obtained from this analysis is the largest expected loss at a specific confidence 

Table 21.1  Prices for Amazon AWS showing different classes of priced instances with different 
(virtualised) hardware specifications (prices as on January 2010)

Type Small Large Extra large
Medium 

(high-CPU)
Extra large (high-
CPU)

Memory (GB) 1.7 7.5 15 1.7 7
Compute unitsa 1 4 8 5 20
Virtual cores per unit 1 2 4 2 8
Storage (GB) 160 850 1,690 350 1,690
Platform (X-bit) 32 64 64 32 64
Price (on-demand 

instances, EU,  
US$ per hour)

0.095 0.38 0.76 0.19 0.76

a One EC2 computer unit provides equivalent to 1.0~1.2 GHz Intel Opteron or Xeon processor
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level for a given time horizon. In previous work, we have implemented three 
approaches for VaR using Java – Historical Simulation (HS), Variance–Covariance 
(VC) and Monte Carlo Simulations (MCS) – focussed on linear option-free financial 
portfolios [11, 12]. These VaR methods can be characterised to promote reusability 
in implementation, and results of HS and VC can be used to validate the expected 
loss produced by the MCS. For VaR in general, job completion is potentially the 
most vital factor: the faster the result, the more useful it may be and the lower the 
likelihood that the ‘history’ has now changed with new data that renders the analy-
sis meaningless.

For our experiments, we capture the total completion time of MCS VaR for 
95% confidence with 20 assets, with an evenly distributed notional (investment), and 
using 1 year of historic market data with 640,000 simulations. This application 
requires a relatively short run time, so the time taken before the application starts is 
significant.

21.3.2 � Target Systems

Our target systems comprise a Condor pool, Amazon EC2 and a private cloud based 
on Eucalyptus. We do not attempt to equate the configurations of these systems, 
since the relative performance figures are of interest. Furthermore, we control data 
transfer by having input data local to the analysis. The MCS is run using up to 32 
nodes on all three systems, and also on 64 for EC2 and Condor. Furthermore, we 
have produced a Directed Acyclic Graph of the MCS for Condor’s DAGman; how-
ever, for a better comparison we run jobs independently (non-DAG).

21.3.2.1 � Condor

Software for distributed computing is based on a scheduler, typically used in grids, 
developed by the University of Wisconsin in Madison. Our Condor pool comprises 
128 cores provided by 32 IBM HS21 Woodcrest Blades (two Intel dual core proces-
sors, 2.66 GHz, 1,333 MHz FSB with 4 GB RAM per blade), with Red Hat 
Enterprise Linux 4 and Condor version 6.6.6.

21.3.2.2 � Amazon EC2

Our choice of public cloud is offering on-demand servers. We built an Ubuntu 9.04 
(jaunty) 32-bit image containing the MCS application with all necessary input files. 
The 32-bit image works in EC2 as m1.small and c1.medium instance types. The 
application executes immediately once the image has been started, captures results 
and timing information using web requests to a publicly available web server and 
self-terminates following successful completion.
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21.3.2.3 � Eucalyptus

Eucalyptus [8] is open-source software for building cloud systems on top of con-
ventional compute clusters, with a similar API and protocols to EC2. Our private 
cloud is built using Ubuntu Linux server 9.04 (kernel 1.6.28-27) with Eucalyptus 
version 1.61 and consists of two servers, each with two Quad Core Intel Xeon 
E5540s at 2.53 GHz and 32 GB RAM. Currently, only the m1.small instance type is 
available, offering a maximum of 40 instances of 1.0 GHz per compute unit and 256 
MB RAM. We are able to reuse the 32-bit image built for EC2 within this system.

The specification for nodes within the three systems is shown in Table 21.2.

21.3.3 � Results

Values obtained for MCS VaR from all three systems are within tolerance of the VC 
VaR, and the standard error is within the necessary 1% tolerance up to 32 nodes but 
outside this tolerance at 64 nodes, consistent with expectations based on prior work.

We separate the start-up time from the application run-time and investigate the 
averages: for Condor, this gives us an average scheduling overhead; for EC2 and 
Eucalyptus, this provides the average image boot time. Results from this separation 
are shown below (Figs. 21.1–21.3).

We obtain an average boot time for 32 virtual machines of 106 s in EC2 and 234 
s in Eucalyptus, both of which are lower than a speculated 5 min [4]. For EC2, simi-
lar boot times are obtained for all our chosen configurations, and we have found that 
such times are consistently achievable for morning and afternoon runs over a 7-day 
period. However, times for both Condor and Eucalyptus are progressively increasing 
with increasing demands. Condor requires 76 s for 32 processes, which appears to 
be favourable performance over EC2, but EC2 is offering better times at 64.

Once the application is ‘booted’, Eucalyptus appears to offer best run perfor-
mance: for 32 instances, Eucalyptus takes 4.1 s, EC2 (m1.small) 7.9 s and Condor 
19 s (Fig. 21.4). We have also found that EC2 (c1.medium) can outperform these at 
3.7 s. Coordinating the analysis in Condor using DAGman magnifies the start-up 
time to around 500 s, and making it particularly unfavourable.

Table 21.2  Platform hardware specification comparison

EC2 (m1.small) Eucalyptus (m1.small) Condor

OS Architecture 32-Bit 32-Bit 32-Bit
Compute unit One virtual core One One physical CPU
Compute unit type Intel 1.0–1.2 GHz 2007 

Opteron or 2007 Xeon 
processor

Intel 1.0 GHz 2007 
Xeon

Intel 2.66G dual 
core processor

Number of compute unit One One Two
Ram (GB) 1.7 256M 4
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Fig. 21.1  Performance comparison (queuing/boot time)

Fig. 21.2  Performance comparison (application run)
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The total run time in Eucalyptus produces a similar ‘smile’ curve (Fig. 21.3) to 
Condor. In both systems, performance is improving up to a given number, then 

Fig. 21.3  Performance comparison (total run)

Fig. 21.4  Probability of completion. To show the general trend, we excluded one outlying data 
point in ec2 c1.medium, which is considerably to the right of other data in that set



36921  Towards Application-Specific Service Level Agreements 

drops away as more instances are demanded. EC2’s total run time appears to show 
a slight increase at 64, but well within the previous range.

21.3.4 � Job Completion

We consider the probability of completion of the analysis in Condor, Eucalyptus 
(m1.small) and EC2 (both m1.small and c1.medium) for 32 processors (Fig. 21.4). 
Condor manages to start all parallel tasks first, followed by EC2 (m1.small), 
Eucalyptus and EC2 (c1.medium). Note, however, the regression slope gradients: 
Condor shows the greatest variance for start-up time (s = 19.53), followed by EC2 
m1.small (11.81), EC2 c1.medium (7.11) and Eucalyptus (5.41).

The probability of completion of VaR on AWS is 100% after the average AMI boot-
ing time of 97 s, provided all have been provisioned. This may not always be the case.

We show the speed up for each platform in Fig. 21.5 by considering the gain achieved 
in using double the number of instances each time. Here, the point at which performance 
appears to begin to degrade becomes apparent (Eucalyptus, 4; Condor, 8).

21.3.5 � Cost

We estimated the cost of running VaR MCS on EC2 by reference to the Amazon 
pricing scheme in July 2009 (Table 21.3), which appeared similar to Sun’s network.

Fig. 21.5  Total run speed-up, showing gain achieved in doubling the number of instances, and 
performance degradation
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com charges of $1 per CPU-hour integrating costs that are individually priced here. 
The actual cost of an MCS VaR in EC2 (m1.small), for 640,000 simulations is 
about $0.51, and the running costs of 640,000*1 instance is similar to that of 
10,000*64 instances. Use of higher performance units, 64-bit machines and 
Windows-based machines will result in variant performance and costs, not least 
since a Windows machine initially costs more than a Linux machine [17]. With 
Sun’s network.com running 64-bit systems, some of Amazon’s costs may be higher 
than those for a system that was closed down.

VaR MCS with 640,000 simulations, in EC2, costs US$0.51, but takes only 90 s. 
The same application running in Condor and Eucalyptus takes 95 and 228 s, respec-
tively. The EC2 cost equivalent would be: Condor – $0.54; Eucalyptus $1.29. This 
emphasises the importance of careful choice of provider. However, a system that takes 
longer should price more competitively, and equivalent performance would be: Condor 
– US$0.48; Eucalyptus – $0.20. Price differences would reflect system performance 
with different applications and different configurations of those applications. 
Significant data capture will be required to address the scope of these differences.

21.4 � Conclusions and Future Work

In this chapter, we have used a Value at Risk (VaR) Monte Carlo Simulation (MCS) 
to compare run information from a public cloud (Amazon EC2), a private cloud 
(Eucalyptus) and a grid system (Condor). We considered the impact of the schedul-
ing and booting overhead on an application with a relatively short run time, and 
used this information to relate system costs. We have previously reported on  intro-
ducing risk into Service Level Agreements [10–12], and how price information 
helps to create guarantee terms of SLAs and contributes to required future work on 
resource availability prediction. The experiments presented here help us to consider 
further how to build SLAs such that a price comparison service for computing 
resources could be feasible. Such price information may be applicable to classes of 

Table 21.3  Cost of VaR MCS (Dec 2009)

AWS m1.small moderate 
I/O hourly charges (US$)

One off MCS (640,000 
simulations) charges with 434M 
Ubuntu AMI m1.small (US$)

EC2 VM per Instance 
instance-hour (or 
partial hour)

0.11 0.11

EC2 I/O in 0.10 0.01
EC2 I/O out 0.17 0.01
S3 I/O out (monthly cost) 0.17 0.01
S3 others 0.30 0.30
VAT (%) 15 15
Total cost (incl. VAT) 0.98 0.51
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applications that have similar characteristics in order to estimate costs without prior 
knowledge of performance. However, obtaining reliable information will necessi-
tate numerous runs across multiple systems, likely involving parameter sweeps. 
These efforts will be combined with autonomic use of SLAs, and are geared 
towards demonstrating the provision of a computational price comparison service.

With reference to [4], it is entirely feasible that a public cloud (EC2) may be 
faster than a supercomputer for a certain set of applications with known require-
ments and performance, and given certain availability constraints and scheduling 
overheads. The experiments presented here also show the potential for using cur-
rent commercial clouds over grid-type infrastructures.

During our experiments, we encountered several occasions where one or two 
instances simply failed to start properly, even given almost 9 (chargeable) hours. 
Such occurrences merely emphasise the need for, and potential value of, applica-
tion-specific SLAs.
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